Computing a Point of Reflection on a Sphere

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: February 1, 2008
Last Modified: March 2, 2008

Contents

1 Introduction 2

2 Reflection of a Vector 2

3 Computing a Reflection Point 3
1 Introduction

A point light is located at position L, which is more than one unit of distance from the origin. A sphere of radius 1 and centered at the origin will reflect light rays from the point light. A point S outside the sphere potentially receives a reflected ray of light. If it does, we wish to compute the point N on the sphere at which the light ray is reflected to reach the point S.

Imagine the smallest-angled single-sided cone whose vertex is L and that contains the sphere. Figure 1 illustrates this.

Figure 1. The smallest-angled single-sided cone for the light position L and the sphere. The point S receives light as long as it is outside the sphere and not inside the shadowed area hidden from the light position. The point L' is the reflection of L through the ray whose origin is the sphere center and whose direction is N.

The point S will receive a reflected light ray as long as it is outside the sphere and not in the shadow of the sphere, as illustrated in Figure 1. The point L' is the reflection of L through the ray whose origin is the sphere center and whose direction is N.

The key observation is that N must be chosen so that the vectors $S - N$ and $L' - N$ are parallel and in the same direction.

2 Reflection of a Vector

Figure 1 illustrates the reflection L' of the point L through the normal ray. We need to compute this reflection. Figure 2 helps to understand how to do this.
Figure 2. The reflection L' of L through a ray with direction N.

The point L has a component in the N direction. After projecting out that component, the remainder is in some direction N^\perp that is perpendicular to N. Thus, we may write

$$L = sN + tN^\perp$$ \hspace{1cm} (1)

where $s = N \cdot L$. The reflection through N amounts to changing sign on the perpendicular component,

$$L' = sN - tN^\perp$$ \hspace{1cm} (2)

The sum of the vectors in Equations (1) and (2) is

$$L + L' = 2sN = 2(N \cdot L)N$$ \hspace{1cm} (3)

We may solve for the reflected vector,

$$L' = 2(N \cdot L)N - L$$ \hspace{1cm} (4)

3 Computing a Reflection Point

The assumption in this section is that S and L are not parallel vectors. For if they were, the point of reflection is $N = L/|L|$: that is, the light is reflected in the opposite direction to reach S. Our assumption has the consequence that $S \times L \neq 0$ (parallel vectors have a nonzero cross product).

Figure 1 shows that N must bisect the rays whose common origin is N and whose directions are $S - N$ and $L - N$. Therefore, we may represent

$$N = xS + yL$$ \hspace{1cm} (5)

for some scalars $x > 0$ and $y > 0$. Observe that

$$S \times N = yS \times L, \quad N \times L = xS \times L, \quad N \cdot L = xS \cdot L + yL \cdot L$$ \hspace{1cm} (6)

Because N is a unit-length vector, we also know that

$$1 = N \cdot N = x^2S \cdot S + 2xyS \cdot L + y^2L \cdot L$$ \hspace{1cm} (7)
As noted in the introduction, \(\mathbf{N} \) must be chosen so that the vectors \(\mathbf{S} - \mathbf{N} \) and \(\mathbf{L}' - \mathbf{N} \) are parallel. Their cross product must be the zero vector,

\[
\mathbf{0} = (\mathbf{S} - \mathbf{N}) \times (\mathbf{L}' - \mathbf{N}) = (\mathbf{S} - \mathbf{N}) \times [(2\mathbf{N} \cdot \mathbf{L} - 1)\mathbf{N} - \mathbf{L}] = (2\mathbf{N} \cdot \mathbf{L} - 1)\mathbf{S} \times \mathbf{N} - \mathbf{S} \times \mathbf{L} + \mathbf{N} \times \mathbf{L} = [(2\mathbf{N} \cdot \mathbf{L} - 1)y - 1 + x] \mathbf{S} \times \mathbf{L} = [(2x\mathbf{S} \cdot \mathbf{L} + 2y\mathbf{L} \cdot \mathbf{L} - 1)y - 1 + x] \mathbf{S} \times \mathbf{L}
\]

where we have used Equations (2), (5), and (6). By assumption, \(\mathbf{S} \times \mathbf{L} \neq \mathbf{0} \), so Equation (8) implies

\[
(2x\mathbf{S} \cdot \mathbf{L} + 2y\mathbf{L} \cdot \mathbf{L} - 1)y - 1 + x = 0
\]

Equations (7) and (9) are two quadratic equations in two unknowns \(x \) and \(y \),

\[
p(x, y) = ax^2 + 2bxy + cy^2 - 1 = 0, \quad q(x, y) = 2bxy + 2cy^2 + x - y - 1 = 0
\]

where \(a = \mathbf{S} \cdot \mathbf{S}, \ b = \mathbf{S} \cdot \mathbf{L}, \) and \(c = \mathbf{L} \cdot \mathbf{L} \). We may solve \(q(x, y) = 0 \) for \(x \) in terms of \(y \),

\[
x = \frac{-2cy^2 + y + 1}{2by + 1}
\]

Substituting into the equation \(p(x, y) = 0 \), we have

\[
a(-2cy^2 + y + 1)^2 + 2by(2by + 1)(-2cy^2 + y + 1) + (cy^2 - 1)(2by + 1)^2 = 0
\]

The numerator of Equation (12) is the quartic polynomial,

\[
r(y) = 4c(ac - b^2)y^4 - 4(ac - b^2)y^3 + (a + 2b + c - 4ac)y^2 + 2(a - b)y + a - 1 = 0
\]

Observe that

\[
ac - b^2 = (\mathbf{S} \cdot \mathbf{S})(\mathbf{L} \cdot \mathbf{L}) - (\mathbf{S} \cdot \mathbf{L})^2 = |\mathbf{S} \times \mathbf{L}|^2 \neq 0
\]

so the coefficient of \(y^4 \) is not zero, which means \(r(y) \) really has degree 4.

Now compute the real-valued roots of \(r(y) = 0 \). For each root \(\bar{y} > 0 \), compute \(\bar{x} = (-2cy^2 + \bar{y} + 1)/(2b\bar{y} + 1) \) from Equation (11). Of all the pairs \((\bar{x}, \bar{y})\), select that pair for which \(\bar{x} > 0 \) and \(\bar{y} > 0 \). The point of reflection is \(\mathbf{N} = \bar{x}\mathbf{S} + \bar{y}\mathbf{L} \).