
Robust Intersection of Ellipses

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: June 16, 2023

Contents

1 Introduction 3

2 Ellipse Representations 3

2.1 The Standard Form for an Ellipse . 3

2.2 The Quadratic Equation Form for an Ellipse . 4

3 Early No-Intersection Test 4

3.1 Axis-Aligned Bounding Box from Standard Form . 4

3.2 Axis-Aligned Bounding Box from Quadratic Equation . 6

4 Solving Two Quadratic Equations in Two Unknowns 7

5 Affine Transformation to Simplify the Analysis 8

6 Case e4 is Zero and e2 is Zero 9

6.1 Case e3 is Zero . 9

6.1.1 Case e1 is Zero . 10

6.1.2 Case e1 is not Zero . 10

6.2 Case e3 is not Zero . 11

7 Case e4 is Zero and e2 is not Zero 11

7.1 Case e3 is Zero . 11

7.2 Case e3 is not Zero . 12

8 Case e4 is not Zero 12

1

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

9 Eliminating Divisions 13

10 Implementation Issues 13

10.1 Using the Unnormalized Ellipse Axes . 13

10.2 Computing Coefficients . 13

10.3 Robust Computation of Determinant-Like Expressions . 14

10.4 Implementation . 14

2

1 Introduction

This document describes how to compute the points of intersection of two ellipses in a robust manner, using
floating-point arithmetic or rational arithmetic. When using rational arithmetic, it is not always possible to
compute the points exactly. The algorithm involves computing roots to quartic polynomials, which are not
generally representable as rational numbers.

One goal is to have a robust estimator for the quartic roots in order to minimize the rounding errors that
occur in the root finder. Another goal is to ensure that floating-point computations have a minimum amount
of rounding error. This goal is accomplished by using fused-multiply-add operations for expressions of the
form xy − zw. Using only standard floating-point multiplication and subtraction, subtractive cancellation
of significant bits can occur when xy and zw are the same sign and nearly the same magnitude.

2 Ellipse Representations

Ellipses can be represented algebraically using two formulations: the standard form and the quadratic equa-
tion form. The standard form requires specifying unit-length ellipse axis directions, but when using floating-
point arithmetic, the normalization of vectors to obtain unit-length directions introduces rounding errors.
The setup for the standard form can be written instead to use non-unit-length ellipse axis directions, which
supports a rational formulation of the ellipse. The standard form can be converted to a quadratic equation
in two variables. The ellipse is represented as the zero-valued level set of the quadratic equation.

2.1 The Standard Form for an Ellipse

Let the ellipse center be C. Let the ellipse axis directions be U and V = −U⊥, where U is a unit-
length vector and where (x, y)⊥ = (y,−x). The vector V is unit length, perpendicular to U , and is a
counterclockwise rotation of U in the xy-plane. Let the ellipse extents be a > 0 and b > 0. The extent a is
the distance from C to extreme points C ± aU and the extent b is the distance from C to extreme points
C ± bV . If a > b, the line through C in the direction U is referred to as the major axis of the ellipse. The
line through C in the direction V is referred to as the minor axis of the ellipse.

An ellipse pointX = (x0, x1) is represented in the coordinate system {C;U ,V } byX = C+µU+νV , where
(µ/a)2+(ν/b)2 = 1. We can compute the coordinates by projection, µ = U · (X −C) and ν = V · (X −C),
in which case

1 = (µ/a)
2
+ (ν/b)

2

= (U · (X −C)/a)
2
+ (V · (X −C)/b)

2

= (X −C)T
(
UUT/a2 + V V T/b2

)
(X −C)

= (X −C)TM(X −C)

(1)

where the last equality defines the positive definite matrixM = [mij] where i is the row index with 0 ≤ i < 2
and j is the column index with 0 ≤ j < 2. By definition, M is symmetric, has positive eigenvalues, and is
invertible. The standard form of the ellipse is the equation (X −C)TM(X −C) = 1.

Equation (1) assumes unit-length vectorsU and V = −U⊥. When computing with floating-point arithmetic,

normalization of a vector Û is typically used to generate U = Û/Û |. The normalization involves computing

3

a sum of squares, which has rounding errors, followed by a square root, which has rounding errors, and then
followed by a division which introduces yet more rounding errors.

The normalization can be avoided, supporting a rational representation of an ellipse. The ellipse parameters
are specified as finite floating-point numbers, which are rational numbers. Let Û be an ellipse axis direction

that is not unit length. Choose V̂ = −Û
⊥
, in which case |Û |2 = |V̂ |2 and the common value is represented

by a rational number. The matrix M of equation (1) is

M =
1∣∣Û ∣∣2
(
ÛÛ

T

a2
+

V̂ V̂
T

b2

)
=

 m00 m01

m01 m11

 (2)

with determinant det(M) = m00m11 −m2
01, and the inverse M−1 is

M−1 =
1∣∣Û ∣∣2
(
a2ÛÛ

T
+ b2V̂ V̂

T
)
=

1

det(M)

 m11 −m01

−m01 m00

 (3)

2.2 The Quadratic Equation Form for an Ellipse

Equation (1) can be expanded to a quadratic equation. Let X = (x0, x1), C = (c0, c1), and M = [mij] for
0 ≤ i < 2 and 0 ≤ j < 2. The expansion is

Q(x0, x1) = q0 + q1x0 + q2y0 + q3x
2
0 + q4x0x1 + q5x

2
1 = 0 (4)

where

q0 = m00c
2
0 + 2m01c0c1 +m11c

2
1 − 1,

q1 = −2(m00c0 +m01c1), q2 = −2(m01c0 +m11c1),

q3 = m00, q4 = 2m01, q5 = m11

(5)

The positive definiteness of M implies q3 = m00 > 0, q5 = m11 > 0, and q3q5 − q24/4 = m00m11 −m2
01 > 0.

These inequalities are expected for a quadratic equation to represent an ellipse.

3 Early No-Intersection Test

The axis-aligned bounding boxes for two ellipses can be computed and tested for overlap. If they do not
overlap, the ellipses cannot intersect. The bounding boxes are computed by locating extreme ellipse points
in the coordinate axis directions. If multiple queries are used for a collection of ellipses, the axis-aligned
bounding boxes can be precomputed for the ellipses and stored with the ellipse structure.

3.1 Axis-Aligned Bounding Box from Standard Form

Generally, let N be a unit-length vector. The ellipse has two extreme points on the line with origin C and
direction N . The quadratic function Q(X) = (X −C)TM(X −C) − 1 implicitly defines an ellipse as the
level curve Q(X) = 0. The gradient of Q(X) is an outer-pointing normal vector at the ellipse point X.

4

The gradient is ∇Q(X) = 2M(X − C). We wish to find ellipse points for which ∇Q(X) is parallel to N .
Specifically, we want M(X−C) = tN for two nonzero scalars t. Solve for X−C = tM−1N and substitute
this into the quadratic function to obtain t2NTM−1N = 1. We can solve for t to obtain the extreme points

X = C ± M−1N/
√

NTM−1N (6)

The distance in the N direction from the center C to an extreme point X is∣∣NT(X −C)
∣∣ = NTM−1N/

√
NTM−1N =

√
NTM−1N (7)

The extreme values for an axis-aligned bounding box are provided by the directions N = (1, 0) and N =

(0, 1). Let Û = (u0, u1) and V̂ = (−u1, u0). The extreme offsets are

±
√

m11

det(M)
(1, 0), ±

√
m00

det(M)
(0, 1) (8)

where the formula for M−1 from equation (3) has been used.

Listing 1 contains C++ code for the no-intersection test.

Listing 1. C++ code for applying an early no-intersection test for the intersection of two ellipses.

template <typename T>
struct Ellipse2<T>
{

// The comments contain the symbols used in equation (1).
Vector2<T> center; // C

std::array<Vector2<T>, 2> axis; // Û and V̂
std::array<T, 2> extent; // a and b

void GetStandardForm(Vector2<T>& C, Matrix2x2<T>& M) const
{

Matrix2x2<T> UUTrn = OuterProduct(axis[0], axis[0]);
Matrix2x2<T> VVTrn = OuterProduct(axis[1], axis[1]);
T USqrLen = Trace(UUTrn);
T aSqr = extent[0] * extent[0];
T bSqr = extent[1] * extent[1];
C = center;
M = (UUTrn / aSqr + VVTrn / bSqr) / USqrLength;

}
};

template <typename T>
struct AlignedBox2<T>
{

std::array<T, 2> min, max;

bool Intersects(AlignedBox2<T> const& other) const
{

for (size t i = 0; i < 2; ++i)
{

if (max[i] < other.min[i] || min[i] > other.max[i])
{

return false;
}

}
return true;

}
};

5

template <typename T>
void ComputeAlignedBox(Vector2<T> const& C, Matrix2x2<T> const& M, AlignedBox2<T>& box)
{

T detM = M(0,0) * M(1,1) = M(0,1) * M(0,1);
T xDistance = std::sqrt(M(1,1) / detM);
T yDistance = std::sqrt(M(0,0) / detM);
box.min[0] = C[0] = xDistance;
box.max[0] = C[0] + xDistance;
box.min[1] = C[1] = yDistance;
box.max[1] = C[1] + yDistance;

}

template <typename T>
void ComputeAlignedBox(Ellipse2<T> const& ellipse, AlignedBox2<T>& box)
{

Vector2<T> C{};
Matrix2x2<T> M{};
ellipse.GetStandardForm(C, M);
ComputeAlignedBox(C, M, box);

}

template <typename T>
bool NoIntersection(Vector2<T> const& C0, Matrix2x2<T> const& M0, Vector2<T> const& C1, Matrix2x2<T> const& M1)
{

AlignedBox2<T> box0{}, box1{};
ComputeAlignedBox(C0, M0, box0);
ComputeAlignedBox(C1, M1, box1);
return !box0.Intersects(box1);

}

template <typename T>
bool NoIntersection(Ellipse2<T> const& ellipse0, Ellipse2<T> const& ellipse1)
{

AlignedBox2<T> box0{}, box1{};
ComputeAlignedBox(ellipse0, box0);
ComputeAlignedBox(ellipse1, box1);
return !box0.Intersects(box1);

}

3.2 Axis-Aligned Bounding Box from Quadratic Equation

The axis-aligned bounding box also can be computed from the quadratic equation (4). The term (q2+q4x0)x1
can be eliminated from the equation by an affine transformation (x0, x1) = (y0, y1 − (q2 + q4y0)/(2q5) which
leads to

Q̃(y0, y1) = 4q5Q(x0, x1)

=
[
(4q0q5 − q22) + (4q1q5 − 2q2q4)y0 + (4q3q5 − q24)y

2
0

]
+ 4q25y

2
1

= ϕ(y0) + 4q25y
2
1

(9)

where the last equality defines the polynomial ϕ(y0). The degree of ϕ(y0) is 2 because q3 > 0, q5 > 0, and

4q3q5 − q24 > 0. In order for Q̃(y0, y1) = 0 to represent an ellipse, there must be points (y0, y1) that solve
the equation which means y0-values of the ellipse points must satisfy ϕ(y0) ≤ 0. Moreover, ϕ(y0) must have
2 distinct real-valued roots. Applying the formulas in equation (5) and using some algebraic manipulation,

ϕ(y0) = 4
(
det(M)(y0 − c0)

2 −m11

)
(10)

Computing the roots of ϕ(y0), the y0-extremes for the axis-aligned bounding box are c0 ±
√
m11/det(M),

which agrees with the first equation in (8).

6

Similarly, the affine transformation (x0, x1) = (y0 − (q1 + q4y1)/(2q3), y1) leads to

Q(y0, y1) = 4q3Q(x0, x1)

= 4q23y
2
0 +

[
(4q0q3 − q21) + (4q2q3 − 2q1q4)y1 + (4q3q5 − q24)y

2
1

]
= 4q23y

2
0 + ψ(y1)

(11)

where the last equality defines the polynomial ψ(y1). The degree of ψ(y1) is 2 because q3 > 0, q5 > 0, and
4q3q5 − q24 > 0. In order for Q(y0, y1) = 0 to represent an ellipse, there must be points (y0, y1) that solve the
equation which means y1-values of the ellipse points must satisfy ψ(y1) ≤ 0. Moreover, ψ(y1) must have 2
distinct real-valued roots. Applying the formulas in equation (5) and using some algebraic manipulation,

ψ(y1) = 4
(
det(M)(y1 − c1)

2 −m00

)
(12)

Computing the roots of ψ(y1), the y1-extremes for the axis-aligned bounding box are c1 ±
√
m00/det(M),

which agrees with the second equation in (8).

4 Solving Two Quadratic Equations in Two Unknowns

For i ∈ {0, 1} let the ellipses have standard forms (X−Ci)
TMi(X−Ci) = 1. If C0 = C1 andM0 =M1, the

ellipses are identical. An implemention will report this configuration. For the remainder of this document,
the assumption is that the ellipses are not identical.

Each of the standard forms can be converted to quadratic form using equation (4),

F (x0, x1) = f0 + f1x0 + f2x1 + f3x
2
0 + f4x0x1 + f5x

2
1 = 0

G(x0, x1) = g0 + g1x0 + g2x1 + g3x
2
0 + g4x0x1 + g5x

2
1 = 0

(13)

which implicitly define the ellipses. The coefficients satisfy f3 > 0, f5 > 0, 4f3f5 − f24 > 0, g3 > 0, g5 > 0,
and 4g3g5 − g24 > 0. The x21 term can be eliminated by

0 = E(x0, x1)

= g5F (x0, x1)− f5G(x0, x1)

= (f0g5 − f5g0) + (f1g5 − f5g1)x0 + (f2g5 − f5g2)x1 + (f3g5 − f5g3)x
2
0 + (f4g5 − f5g4)x0x1

= e0 + e1x0 + e2x1 + e3x
2
0 + e4x0x1

= (e0 + e1x0 + e3x
2
0) + (e2 + e4x0)x1

= ε0(x0) + ε1(x0)x1

(14)

where the fourth equality defines the ei for 0 ≤ i ≤ 4 and the last equality defines the polynomials εj(x0)
for 0 ≤ j ≤ 1.

The construction of intersection points requires analyzing the polynomials εi(x0). The cases to consider are
e4 = 0 and e2 = 0, e4 = 0 and e2 ̸= 0, and e4 ̸= 0. It is possible to present algebraic constructions of
intersection points for these cases, but Section 3.2 provides a hint that simplifies the constructions. In that
section an affine transformation is applied that consists of a translation and a shear.

7

5 Affine Transformation to Simplify the Analysis

The first ellipse in standard form is (X−C0)
TM0(X−C0) = 1. Let the entries of the matrix beM0 = [m0,ij].

The LDLT decomposition can be used to factor M0 = LDLT where

L =

 1 0

ℓ 1

 =

 1 0

m0,01/m0,00 1

 , D =

 d0 0

0 d1

 =

 m0,00 0

0 (m0,00m0,11 −m2
0,01)/m0,00

 (15)

The ellipse equation becomes (
LT(X −C0)

)T
D
(
LT(X −C0)

)
= 1 (16)

Define the change of variables Y = LT(X −C0). This is an affine transformation consisting of a translation
and a shear. The ellipse equation becomes

Y TDY = 1 (17)

which represents an axis-aligned ellipse centered at the origin of the Y -coordinate system. The second ellipse
in standard form is (X −C1)

TM1(X −C1) = 1. Substituting X = L−TY +C0 into this equation,(
L−TY −K

)T
M1

(
L−TY −K

)
= 1 (18)

where L−T is the transpose of the inverse L−1 and K = C1 −C0 = (k0, k1).

Converting to quadratic equations, we have

F (y0, y1) = −1 + d0y
2
0 + d1y

2
1 = 0

G(y0, y1) = g0 + g1y0 + g2y1 + g3y
2
0 + g4y0y1 + g5y

2
1 = 0

(19)

where

g0 = −1 + k0(k0m1,00 + k1m1,01) + k1(k0m1,01 + k1m1,11)

g1 = −2(k0m1,00 + k1m1,01)

g2 = 2[(k0m1,00 + k1m1,01)ℓ− (k0m1,01 + k1m1,11)]

g3 = m1,00

g4 = −2(m1,00ℓ−m1,01)

g5 = m1,00ℓ
2 − 2m1,01ℓ+m1,11

(20)

Compare these quadratic equations to those of (13). In the Y -coordinate system, equation (14) becomes
the following. It does not matter whether E or −E is used, so to eliminate a lot of negation operations this
equation uses the negative of that in (13),

0 = E(y0, y1)

= d1G(y0, y1)− g5F (y0, y1)

= (g5 + d1g0) + (d1g1)y0 + (d1g2)y1 + (d1g3 − d0g5)y
2
0 + (d1g4)y0y1

= e0 + e1y0 + e2y1 + e3y
2
0 + e4y0y1

= (e0 + e1y0 + e3y
2
0) + (e2 + e4y0)y1

= ε0(y0) + ε1(y0)y1

(21)

8

where e0 = g5 + d1g0, e1 = d1g1, e2 = d1g2, e3 = d1g3 − d0g5, and e4 = d1g4.

Symbolically, we can solve for

y1 = −ε0(y0)/ε1(y0) = −e0 + e1y
2
0 + e3y

2
0

e2 + e4y0
(22)

substitute this into the equation F (y0, y1) = 0 and eliminate the denominator of the fraction to obtain a
polynomial of degree at most 4,

H(y0) = (e2 + e4y0)
2(−1 + d0y

2
0) + d1(e0 + e1y

2
0 + e3y

2
0)

2 (23)

whose roots r0 can be used to generate points (r0, r1), where r1 = −ε0(r0)/ε1(r0). An analysis of the ei is
required to determine whether or not the divisor in the y1-equation is nonzero. Even if it is nonzero, the
division can be a major source of rounding errors when using floating-point arithmetic.

6 Case e4 is Zero and e2 is Zero

Let e4 = 0 and e2 = 0, which imply g4 = 0 and g2 = 0. The G-ellipse is axis aligned. The division in
equation (22) cannot be performed because the denominator is identically zero. The polynomial of equation
(23) becomes

H(y0) = e0 + e1y0 + e3y
2
0 (24)

Further analysis is required for e3, e2, and e0.

The condition g4 = 0 implies
m1,00ℓ−m1,01 = 0 (25)

Using the definition ℓ = m0,01/m0,00 and knowing that m0,00 > 0, we obtain m1,00m0,01 −m1,01m0,00 = 0.
In turn this implies (m1,00,m1,01) and (m0,00,m0,01) are parallel, say,

(m1,00,m1,01) = s(m0,00,m0,01) (26)

for some s > 0. The positivity of s is implied by M0 and M1 being positive definite matrices, in which case
m0,00 > 0 and m1,00 > 0.

The condition g2 = 0 implies

0 = (k0m1,00 + k1m1,01)ℓ− (k0m1,01 + k1m1,11)

= k0(m1,00ℓ−m1,01) + k1(m1,01ℓ−m1,11) [from equation (25)]

= k1(m1,01ℓ−m1,11)

(27)

Either k1 = 0 or m1,01ℓ−m1,11 = 0.

6.1 Case e3 is Zero

Let e3 = 0. The H-polynomial is linear
H(y0) = e0 + e1y0 (28)

9

and an implication is d0g3 − d1g5 = 0. This implies that (g3, g5) and (d0, d1) are parallel, say (g3, g5) =
t(d0, d1). We know that g3 = m1,00, d0 = m0,00, and from equation (26) m1,00 = sm0,00. Consequently,
t = s and g5 = sd1. Using the definitions of g5 and d1,

s(m0,00m0,11 −m2
0,01)/m0,00 = m1,00ℓ

2 − 2m1,01ℓ+m1,11

= (m1,00ℓ−m1,01)ℓ−m1,01ℓ+m1,11

= −m1,01ℓ+m1,11 [from equation (25)]

= −sm0,01(m0,01/m0,00) +m1,11 [from equation (26)]

(29)

Solving for m1,11, we obtain

m1,11 = sm0,01(m0,01/m0,00) + s(m0,00m0,11 −m2
0,01)/m0,00 = sm0,11 (30)

Combined with previous derivations, we now know that M1 = sM0. Moreover, equation (27) becomes

0 = k1(m1,01ℓ−m1,11)

= k1s(m0,01ℓ−m0,11) [from equations (26) and (30)]

= k1s(m
2
0,01 −m0,00m11)/m00

= −k1sdet(M0)

(31)

We know s > 0 and det(M0) > 0, so it must be that k1 = 0. The coefficients g0 and g1 reduce to

g0 = −1 + k20m1,00 = −1 + sd0k
2
0, g1 = −2k0m1,00 = −2sd0k0 (32)

6.1.1 Case e1 is Zero

If e1 = 0, then g1 = 0 which implies k0 = 0 and the G-polynomial is G(y0, y1) = −1 + s(d0y
2
0 + d1y

2
1). The

F -polynomial is F (y0, y1) = −1 + d0y
2
0 + d1y

2
1 . Substituting F = 0 into G = 0, we obtain s − 1 = 0. If

s = 1, the ellipses are identical, a condition that should be tested for first in an implementation. If s ̸= 1,
the ellipses do not intersect. They have the same center and same shape, but the extent vectors are parallel
and not equal.

6.1.2 Case e1 is not Zero

If e1 ̸= 0, then g1 ̸= 0 which implies k0 ̸= 0 and the G-polynomial is G(y0, y1) = −1+ s(d0(y0−k0)2+d1y21).
The F -polynomial is F (y0, y1) = −1 + d0y

2
0 + d1y

2
1 . Substituting F = 0 into G = 0 produces the equation

−1 + s(1 + d0k
2
0 − 2d0k0y0) = 0. The solution is

y0 =
d0k

2
0 + 1− 1/s

2d0k0
=
k0
2

+
1− 1/s

2d0k0
(33)

which gives geometric information about the ellipses, something the solution y0 = −e0/e1 does not immedi-
ately provide. The denominator is not zero, but when it is nearly zero and floating-point arithmetic is used
for computing, rounding errors can lead to an inaccurate y0 value.

10

When s = 1, the G-ellipse is a translation of the F -ellipse by an amount k0 in the y0-direction. There are 2
intersections occurring when y0 = k0/2, which is clear by the symmetry of the geometric configuration.

When s > 1, if the G-ellipse were to be centered at (0, 0), it is strictly inside the F -ellipse. As the G-ellipse
is translated by k0 in the y0-direction, eventually it intersects the F -ellipse at (Sign(k0)a0, 0), where a0 is
the extent of the F -ellipse associated with the y0-axis. Recall that 1/a20 = d0. Increasing |k0| farther leads
to 2 intersection points. Define the function ϕ(z) = z/2 + c/z where c = (1− 1/s)/(2d0) > 0. The function
has a local minimum of

√
2c occurring when z =

√
2c and a local maximum of −

√
2c when z = −

√
2c. These

imply that at the intersection points,
√
(1− 1/s)/d0 ≤ |ϕ(k0)| = |y0| ≤ a0

When s < 1, if the G-ellipse were to be centered at (0, 0), it is strictly outside the F -ellipse. As the G-ellipse
is translated by k0 in the y0-direction, eventually it intersects the F -ellipse at (− Sign(k0)a0, 0). Shifting
some more (by increasing |k0|) leads to 2 intersection points. The function ϕ(z) has c < 0, so there are no
local extrema. However, at the intersection points, |y0| ≤ a0.

In terms of the e-coefficients, y0 = −e0/e1. Numerically we must be concerned about rounding errors when e1
is nearly zero. Given the bounds |−e0/e1| = |y0| ≤ a0, a necessary condition for the existence of intersection
points is e21 − d0e

2
0 ≥ 0. In an implementation, this condition can be tested first, and if true, the division is

then computed.

6.2 Case e3 is not Zero

The H-polynomial is quadratic,
H(y0) = e0 + e1y0 + e3y

2
0 (34)

For each root r0, the y1 values are computed by solving F (r0, y1) = 0. Define λ = 1− d0r
2
0. If λ < 0, there

are no points of intersection corresponding to r0. If λ = 0, there is 1 point of intersection y1 = 0. If λ > 0,
there are 2 points of intersection (r0, r1) where r1 = ±

√
λ/d1.

7 Case e4 is Zero and e2 is not Zero

Because e4 ̸= 0, both ellipses are axis aligned. We can solve equation (21) for y1 = −(e0 + e1y0 + e3y
2
0)/e2.

Substituting this expression into F (y0, y1) = 0 and multiplying by e22 leads to an H-polynomial that is
quartic or quadratic depending on whether e3 is not zero or is zero.

7.1 Case e3 is Zero

The H-polynomial is quadratic,

H(y0) = e22(−1 + d0y
2
0) + d1(e0 + e1y0)

2 (35)

The coefficient of y20 is d0e
2
2 + d1e

2
1 > 0. The positivity is guaranteed because d0 > 0, e22 > 0, and d1e

2
1 ≥ 0.

Theoretically, for each root r0 of H(y0), compute the corresponding r1 = −(e0 + e1r0)/e2 to obtain an
intersection point (r0, r1).

Numerically when computing with floating-point arithmetic, if e2 is nearly zero, the division by it can
have rounding errors that lead to an inaccurate r1. To avoid the division, for each root r0 of H(y0), solve

11

F (r0, y1) = 0 for values r1. Define λ = 1− d0r
2
0. If λ < 0, there are no points of intersection corresponding

to r0. If λ = 0, there is 1 point of intersection y1 = 0. If λ > 0, there is only 1 point of intersection
(not 2) because we know theoretically r1 = −(e0 + e1r0)/e2. The question is which of the two roots
±
√
λ/d1 corresponds to r1. The simplest numerical decision is to evaluate t0 = |(e0+ e1r0)− e2

√
λ/d1| and

t1 = |(e0 + e1r0) + e2
√
λ/d1| and then choose r1 to be that root which produces the minimum of t0 and t1.

7.2 Case e3 is not Zero

The H-polynomial is quartic,

H(y0) = e22(−1 + d0y
2
0) + d1(e0 + e1y0 + e3y

2
0)

2 (36)

The coefficient of y40 is d1e
2
3 > 0. The positivity is guaranteed because d1 > 0 and e23 > 0.

Theoretically, for each root r0 of H(y0), compute the corresponding r1 = −(e0 + e1r0 + e3r
2
0)/e2 to obtain

an intersection point (r0, r1).

Numerically when computing with floating-point arithmetic, if e2 is nearly zero, the division by it can
have rounding errors that lead to an inaccurate r1. To avoid the division, for each root r0 of H(y0), solve
F (r0, y1) = 0 for values r1. Define λ = 1− d0r

2
0. If λ < 0, there are no points of intersection corresponding

to r0. If λ = 0, there is 1 point of intersection y1 = 0. If λ > 0, there is only 1 point of intersection (not 2)
because we know theoretically r1 = −(e0+ e1r0+ e3r

2
0)/e2. The question is which of the two roots ±

√
λ/d1

corresponds to r1. The simplest numerical decision is to evaluate t0 = |(e0 + e1r0 + e3r
2
0) − e2

√
λ/d1| and

t1 = |(e0 + e1r0 + e3r
2
0) + e2

√
λ/d1| and then choose r1 to be that root which produces the minimum of t0

and t1.

8 Case e4 is not Zero

The second ellipse is not axis aligned in this case. We can solve equation (21) for y1 = −(e0 + e1y0 +
e3y

2
0)/(e2 + e4y0). Substituting this expression into F (y0, y1) = 0 and multiplying by (e2 + e4y0)

2 to obtain
the quartic polynomial

H(y0) = (e2 + e4y0)
2(−1 + d0y

2
0) + d1(e0 + e1y0 + e3y

2
0)

2 = 0 (37)

The coefficient of y40 is d0e
2
4 + d1e

2
3 > 0. The positivity is guaranteed because d0 > 0, e24 > 0, and d1e

2
3 ≥ 0.

Similar to the case e2 = e4 = 0, the divisor δ = e2 + e4r0 for a root r0 of H(y0) can be exactly zero, in
which case the division is not valid. If delta is not zero, then the division is allowed but numerically it can
be nearly zero in which case the division should be avoided.

For each root r0 of H(y0), solve F (r0, y1) = 0 for values r1. Define λ = 1 − d0r
2
0. If λ < 0, there are no

points of intersection. If λ = 0, there is 1 point of intersection y1 = 0. Now consider λ > 0. If δ = 0,
there are 2 points of intersection with ±

√
λ/d1. If δ ̸= 0, the question is which of the two roots ±

√
λ/d1

corresponds to r1. The simplest numerical decision is to evaluate t0 = |(e0+e1r0+e3r20)− (e2+e4r0)
√
λ/d1|

and t1 = |(e0 + e1r0 + e3r
2
0) + (e2 + e4r0)

√
λ/d1| and then choose r1 to be that root which produces the

minimum of t0 and t1.

Note that when e2+e4r0 = 0, then also e0+e1r0+e3r
2
0 = 0. This can happen only when e22e3−e1e2e4+e0e24 =

0. It is unknown whether this can happen theoretically, but the code handles this anyway.

12

9 Eliminating Divisions

The standard form for the ellipses is equation (1), which involves divisions. Using i ∈ {0, 1} to index the

ellipses, the divisions can be eliminated by multiplying the ellipse equation by r2i = a2i b
2
i |Û i|2 to obtain

(X −Ci)
TM̂i(X −Ci) = r2i (38)

where M̂i = r2iMi.

The LDLT matrices of equation (15) can be replaced by L̂ = m0,00L and D̂ = m0,00D. Equation (16)
becomes (

L̂T(X −C0)
)T

D̂
(
L̂T(X −C)

)
= m3

0,00r
2
0 (39)

The affine transformation is now Y = L̂T(X −C0) so that equation (17) becomes

Y TD̂Y = m3
0,00r

2
0 (40)

and equation (18) becomes (
L̂−TY −∆

)T
M̂1

(
L̂−TY −∆

)
= r21 (41)

10 Implementation Issues

The previous discussion was theoretical in the sense that (error-free) real-valued arithmetic is used in the
derivations. Computing with floating-point arithmetic, an implementation must be aware of the potential
problems caused by rounding errors and subtractive cancellation. It is not possible to avoid rounding errors,
even if one were to use rational arithmetic, because root finding for quadratic and quartic polynomials
produces roots that are not rational. That said, the goal is to minimize the effects of rounding errors in
order to avoid computing points of intersection that are not accurate enough to be acceptable.

10.1 Using the Unnormalized Ellipse Axes

We already saw that the standard form of an ellipse shown in equation (1) has rounding errors when the
unit-length ellipse axis directions are computed via normalization. To avoid this problem, use non-unit-
length ellipse axis directions. It is also possible to normalize the axis directions and pass them to the ellipse
construction, but the intersection code will still apply the division by the squared length.

10.2 Computing Coefficients

The setup of Section 5 can be computed using rational arithmetic when considering the input ellipse pa-
rameters as error-free floating-point numbers. The parameters are necessarily rational numbers. The affine
transformation is also computable using rational arithmetic, which means fi and gj can be computed without
errors. And the coefficients of the polynomial H(y0) can be computed using rational arithmetic. The root
finding, however, can only estimate non-rational roots. It is possible that H has some rational roots, and a

13

good root finder can compute them exactly. This happens when roots are repeated, which in the context of
computing intersection points of ellipses occurs when the ellipses have tangential contact.

The computations can also be performed using floating-point arithmetic, albeit with rounding errors. Several
steps in the process are sensitive to rounding errors, so the implementation must handle these carefully.

10.3 Robust Computation of Determinant-Like Expressions

The coefficients of E(y0, y1) in equation (21) are expressions of the form u*v, u*v+w, and u*v+w*z for
floating-point numbers u, v, w, and z. When computing with floating-point arithmetic, we need to worry
about rounding errors associated with the expressions. The expression u*v is computed using a floating-point
multiplication, where the result is the floating-point number closest to the theoretical value of the expression.
If the expression u*v+w is computed with a floating-point multiplication and a floating-point division, each
operation involves rounding. Current floating-point hardware provides a fused multiply-add instruction, call
it fma(u,v,w), that involves only a single rounding step. The result is the floating-point number closest to the
theoretical value of the expression, which is better than having two rounding steps.

Robust floating-point computation of the expression uv+wz is more complicated. The näive approach in-
volves two floating-point multiplications and one floating-point addition for a total of three rounding steps.
Worse is that if uv and wz have opposite signs but nearly the same magnitude, subtractive cancellation of
significant bits can occur which leads to inaccurate results. The problem is resolved by using fused multiply-
add instructions. See the document On the Cost of Floating-Point Computation Without Extra-Precise
Arithmetic by Turing Award winner Professor William Kahan. Matt Pharr has a concise summary of a
portion of Professor Kahan’s document regarding rounding errors for differences of products; see Accurate
Differences of Products with Kahan’s Algorithm. The implementation is shown in Listing 2, together with
a robust sum of products,

Listing 2. Robust computation of a difference of products where T is a floating-point type.
// Compute robustly the difference of products uv − wz.
template <typename T>
T DifferenceOfProducts(T u, T v, T w, T z)
{

T productWZ = w * z;
T roundingError = std::fma(=w, z, productWZ);
return std::fma(u, v, =productWZ) + roundingError;

}

// Compute robustly the sum of products uv + wz.
template <typename T>
T SumOfProducts(T u, T v, T w, T z)
{

T productWZ = w * z;
T roundingError = std::fma(w, z, =productWZ);
return std::fma(u, v, productWZ) + roundingError;

}

10.4 Implementation

The implementation of the find-intersection query is found in IntrEllipse2Ellipse2.h. Version 6.0.2022.11.11
contained an implementation that is described in the document Intersection of Ellipses as well as in the book
Robust and Error-Free Geometric Computing [1, Section 8.6].

14

https://people.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf
https://people.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf
https://pharr.org/matt/blog/2019/11/03/difference-of-floats
https://pharr.org/matt/blog/2019/11/03/difference-of-floats
https://www.geometrictools.com/GTE/IntrEllipse2Ellipse2.h
 https://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf

The intent of the PDF and book are to describe how to compute robustly the intersections when using a
mixture of floating-point arithmetic and rational arithmetic. However, the code was not robust with only
floating-point arithmetic. The main source of rounding errors in some cases occurs because of the divisions
w = −e(x)/d(x) in equation (14) of the PDF or equation (8.40) of the book. These errors sometimes led to
significantly inaccurate points of intersection.

Version 6.0.2023.06.14 of the header file has a robust implementation for floating-point arithmetic. The
divisions were avoided, as described in the current PDF (this document). The unit tests and end-to-end
tests appear to produce accurate points of intersection. An interactive sample application is found in the
folder GeometricTools/GTE/Samples/Mathematics/IntersectEllipses.

References

[1] Dave Eberly. Robust and Error-Free Geometric Computing. CRC Press, Taylor & Francis Group LLC,
Boca Raton, FL, 2020.

15

	1 Introduction
	2 Ellipse Representations
	2.1 The Standard Form for an Ellipse
	2.2 The Quadratic Equation Form for an Ellipse

	3 Early No-Intersection Test
	3.1 Axis-Aligned Bounding Box from Standard Form
	3.2 Axis-Aligned Bounding Box from Quadratic Equation

	4 Solving Two Quadratic Equations in Two Unknowns
	5 Affine Transformation to Simplify the Analysis
	6 Case e4 is Zero and e2 is Zero
	6.1 Case e3 is Zero
	6.1.1 Case e1 is Zero
	6.1.2 Case e1 is not Zero

	6.2 Case e3 is not Zero

	7 Case e4 is Zero and e2 is not Zero
	7.1 Case e3 is Zero
	7.2 Case e3 is not Zero

	8 Case e4 is not Zero
	9 Eliminating Divisions
	10 Implementation Issues
	10.1 Using the Unnormalized Ellipse Axes
	10.2 Computing Coefficients
	10.3 Robust Computation of Determinant-Like Expressions
	10.4 Implementation

