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1 Lie Groups

The topic of Lie groups is in the realm of advanced mathematics, but currently Geometric Tools support is
provided only for groups related to rigid motions (rotations and translations). In this context, a Lie group is
a set of n x n matrices that is parameterized by k variables, 1 < k < n?, and is closed under multiplication:
given two matrices in the set, their product is also in the set. The matrices are also required to be invertible.
A brief summary of Lie groups and Lie algebras with fewer details but more groups is found online in Lie
Groups for Computer Vision [1].

2 Lie Algebras

Given a Lie group of n X n matrices parameterized by k parameters, the Lie algebra is the vector space of
differential transformations at the identity matrix I. The Lie algebra is also referred to as the tangent space
at the identity. It is a k-dimensional vector space with a matrix representation that has basis {Gi}fz_ol, where
each G; is an n x n matrix called a generator. A Lie algebra element is represented by a k-tuple

r = ($0,...,xk_1) (1)

whose components are the parameters for the space. At times in the discussion, the Lie algebra element is
referred to as a k x 1 vector when the element requires vector or matrix-vector operations; this supports oper-
ations that involve vectors or matrices. The Lie algebra element @ can be mapped to a matrix representation
using the linear combination,

k—1
L(m) =X = ZJ%GZ (2)
=0

Given the matrix X, the equation L(xz) = X can be solved for the components x; of . The function that
represents this is an inverse operation,

k—1
x=L"1X)=L"1 (Z xG) (3)
i=0

3 Exponential and Logarithm Maps

The ezponential map of a Lie group element X is

2 3

= X* X% X
eXp(X):ZHZI—I-X—&-?—F?-F'“ (4)
k=0

A closed-form representation exists for some matrices such as diagonal matrices and skew-symmetric ma-
trices. Generally, the power series converges and it is always possible to compute exp(X) using the S + N
decomposition [3, Chapter 6]. The matrix X can be decomposed into X = S + N where S is semisim-
ple (diagonalizable), where N is nilpotent (NP = 0 for some p > 1 and N? # 0 for ¢ < p) and where
SN = NS. For real numbers z and y, it is true that exp(x + y) = exp(x)exp(y). The same equality is
generally not true for matrices A and B; that is, exp(A + B) is not always equal to exp(A)exp(B). The
equality is true, however, when AB = BA. In the S + N decomposition, the condition SN = NS ensures



that exp(X) = exp(S + N) = exp(S) exp(N). The matrix S is diagonalizable, which means S = QDQ ™! for
some diagonal matrix D = Diagonal(dp,...,d,—1) and an invertible matrix Q. It follows that

exp(S) = eXp(QDQ_l) = Qexp(D)Q_1 = @ Diagonal(exp(dp), . . - ,exp(aln_l))Q_1 (5)

The matrix N is nilpotent: N* =0 for k > p > 0 and N* # 0 for k < p, which ensures exp(N) is a finite

sum,
0 Nk p—1 Nk

eXp(N)ZZFZZF (6)
k=0 k=0

If Y = exp(X), the logarithm map produces X from a specified Y, say,
Y = exp(X), X = log(¥) (7)

The following suggestive notation is used. If x is the Lie algebra element corresponding to the Lie group
element X, define Y = éxp(x) = exp(L(x)) = exp(X), where L is defined in equation (2). Similarly, define
L1 (X)=x= E)Tg(Y), where L1 is defined in equation (3). Equivalently, log(Y) = X = L(z) = L(lz)?g(Y)).
In terms of composition notation for functions, exp = expoL and 16,\g = L' olog. The Geometric Tools
code implements

Y =&p(x), ©=log(Y) (8)

instead of Y = exp(X) and X = log(Y") in equation (7).

4 Geodesics and Shortest-Path Interpolation

The exponential and logarithm maps allows creating a geodesic path connecting two Lie group matrices,
which supports interpolation between the matrices along a shortest path. This generalizes the concepts
of linear interpolation between two points along the line segment connecting them and of spherical linear
interpolation between two quaternions along the great circle arc connecting them.

Generally, if My and M; are Lie group elements, the geodesic path connecting them is parameterized by
F(t; Mo, My) = exp(tlog(Mi My )Mo, t € [0,1] (9)

Observe that F(0; My, M1) = My and F(1; Mo, My) = M,;. The source code implementation has two
variations on computing geodesic paths, one where you compute M;M; ! for a single value of t and one
where MMy 1 is precomputed and used for multiple values of .

5 The Adjoint Representation

The Lie algebra elements can be thought of as vectors in the tangent space at the identity element of the
Lie group, and the adjoint representation transforms tangent vectors L(x) to tangent vectors L(y). The
transformation from L(x) to L(y) depends on the choice of matrix M,

L(y) = ML(z)M " (10)



Observe that M L(x) = L(y)M. The idea is to compute L(y) so that the premultiplication of L(x) by M
becomes a postmultiplication of L(y) by M.

Using equation (2),  and y are k x 1 vectors, and the coordinates are the coefficients of linear combinations
of the generators. Equation (10) becomes

k—1 k—1 k—1 k—1 k—1 k—1 [k—1
ZylGl =M (Z ijj> ]\/[71 = ij (MGjMil) = Zl‘j Za”(M)G, = Z (Z aij(M)xJ) Gl (11)
=0 7=0 7=0 Jj= 1=0 =0 \j=0

where M G;M ! is a kx k matrix that is written as a linear combination of the generators G; with coefficients
given by a;;(M). The notation for the coefficients stresses that they depend on the choice of M.

Equation (11) is a system of linear equations
k—1
y=AM)x, y; :Zaij(M)asj for 0 <i<k (12)
§=0

The matrix M is n x n. The matrix A(M) = [a;;(M)] is k x k and corresponds to the adjoint representation
relative to M. Also, the matrix depends on the order of the generators; a reordering of the generators leads
to a permutation of elements of A(M).

6 A Common Class Interface for Lie Groups and Lie Algebras

For each Lie group and Lie algebra, a class is provided that supports the computations of equations (2), (3),
(4), (7), (9), and (12). Listing 1 shows the interface.

Listing 1. The C++ interface that is common for the Lie groups and Lie algebras supported by Geometric
Tools. For each Lie group, suffix GROUPNAME is chosen appropriately for the implementation of that group’s
operations. Note: The order of template parameters for Vector and Matrix is for GTL code. GTE code lists
the dimensions before the type T.

template <typename T>
class LieGROUPNAME

public:
// n is the dimension of the Lie group, k is the dimension of the Lie algebra, c are the Lie algebra element coefficients.
using AlgebraType = Vector<T, k>;
using AdjointType = Matrix<T, k, k>;
using GroupType = Matrix<T, n, n>;

// Compute the Lie group element X from the Lie algebra element x using X = L(x).
static GroupType ToGroup(AlgebraType const& x);

// Compute the Lie algebra element x from the Lie group element X using x = L~1(X).
static AlgebraType InverseL(GroupType const& G);

// Compute the exponential map of the Lie algebra element x to produce the Lie group element Y = exp(X) = exp(L(x)).
static GroupType Exp(AlgebraType const& c);

// Compute the logarithm map of the Lie group element Y to produce the Lie algebra element x corresponding to the Lie

// group element X .
static AlgebraType Log(GroupType const& M);



// Compute the adjoint matrix A(M) from the Lie group element M.
static AdjointType Adjoint(GroupType const& M);

// Compute log(M; ]\4071) to reduce computation time when you want to evaluate GeodesicPath for multiple values of t.
static AlgebraType LogM1MOInv(GroupType const& MO, GroupType const& M1);

// Compute a point on the geodesic path from My to Mi. The expression log(M; 1\]61) is computed for each call to the

// function. Use this GeodesicPath when it is needed for only a single value of t.
static GroupType GeodesicPath(T const& t, GroupType const& MO0, GroupType const& M1);

// Compute a point on the geodesic path from My to Mi. The Lie algebra element log(M; ZW(;I) must be precomputed

// by the caller. Use this GeodesicPath when it is needed for multiple values of t.
static GroupType GeodesicPath(T const& t, GroupType const& MO, AlgebraType const& logM1MOInv);

The next sections describe the mathematics for those Lie groups and Lie algebras currently supported
by Geometric Tools. Numerical issues are addressed in the implementations, especially those related to
extracting an axis and angle from a rotation matrix when the angle is nearly zero.

7 Lie Group SO(2)

SO(2) is the Lie group for 2D rotations (n = 2) and so(2) is its corresponding Lie algebra (k = 1). For each
rotation R there is a skew-symmetrix matrix S for which R = exp(S). R is the Lie group element and S is
the Lie algebra matrix corresponding to Lie algebra element x = (). A basis for the generators has only a
single element,

0 -1
Go = (13)
1 0
The skew-symmetric matrix is S = Gy = Gy,
0 -6
S(0) = (14)
0 0

where the notation indicates that S depends functionally on 6.

7.1 Exponential

The rotation matrix R = exp(.S) can be computed by using the Taylor series for exp(z), reducing each term
using the identity $% = —62I for 2 x 2 identity matrix I, and grouping together the I terms and the S terms,

cosf) —sinf
) S(0) = (15)

sin 6 cos

sin 0

R(0) = (cosO)I + (

7.2 Logarithm

The logarithm of R = exp(SS) is computed by extracting the angle from R. This is simply § = atan2(r1g, ro0) =
atan2(sin 6, cos 6).



7.3 Adjoint
In equations (10) and (10), let M = R(#) and let = [¢]; then

= cosf —sinf 0 —1 cosf sinf 0 —1
MGoM™" = = =1-Gy (16)
sin 6 cos 1 0 —sinf cosf 1 0

in which case agg = 1. The adjoint matrix representation is

Av =[], Anz=[1][¢] =[¢] =y (17)

8 Lie Group SE(2)

SE(2) is the Lie group for 2D rigid transformations stored as homogeneous 3 x 3 matrices (n = 3) where
the upper-left 2 x 2 block is a rotation matrix R, the upper-right 2 x 1 block is a translation vector T', the
lower-left block is a 1 x 2 vector of zeros, and the lower-right block is a 1 x 1 block with element 1. se(2)
is the corresponding Lie algebra (k = 3). R is associated with the skew-symmetric matrix of equation (14)
with R = exp(S). T has an associated 2 x 1 vector w = (ug, u1), written here as a 2-tuple, which occurs in
the exponential map that represents the rigid transformation.

A basis for the generators is

0 -1 0 0 0 1 000
Go=]1 00|,G=]000]|,G=]001 (18)
0 00 000 000

The first matrix generates the rotations and the last two matrices generate the translations. The Lie algebra
element is a 3-tuple @ = (6, ug, u1). The corresponding matrix generated by L(x) is

S u
X = (19)
0" 0
8.1 Exponential
The rigid transformation is M = exp(X),
exp(S(0)) P(6u RO) T
Moy = | - (20)
0 1 0 1

where u is the 2 x 1 vector with rows uy and u;, 07 is the 1 x 2 zero vector, R(f) is the rotation matrix of
equation (15), and

sin 6 1—cos6
sing  _ 1-cosd Fo(6) —0F(0)
P(G) - 17::9059 sin09 - (21)
0 0 OFy (9) Fy (6)




where Fy(6) = (sin )/, which is also known as the sinc function, and Fy () = (1 — cos#)/6?. 1t is the case
that T = P(0)u and w = P~1(0)T.

8.2 Logarithm

The angle for the rotation matrix R is extracted using xg = 6 = atan2(rig, roo), which is the SO(2) logarithm
of R. The (x1,22) = w portion of the se(2) element is the solution to P(#)u = T where T is the translation
and P(f) is the matrix of equation (21). A simple inversion produces u = P~(6)T.

8.3 Adjoint

In equations (10) and (11), let

To Yo
R T 1 R" —R'T — P
M = T 5 M = T , L= I =1, Y= v = | (22)
0 1 0 1 v w
T2 Y2
The adjoint representation in terms of the generators is shown next,
Z?:o (s = M (Z?:o fiGz) Mt
S(y) w - R T S(¢) v R" —-R'T
o' o 0" 1 o' 0 o' 1
i (23)

RS(¢)RT Rv — RS(¢)R'T
o' 0

S(¢) Rv—S(¢)T
o’ 0

The upper-left blocks are equal, S(v) = S(¢), which implies ) = ¢. The upper-right blocks are equal, which
implies w = Rv — S(¢)T = Rv + ¢T+ where as 2-tuples, T' = (to,t;) and T+ = (t1, —to). The adjoint
representation is therefore
1 ‘ o'
y= v = i T =AyT (24)
w T+ ‘ R v

where 1 is the 1 x 1 scalar and 07 is the 1 x 2 vector with both components equal to 0. Observe that A, of
equation (24) is a permutation of the one provided in [1]. The generators in this document are Gy, G1, and
G2. These occur in a different order in [1]: G1, G2, and Go.



9 Lie Group SO(3)

SO(3) is the Lie group for 3D rotations (n = 3) and so(3) is its corresponding Lie algebra (k = 3). For each
rotation R there is a skew-symmetric matrix S for which R = exp(S). R is the Lie group element and S is
the Lie algebra matrix corresponding to Lie algebra element @ = (g, 21, z2). A basis for the generators is

00 0 0 0 1 0 -1 0
Go=|00 -1|,Gi=| 0 001}, G=]1 0 0 (25)
01 0 -1 0 0 0 0 0

The skew-symmetric matrix is
0 —z2 +m
S(x) =20Go +21G1 +22G2 = |+ 0 —xo (26)
—x1 +xo 0
9.1 Exponential

The rotation matrix R = exp(S(x)) can be computed by using the Taylor series for exp(x). Define 6 = ||

and observe that S3(z) = —02S5(x), which allows reduction of the Taylor series to
. 1_
R+ (50 sie)+ (L520) $%@) - 1+ BOS@ + RO (1)

where I is the 3 x 3 identity matrix and where Fy(0) = (sin6)/0 and Fy(0) = (1 — cos ) /6>

9.2 Logarithm

The angle 6 is computed using the observation that the trace of the rotation matrix R in equation (27) is
Trace(R) = 3 —2((1—cos0)/6?)(x3 + 23 +23) = 1+2cos 6. This can be solved for cos = (Trace(R) —1)/2.

When cosf € (—1,1), the angle is chosen to be § = acos((Trace(R) — 1)/2). The skew-symmetric matrix is
S =(6/(2sin0))(R — RT). The Lie algebra element is

1

(anx17x2):m (re1 — 712,702 — 720,710 — T01) (28)

When 6 = 0, the Lie algebra element is (zq, z1, z2) = (0,0, 0) because R is the identity matrix.

When 6 = 7, observe that R = I + (2/72)S?. Representing = as a 3 x 1 vector, it is the case that
(2/7%)xx” = R+ I. The right-hand side is a symmetric matrix with positive diagonal entries and rank
1. For a numerically robust implementation, choose the row of R + I that has the largest diagonal term
and normalize that row. Multiply it by 7/v/2 to obtain @ from which S = L(z). The vector —z is also a
candidate, but it is irrelevant because @ and —ax produce the same rotation matrix when 6§ = 7. Knowing
R+ 1 is symmetric, and wanting to avoid numerical bias, use (r;; +7;;)/2 for off-diagonal entries rather than
35 by itself.



9.3 Adjoint

In equations (10) and (11), let M = R, M~! = R, and let & and y be 3-tuple Lie algebra elements. The
adjoint representation in terms of the generators is shown next, where p, is the i-th row of R,

S(y) = yiGi=M (Z a:G> M~' = RS(z)R" (29)
=0 1=0

Some algebraic manipulation will show that
RS(@)R" = S(py - @, p, - @, p, - @) = S (Ra) (30)

The manipulation uses py, = p1 X po, P1 = P2 X Py, and py = po X p;. The equation S(y) = S(Rx) implies
that the adjoint representation is
y=Rx=Ayx (31)

10 Lie Group SE(3)

SE(3) is the Lie group for 3D rigid transformations stored as homogeneous 4 X 4 matrices (n = 4) where
the upper-left 3 x 3 block is a rotation matrix R, the upper-right 3 x 1 block is a translation vector T', the
lower-left block is a 1 x 3 vector of zeros, and the lower-right block is a 1 x 1 block with element 1. se(3) is
the corresponding Lie algebra (k = 6).

A basis for the generators is

0 0 0 0 0 0 1 0 0O -1 0 O

00 -1 0 0 0 0 O 1 0 0 O
Go = , G = , Ga =

0 1 0 0 -1 0 0 O 0 0 0 O

0 0 0 0 0 0 0 O 0 0 0 O

(32)

0 0 0 1 0 0 0 O 0 0 0 O

0 0 0 O 0 0 0 1 0 0 0 O
G3: 7G4: ’G5:

0 0 0 O 0 0 0 O 0 0 0 1

0 0 0 O 0 0 0 O 0 0 0 O

The Lie algebra element is a 6-tuple & = (2o, 21, 22, ug, u1, u2) = (2,u), where z is associated with rotations
and w is associated with translations. The corresponding matrix generated by L(X) is

X = (33)

10



where S(z) is defined by equation (26). The powers of X are

, S 1 S i1
X'=71, X'= (f) - (Tz) (#)u fori >0 (34)
0" 0 0 0

10.1 Exponential

The rigid transformation is M = exp(X),

where 6 = |x] is the length of the Lie algebra element and

Qz) =1+ (1_9?%) S(z) + (9_921119) §%(z) = I + F1(0)S(2) + F2(0)S%(2) (36)

where Fy () = (1 —cos6)/6% and F3(0) = (0 —sin6)/63. The function F}(6) was introduced in equation (21)

for computing the matrix P(). The construction of Q(z) uses § = |z| and S3(z) = —02S5(z) in the Taylor
series for exp(M).

10.2 Logarithm

Let M be the rigid transformation of equation (35) with rotation matrix R and translation vector T. The
function log(M) can be computed by extracting the Lie algebra element z = log(R). The matrix Q(z) is
computed using equation (36) and then inverted and applied to the translation vector to obtain u = Q=1 (2)T.

10.3 Adjoint

In equations (10) and (11), let

Lo Yo
Z1 Y1
M= R T M R" —R'T e T2 | _ i = 2| _| e (37)
o' 1 o' 1 3 v Y3 w
Ty Ya
| T5 ] | U5 |

11



The adjoint representation in terms of the generators is shown next, where p; is the i-th row of R,

S o ¥iGi = M (Z?:o ﬂﬁiGi) Mt
S(e) w R T S(d) v R" —-R'T
o' 0 0" 1 0" 0 0" 1 (38)

RS(d)RT Rv— RS(d)R™T
o’ 0

Some algebraic manipulation will show that
RS(d)R" = S(p,-d,p,-d,p,-d)=S(Rd), —RS(d)R"T = S(T)Rd (39)

The manipulation uses p, = p1 X Py, p1 = P2 X Py, and py = po X p;. Equation (38) reduces to

Se) w _ S(Rd) Rv+ S(T)Rd (40)
o' 0 o’ 0

The upper-left blocks are equal, S(e) = S(Rd), which implies e = Rd. The upper-right blocks are equal,
which implies w = Rv 4+ S(T)Rd. The adjoint representation is therefore

e R ‘ A d
y= = — |z =Apyz (41)
w S(T)R ‘ R v

where Z is the 3 x 3 matrix whose elements are all 0.

Observe that Aps of equation (41) is a permutation of the one provided in [1]. The generators in this
document are Gy through G5. These occur in a different order in [1]: G3, G4, G5, Go, G1, and Gs.

11 Robust Computation of Iy, Fi, and F5

The functions Fy(6), F1(6), and F5(f) have removable singularities at § = 0. The values at zero can be
computed using Taylor series expansions at 6§ = 0,

_1)ig2i 2 4

F0) = XX G = -5 +%-
oo (=1)'6% 2 .

Fi(0) = Zi:O ((2¢-)s-2)! = % % + %! o (42)
oo (—1)ie% 2 6

) = > ((2¢)+3)! = % - % + 67! T

Evaluating the Taylor series expansions at 0 leads to Fy(0) =1, F1(0) = 1/2, and F5(0) = 1/6.

12



11.1 Robust Computation of F

Evaluation of the expressions sin /6, (1 — cos)/62, and (# — sin #)/6> near a removable singularity can be
a problem when computing with floating-point arithmetic. Based on an analysis in [2, Section 6.1.1], Fy(6)
is accurate for float numbers near 0, even when those numbers are subnormal. It is sufficient to implement
Fy(0) by the code in listing 2,

Listing 2. An accurate implementation of Fy(6) for 6 > 0 using floating-point type float.

float FO(float theta)

{
}

return (theta != 0.0f ? std::sin(theta) / theta : 1.0f);

11.2 Robust Computation of F}

Evaluation of Fj(#) has significant problems. The analysis of the direct evaluation is also in [2, Section
6.1.1]. At a large scale, the graph of F; () is shown in figure 1

Figure 1. The graph of F}(0) for # > 0 drawn at large scale. The plot was drawn using Mathematica [5].

0.5
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0.3
0.2

0.1

The néive implementation of F(6) for floating-point type float is shown in listing 3,

Listing 3. The niive implementation of F;(6) for floating-point type float.

float F1(float theta)

return (theta != 0.0f ? (1.0f — std::cos(theta)) / (theta * theta) : 0.5f);

The function can be evaluated for all finite and positive float numbers. The experiment was performed using
Microsoft Visual Studio 2022 17.9.6 in the Debug x64 configuration. The encodings are according to the
IEEE Standard for Floating-Point Arithmetic 2019 [4].

13



For 0 € [0,2.64697796 * 10~23] (encoding [0x00000000, 0x1a000000]), F;(#) is not-a-number (NaN) which is
reported by the debugger as -nan(ind). The std::cos function evaluates to 1, and 62 is smaller than the smallest

positive subnormal and is rounded to 0. This leads to an indeterminate of the form 0/0, which is flagged as
a NaN.

For 6 € [2.64697828 x 10723,2.44140625 * 10~%] (encoding [0x1a00000, 0x39800000]), F;(#) evaluates to 0
because std::cos evaluates to 1 and 62 evaluates to a positive number, leading to a number of the form 0/p
for p > 0.

For 6 € [2.44140654%10~4, 4.8828125010~4] (encoding [0x39800001, 0x3a000000]), F () evaluates to numbers
in [1/3,1], which is certainly not what is expected, because F;(f) has a maximum of 1/2. As 6 increases,
F1(0) decreases from 1 to 1/3. A discontinuity appears where F(6) jumps to 2/3, after which as 6 increases,
Fy(0) decreases from 2/3 to 1/2. Figure 2 shows a graph of Fy(6) for 6 € [2.44140625x107%,4.88281250%10~4]
(encoding [0x1a00000, 0x3a000000]).

Figure 2. The graph of F(6) for § € [2.44140654 x 10~%, 4.88281250 * 10~*] using the floating-point type
float. The plot was drawn using Mathematica [5].
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Figure 2 shows the discontinuity where Fi () jumps from 0 to 1 and the discontinuity where Fj(6) jumps
from 1/3 to 2/3. Regardless, the values of Fy(#) for 6 € [0,4.88281250 x 10~*] are not accurate.

Mathematica [5] has its own problems with rounding errors near 0. Figure 3 shows the graph of F; () for
small 6.

14



Figure 3. The graph of Fy(6) for small € that is computed and plotted using Mathematica [5].

6x10°  7x10®  8x10®  9x10®  0.00001

The graph is densely drawn because the rounding errors vary with a very small interval centered at 1/2,
but notice that the function values are all in the interval [0.499998, 0.500002]. The néive implementation for
Fy(0) can be modified to that shown in listing 4 for floating-point type float,

Listing 4. An alternate implementation of Fy(6) for floating-point type float. The domain is restricted to
0 € [—m, 7.
float FO(float theta)

return std::fabs(theta) > 4.88281250e—04f ? (1.0f — std::cos(theta)) / (theta * theta) : 0.5f);
}

The problem, though, is how to choose the cutoff value for 8 when the floating-point type is double. It is also
not clear what the maximum error is compared to the theoretical function (1 — cos#)/6?. The sawtooth-like
behavior continues past ths coded cutoff, although the approximation errors are smaller than before the
coded cutoff.

11.3 Robust Computation of F;

Evaluation of F5(#) also has significant problems. At a large scale, the graph of F5(6) is shown in figure 4.

15



Figure 4. The graph of F5(#) for § > 0 drawn at large scale. The plot was drawn using Mathematica
[5]. Notice the spike-like behavior near # = 0, which indicates a floating-point problem. Theoretically,
F5(6) < 1/6 but the spike shows values larger than 1/6.
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The function can be evaluated for all positive and finite float numbers. However, for the sake of analysis, only
those numbers 6 € [0, 1] are considered. The experiment was performed using Microsoft Visual Studio 2022
17.9.6 in the Debug x64 configuration. The encodings are according to the IEEE Standard for Floating-Point
Arithmetic 2019 [4].

For 6 € [0,8.88178420 * 10~1] (encoding [0x00000000, 0x26800000]), F>(f) is not-a-number (NaN) which is
reported by the debugger as -nan(ind). The expression  — sin @ evaluates to 0, and #3 is smaller than the
smallest positive subnormal and is rounded to 0. This leads to an indeterminate of the form 0/0, which is
flagged as a NaN.

For 6 € [8.88178526 * 10716,4.43632947 * 10~*] (encoding [0x26800001, 0x39E89768]), F»(#) evaluates to 0
because the expression § — sin 6 evaluates to 0 and 63 evaluates to a positive number, leading to a number
of the form 0/p for p > 0.

For 6 € [4.43632976+10~*,4.88281250%10~*] (encoding [0x39E89769, 0x3a000000]), F»(f) evaluates to numbers
in [1/4,1/3], which is certainly not what is expected, because F5(#) has a maximum of 1/6. As 6 increases,
F5(0) decreases from 1/3 to 1/4.

For 0 € [4.88281308 x 10~%,5.58942498 x 10~*] (encoding [0x3a000001, 0x3A1285FF]), F5(6) evaluates to 0.

For 0 € [5.58942556%10~%,8.06134543%10~] (encoding [0x3A128600, 0x3A5352C6]), F»(6) evaluates to numbers
in [1/9,1/3], which is also not what is expected, because F5(f) has a maximum of 1/6. As 6 increases, F5(0)
decreases from 1/3 to 1/9. At this time, another discontinuity occurs and the value F5(6) jumps to 2/9
followed by decreasing values.

Figure 5 shows a graph of F3(0) for § € (0,0.00095).
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Figure 5. The graph of F5(#) for § € (0,0.00095) using the floating-point type float. The plot was drawn
using Mathematica [5].
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Figure 5 shows four discontinuities, not counting the discontinuity from NaN to 0 for 6 nearly 0. The
sawtooth patterns continue, but with smaller approximation errors with each sawtooth.

A plot of (6 — sin)/63 is shown in figure 6.

Figure 6. A plot of (6 —sin#)/6% computed and drawn by Mathematica [5].
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The evaluations are accurate, but the algorithm used by Mathematica appears not to be a néaive implemen-
tation using floating-point arithmetic.

11.4 Minimax Polynomial Approximations for Small Angles

A reasonable approach to avoiding the problems with removable singularities at # = 0 uses an approximation,
whether a Taylor polynomial about 8 = 0 or a minimax polynomial. Minimax polynomial approximations
are preferred instead. A Taylor polynomial provides local error bounds near the point of expansion, so the
errors generally become large at inputs far from the point of expansion. A minimax polynomial provides
a global error bound that applies to the entire domain of the polynomial. Global error bounds make it
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simpler to choose an angle threshold for switching between the minimax polynomial for small § and using
the trigonometric functions in the direct evaluations for large 6.

The Geometric Tools file RotationEstimate.h has minimax approximations for various functions related
to rotations. Details on how these were generated are in Approximations to Rotation Matrices and Their
Derivatives. The Geometric Tools implementation for SE(2) and se(2) use minimax polynomials of degree 16
for @ € [—m, m]. The coefficients for the approximation to Fy(6) are listed in the array C_.ROTC0_EST_COEFF.
The global error bound is listed in the array C_ROTCO_EST_MAX_ERROR and is on the order of 10716, The
coefficients for the approximation to Fj(f) are listed in the array C_.ROTC1.EST_COEFF. The global error
bound is listed in the array C_ROTC1_EST_MAX_ERROR and is on the order of 107!6. The coefficients for
the approximation to F5(6) are listed in the array C_ROTC4_EST_COEFF. The global error bound is listed in
C_ROTC4_EST_MAX_ERROR and is on the order of 10722

The implementations for Fy(6), F1(0), and F5(0) are shown in listing 5.

Listing 5. Implementations for Fy(6), F1(0), and F5(6). The 0 cutoff is chosen sufficiently large to produce
robust and accurate estimates. Moreover, the large cutoff avoids numerical problems when @ is small and 62
or 63 becomes subnormal.

template <typename T>
T FO(T theta)

if (std::fabs(theta) >= static_cast<T>(0.0625))

return std::sin(theta) / theta;

}

else

{

}
}

template <typename T>
T F1(T theta)

return static_cast<T>(1);

if (std::fabs(theta) >= static_cast<T>(0.0625))
return (static_cast<T>(1) — std::cos(theta)) / theta / theta;

else

{

}
}

template <typename T>
T F2(T theta)

return static_cast<T>(0.5);

if (std::fabs(theta) >= static_cast<T>(0.0625))
return (theta — std::sin(theta)) / theta / theta / theta;

else

{

}
}

return static_cast<T>(1.0 / 6.0);
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https://www.geometrictools.com/GTE/Mathematics/RotationEstimate.h
https://www.geometrictools.com/Documentation/ApproximateRotationMatrix.pdf
https://www.geometrictools.com/Documentation/ApproximateRotationMatrix.pdf

References

[1] Ethan Eade. Lie Groups for Computer Vision.
http://ethaneade.com/lie_groups.pdf, 2014.

[2] Dave Eberly. Robust and Error-Free Geometric Computing. CRC Press, Taylor & Francis Group LLC,
Boca Raton, FL, 2020.

[3] Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical Systems, and Linear Algebra.
Academic Press, Inc., Orlando, FL, 1 edition, 1974.

[4] IEEE Computer Society and Microprocessor Standards Association.
IEEE 754™-2019 - IEEE Standard for Floating-Point Arithmetic.
https://standards.ieee.org/ieee/754/6210/.

[5] Wolfram Research, Inc. Mathematica 14.0.0. Wolfram Research, Inc., Champaign, Illinois, 2024.

19


http://ethaneade.com/lie_groups.pdf
http://ethaneade.com/lie_groups.pdf
http://ethaneade.com/lie_groups.pdf
https://standards.ieee.org/ieee/754/6210/
https://standards.ieee.org/ieee/754/6210/
https://standards.ieee.org/ieee/754/6210/

	1 Lie Groups
	2 Lie Algebras
	3 Exponential and Logarithm Maps
	4 Geodesics and Shortest-Path Interpolation
	5 The Adjoint Representation
	6 A Common Class Interface for Lie Groups and Lie Algebras
	7 Lie Group SO(2)
	7.1 Exponential
	7.2 Logarithm
	7.3 Adjoint

	8 Lie Group SE(2)
	8.1 Exponential
	8.2 Logarithm
	8.3 Adjoint

	9 Lie Group SO(3)
	9.1 Exponential
	9.2 Logarithm
	9.3 Adjoint

	10 Lie Group SE(3)
	10.1 Exponential
	10.2 Logarithm
	10.3 Adjoint

	11 Robust Computation of F0, F1, and F2
	11.1 Robust Computation of F0
	11.2 Robust Computation of F1
	11.3 Robust Computation of F2
	11.4 Minimax Polynomial Approximations for Small Angles


