
Least Squares Fitting of Data by Linear or Quadratic
Structures

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: July 15, 1999
Last Modified: February 25, 2024

Contents

1 Introduction 4

2 The General Formulation for Nonlinear Least-Squares Fitting 4

3 Affine Fitting of Points Using Height Fields 5

3.1 Fitting by a Line in 2 Dimensions . 5

3.1.1 Pseudocode for Fitting by a Line . 6

3.2 Fitting by a Plane in 3 Dimensions . 7

3.2.1 Pseudocode for Fitting by a Plane . 8

3.3 Fitting by a Hyperplane in n+ 1 Dimensions . 9

3.3.1 Pseudocode for Fitting a Hyperplane . 10

4 Affine Fitting of Points Using Orthogonal Regression 11

4.1 Fitting by a Line [1 Dimension] . 11

4.1.1 Pseudocode for the General Case . 12

4.2 Fitting by a Hyperplane [(n− 1) Dimensions] . 12

4.2.1 Pseudocode for the General Case . 13

4.3 Fitting by a Flat [k Dimensions] . 14

4.3.1 Pseudocode for the General Case . 15

5 Fitting a Hypersphere to Points 16

5.1 Fitting Using Differences of Lengths and Radius . 17

1

https://www.geometrictools.com/
https://creativecommons.org/licenses/by/4.0/

5.1.1 Pseudocode for the General Case . 17

5.2 Fitting Using Differences of Squared Lengths and Squared Radius 19

5.2.1 Pseudocode for the General Case . 20

5.2.2 Pseudocode for Circles . 21

5.2.3 Pseudocode for Spheres . 22

5.3 Fitting the Coefficients of a Quadratic Equation . 23

5.3.1 Pseudocode for the General Case . 24

5.3.2 Pseudocode for Circles . 25

5.3.3 Pseudocode for Spheres . 26

6 Fitting a Hyperellipsoid to Points 28

6.1 Updating the Estimate of the Center . 29

6.2 Updating the Estimate of the Matrix . 29

6.3 Pseudocode for the Algorithm . 30

7 Fitting a Cylinder to 3D Points 31

7.1 Representation of a Cylinder . 31

7.2 The Least-Squares Error Function . 32

7.3 An Equation for the Radius . 33

7.4 An Equation for the Center . 33

7.5 An Equation for the Direction . 35

7.6 Fitting for a Specified Direction . 37

7.7 Pseudocode and Experiments . 37

7.8 Fitting a Cylinder to a Triangle Mesh . 44

8 Fitting a Cone to 3D Points 46

8.1 Estimation of the Cone Axis Direction . 48

8.2 Estimate of the Cone Vertex and Cone Angle . 51

9 Fitting a Parabola to 2D Points of the Form (x, f(x)) 52

9.1 An Algorithm . 52

9.2 A Robust Algorithm . 53

2

10 Fitting a Paraboloid to 3D Points of the Form (x, y, f(x, y)) 54

10.1 An Algorithm . 54

10.2 A Robust Algorithm . 55

3

1 Introduction

This document describes least-squares minimization algorithms for fitting point sets by linear structures
or quadratic structures. The organization is somewhat different from that of the previous version of the
document. Modifications include the following.

� A section on the general formulation for nonlinear least-squares fitting is now available. The stan-
dard approach is to estimate parameters using numerical minimizers (Gauss–Newton or Levenberg–
Marquardt).

� A new algorithm for fitting points by a circle, sphere or hypersphere is provided. The algorithm is
non-iterative, so the computation time is bounded and small.

� In the previous version, the sections about fitting of points by ellipses or ellipsoids were severely lacking
details and not useful for developing algorithms. Several algorithms are now provided for such fitting,
including a general approach for fitting points by hyperellipsoids.

� The document for fitting points by a cylinder has been moved to this document. The website hyperlink
to the cylinder document has been redirected to this document.

� A section has been added for fitting points by a single-sided cone.

� Pseudocode is now provided for each of the algorithms. Hyperlinks still exist for those algorithms
implemented in the GTE source code.

Other documents using least-squares algorithms for fitting points with curve or surface structures are avail-
able at the website. The document for fitting points with a torus is new to the website (as of August
2018).

� Least-Squares Fitting of Data with Polynomials

� Least-Squares Fitting of Data with B-Spline Curves

� Least-Squares Reduction of B-Spline Curves

� Fitting 3D Data with a Helix

� Least-Squares Fitting of Data with B-Spline Surfaces

� Fitting 3D Data with a Torus

The document Least-Squares Fitting of Segments by Line or Plane describes a least-squares algorithm where
the input is a set of line segments rather than a set of points. The output is a line (segments in n dimensions)
or a plane (segments in 3 dimensions) or a hyperplane (segments in n dimensions).

2 The General Formulation for Nonlinear Least-Squares Fitting

Let F (p) = (F0(p), F1(p), . . . , Fn−1(p)) be a vector-valued function of the parameters p = (p0, p1, ..., pm−1).
The nonlinear least-squares problem is to minimize the real-valued error function E(p) = |F (p)|2.

4

https://www.geometrictools.com/Documentation/PolynomialLeastSquares.pdf
https://www.geometrictools.com/Documentation/BSplineCurveLeastSquaresFit.pdf
https://www.geometrictools.com/Documentation/BSplineReduction.pdf
https://www.geometrictools.com/Documentation/HelixFitting.pdf
https://www.geometrictools.com/Documentation/BSplineSurfaceLeastSquaresFit.pdf
https://www.geometrictools.com/Documentation/TorusFitting.pdf
https://www.geometrictools.com/Documentation/FitSegmentsByLineOrPlane.pdf

Let J = dF /dp = [dFr/dpc] denote the Jacobian matrix, which is the matrix of first-order partial derivatives
of the components of F . The matrix has n rows and m columns, and the indexing (r, c) refers to row r and
column c. A first-order approximation is

F (p+ d)
.
= F (p) + J(p)d (1)

where d is an m× 1 vector with small length. Consequently, an approximation to the error function is

E(p+ d) = |F (p+ d)|2 = |F (p) + J(p)d|2 (2)

The goal is to choose d to minimize |F (p) + J(p)d|2 and, hopefully, with E(p + d) < E(p). Choosing an
initial p0, the hope is that the algorithm generates a sequence pi for which E(pi+1) < E(pi) and, in the
limit, E(pj) approaches the global minimum of E. The algorithm is referred to as Gauss–Newton iteration.

For a single Gauss–Newton iteration, we need to choose d to minimize |F (p) + J(p)d|2 where p is fixed.
This is a linear least-squares problem which can be formulated using the normal equations

JT(p)J(p)d = −JT(p)F (p) (3)

The matrix JTJ is positive semidefinite. If it is invertible, then

d = −(JT(p)J(p))−1F (p) (4)

If it is not invertible, some other algorithm must be used to choose d; one option is to use gradient descent
for the step. A Cholesky decomposition can be used to solve the linear system.

During Gauss–Newton iteration, if E does not decrease for a step of the algorithm, one can modify the
algorithm to Levenberg–Marquardt iteration. The idea is to smooth the linear system to(

JT(p)J(p) + λI
)
d = −JT(p)F (p) (5)

where I is the identity matrix of appropriate size and λ > 0 is the smoothing factor. The strategy for
choosing the initial λ and how to adjust it as you compute iterations depends on the problem at hand.

For a more detailed discussion, see Gauss–Newton algorithm and Levenberg–Marquardt algorithm. Imple-
mentations of the Cholesky decomposition, Gauss–Newton method and Levenberg–Marquardt method in
GTE can be found in CholeskyDecomposition.h, GaussNewtonMinimizer.h and LevenbergMarquardtMini-
mizer.h.

3 Affine Fitting of Points Using Height Fields

We have a set of measurements {(Xi, hi)}mi=1 for which Xi ∈ Rn are sampled independent variables and
hi ∈ R is a sampled dependent variable. The hypothesis is that h is related to X via an affine transformation
h = A ·X + b, where A is an n × 1 vector of constants and b is a scalar constant. The goal is to estimate
A and b from the samples. The choice of name h stresses that the measurement errors are in the direction
of height above the plane containing the X measurements.

3.1 Fitting by a Line in 2 Dimensions

The measurements are {(xi, hi}mi=1 where x is an independent variable and h is a dependent variable. The
affine transformation we want to estimate is h = ax+ b, where a and b are scalars. This defines a line that

5

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
https://www.geometrictools.com/GTE/Mathematics/CholeskyDecomposition.h
https://www.geometrictools.com/GTE/Mathematics/GaussNewtonMinimizer.h
https://www.geometrictools.com/GTE/Mathematics/GaussNewtonMinimizer.h
https://www.geometrictools.com/GTE/Mathematics/GaussNewtonMinimizer.h

best fits the samples in the sense that the sum of the squared errors between the hi and the line values
axi + b is minimized. Note that the error is measured only in the h-direction.

Define the error function for the least-squares minimization to be

E(a, b) =

m∑
i=1

[(axi + b)− hi]
2 (6)

This function is nonnegative and its graph is a paraboloid whose vertex occurs when the gradient satisfies
∇E(a, b) = (∂E/∂a, ∂E/∂b) = (0, 0). This leads to a system of two linear equations in a and b which can be
easily solved. Precisely,

0 = ∂E/∂a = 2
∑m

i=1[(axi + b)− hi]xi

0 = ∂E/∂b = 2
∑m

i=1[(axi + b)− hi]
(7)

and so ∑m
i=1 x

2
i

∑m
i=1 xi∑m

i=1 xi

∑m
i=1 1

 a

b

 =

 ∑m
i=1 xihi∑m
i=1 hi

 (8)

The system is solved by standard numerical algorithms. If implemented directly, this formulation can lead
to an ill-conditioned linear system. To avoid this, you should first compute the averages x̄ = (

∑m
i=1 xi)/m

and h̄ = (
∑m

i=1 hi)/m and subtract them from the data. The fitted line is of the form h− h̄ = ā(x− x̄) + b̄.
The linear system of equations that determines the coefficients is ∑m

i=1(xi − x̄)2 0

0 m

 ā

b̄

 =

 ∑m
i=1(xi − x̄)(hi − h̄)

0

 (9)

and has solution

ā =

∑m
i=1(xi − x̄)(hi − h̄)∑m

i=1(xi − x̄)2
, b̄ = 0 (10)

In terms of the original inputs, a = ā and b = h̄− āx̄.

3.1.1 Pseudocode for Fitting by a Line

Listing 1 contains pseudocode for fitting a height line to points in 2 dimensions.

Listing 1. Pseudocode for fitting a height line to points in 2 dimensions. The number of input points
must be at least 2. The returned Boolean value is true as long as the numerator of equation (10) is positive;
that is, when the points are not all the same point. An implementation in a slightly more general framework
is ApprHeightLine2.h.

bool FitHeightLine(int numPoints, Vector2 points[],
Real& barX, Real& barH, Real& barA)

{
// Compute the mean of the points.
Vector2 mean = { 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

mean += points[i];

6

https://www.geometrictools.com/GTE/Mathematics/ApprHeightLine2.h

}
mean /= numPoints;

// Compute the linear system matrix and vector elements.
Real xxSum = 0, xhSum = 0;
for (int i = 0; i < numPoints; ++i)
{

Vector2 diff = points[i] = mean;
xxSum += diff[0] * diff[0];
linear += diff[0] * diff[1];

}

// Solve the linear system.
if (xxSum > 0)
{

// Compute the fitted line h(x) = barH + barA * (x = barX).
barX = mean[0];
barH = mean[1];
barA = linear / xxSum;
return true;

}
else
{

// The output is invalid. The points are all the same.
barX = 0;
barH = 0;
barA = 0;
return false;

}
}

3.2 Fitting by a Plane in 3 Dimensions

The measurements are {(xi, yi, h)}mi=1 where x and y are independent variables and h is a dependent variable.
The affine transformation we want to estimate is h = a0x + a1y + b, where a0, a1 and b are scalars. This
defines a plane that best fits the samples in the sense that the sum of the squared errors between the hi and
the plane values a0xi + a1yi + b is minimized. Note that the error is measured only in the h-direction.

Define the error function for the least-squares minimization to be

E(a0, a1, b) =

m∑
i=1

[(a0xi + a1yi + b)− hi]
2 (11)

This function is nonnegative and its graph is a hyperparaboloid whose vertex occurs when the gradient
satisfies∇E(a0, a1, b) = (∂E/∂a0, ∂E/∂a1, ∂E/∂b) = (0, 0, 0). This leads to a system of three linear equations
in a0, a1 and b which can be easily solved. Precisely,

0 = ∂E/∂a0 = 2
∑m

i=1[(Axi +Byi + C)− zi]xi

0 = ∂E/∂a1 = 2
∑m

i=1[(Axi +Byi + C)− zi]yi

0 = ∂E/∂b = 2
∑m

i=1[(Axi +Byi + C)− zi]

(12)

and so
∑m

i=1 x
2
i

∑m
i=1 xiyi

∑m
i=1 xi∑m

i=1 xiyi
∑m

i=1 y
2
i

∑m
i=1 yi∑m

i=1 xi

∑m
i=1 yi

∑m
i=1 1

a0

a1

b

 =

∑m

i=1 xihi∑m
i=1 yihi∑m
i=1 hi

 (13)

7

The solution is solved by standard numerical algorithms. If implemented directly, this formulation can lead
to an ill-conditioned linear system. To avoid this, you should first compute the averages x̄ = (

∑m
i=1 xi)/m,

ȳ = (
∑m

i=1 yi)/m and h̄ = (
∑m

i=1 hi)/m and subtract them from the data. The fitted plane is of the form
h− h̄ = ā0(x− x̄) + ā1(y − ȳ) + b̄. The linear system of equations that determines the coefficients is

ℓ00 ℓ01 0

ℓ01 ℓ11 0

0 0 m

ā0

ā1

b̄

 =

∑m

i=1(xi − x̄)2
∑m

i=1(xi − x̄)(yi − ȳ) 0∑m
i=1(xi − x̄)(yi − ȳ)

∑m
i=1(yi − ȳ)2 0

0 0 m

ā0

ā1

b̄

=

∑m

i=1(hi − h̄)(xi − x̄)∑m
i=1(hi − h̄)(yi − ȳ)

0

 =

r0

r1

0

(14)

and has solution

ā0 =
ℓ11r0 − ℓ01r1
ℓ00ℓ11 − ℓ201

, ā1 =
ℓ00r1 − ℓ01r0
ℓ00ℓ11 − ℓ201

, b̄ = 0 (15)

In terms of the original inputs, a0 = ā0, a1 = ā1 and b = h̄− ā0x̄− ā1ȳ.

3.2.1 Pseudocode for Fitting by a Plane

Listing 2 contains pseudocode for fitting a height plane to points in 3 dimensions.

Listing 2. Pseudocode for fitting a height plane to points in 3 dimensions. The number of input points
must be at least 3. The returned Boolean value is true as long as the matrix of the linear system has nonzero
determinant. An implementation in a slightly more general framework is ApprHeightPlane3.h.

bool FitHeightPlane(int numPoints, Vector3 points[],
Real& barX, Real& barY, Real& barH, Real& barA0, Real& barA1)

{
// Compute the mean of the points.
Vector3 mean = { 0, 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

mean += points[i];
}
mean /= numPoints;

// Compute the linear system matrix and vector elements.
Real xxSum = 0, xySum = 0, xhSum = 0, yySum = 0, yhSum = 0;
for (int i = 0; i < numPoints; ++i)
{

Vector3 diff = points[i] = mean;
xxSum += diff[0] * diff[0];
xySum += diff[0] * diff[1];
xhSum += diff[0] * diff[2];
yySum += diff[1] * diff[1];
yhSum += diff[1] * diff[2];

}

// Solve the linear system.
Real det = xxSum * yySum = xySum * xySum;
if (det != 0)
{

// Compute the fitted plane h(x,y) = barH + barA0 * (x = barX) + barA1 * (y = barY).

8

https://www.geometrictools.com/GTE/Mathematics/ApprHeightPlane3.h

barX = mean[0];
barY = mean[1];
barH = mean[2];
barA0 = (yySum * xhSum = xySum * yhSum) / det;
barA1 = (xxSum * yhSum = xySum * xhSum) / det;
return true;

}
else
{

// The output is invalid. The points are all the same or they are collinear.
barX = 0;
barY = 0;
barH = 0;
barA0 = 0;
barA1 = 0;
return false;

}
}

3.3 Fitting by a Hyperplane in n+ 1 Dimensions

The measurements are {(Xi, hi)}mi=1 where the n components of X are independent variables and h is a
dependent variable. The affine transformation we want to estimate is h = A ·X + b, where A is an n × 1
vector of constants and b is a scalar constant. This defines a hyperplane that best fits the samples in the
sense that the sum of the squared errors between the hi and the hyperplane values A ·Xi + b is minimized.
Note that the error is measured only in the h-direction.

Define the error function for the least-squares minimization to be

E(A, b) =

m∑
i=1

[(A ·Xi + b)− hi]
2 (16)

This function is nonnegative and its graph is a hyperparaboloid whose vertex occurs when the gradient
satisfies ∇E(A, b) = (∂E/∂A, ∂E/∂b) = (0, 0). This leads to a system of n+ 1 linear equations in A and b
which can be easily solved. Precisely,

0 = ∂E/∂A = 2
∑m

i=1[(A ·Xi + b)− hi]Xi

0 = ∂E/∂b = 2
∑m

i=1[(A ·Xi + b)− hi]
(17)

and so ∑m
i=1 XiX

T
i

∑m
i=1 Xi∑m

i=1 X
T
i

∑m
i=1 1

 A

b

 =

 ∑m
i=1 hiXi∑m
i=1 hi

 (18)

The solution is solved by standard numerical algorithms. If implemented directly, this formulation can lead
to an ill-conditioned linear system. To avoid this, you should first compute the averages X̄ = (

∑m
i=1 Xi)/m

and h̄ = (
∑m

i=1 hi)/m and subtract them from the data. The fitted hyperplane is of the form h − h̄ =
Ā · (X − X̄) + b̄. The linear system of equations that determines the coefficients is ∑m

i=1

(
Xi − X̄

) (
Xi − X̄

)T
0

0T m

 Ā

b̄

 =

 ∑m
i=1(hi − h̄)

(
Xi − X̄

)
0

 (19)

9

and has solution

Ā =

(
m∑
i=1

(Xi − X̄)(Xi − X̄)T

)−1(m∑
i=1

(hi − h̄)(Xi − X̄)

)
, b̄ = 0 (20)

In terms of the original inputs, A = Ā and b = h̄− Ā · X̄.

3.3.1 Pseudocode for Fitting a Hyperplane

Listing 3 contains pseudocode for fitting a height hyperplane to points in n+ 1 dimensions.

Listing 3. Pseudocode for fitting a height hyperplane to points in n+1 dimensions. The number of input
points must be at least n. The returned Boolean value is true as long as the matrix of the linear system has
nonzero determinant.

bool FitHeightHyperplane(int numPoints, Vector<n + 1> points[],
Vector<n>& barX, Real& barH, Vector<n>& barA)

{
// Compute the mean of the points.
Vector<n + 1> mean = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

mean += points[i];
}
mean /= numPoints;

// Compute the linear system matrix and vector elements. The function
// Vector<n> Head<n>(Vector<n + 1> V) returns (V[0],...,V[n=1]).
Matrix<n,n> L = Matrix<n,n>::ZERO;
Vector<n> R = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector<n + 1> diff = points[i] = mean;
Vector<n> XminusBarX = Head<n>(diff);
Real HminusBarH = diff[n];
L += OuterProduct(XminusBarX, XminusBarX); // (X[i]=barX[i])*(X[i]=barX[i])ˆT
R += HminusBarH * XminusBarX;

}

// Solve the linear system.
Real det = Determinant(L);
if (det != 0)
{

// Compute the fitted plane h(X) = barH + Dot(barA, X = barX).
barX = Head<n>(mean);
barH = mean[n];
barA = SolveLinearSystem(L, R); // solve L*A = R
return true;

}
else
{

// The output is invalid. The points appear not to live on a
// hyperplane; they might live in an affine subspace of dimension
// smaller than n.
barX = Vector<n>::ZERO;
barH = 0;
barA = Vector<n>::ZERO;
return false;

}
}

10

4 Affine Fitting of Points Using Orthogonal Regression

We have a set of measurements {Xi}mi=1 for which Xi ∈ Rn are sampled independent variables. The
hypothesis is that the points are sampled from a k-dimensional affine subspace in n-dimensional space.
Such a space is referred to as a k-dimensional flat. The classic cases include fitting a line to points in n
dimensions and fitting a plane to points in 3 dimensions. The latter is a special case of fitting a hyperplane,
an (n− 1)-dimensional flat, to points in n dimensions.

In the height-field fitting algorithms, the least-squares errors were measured in a specified direction (the
height direction). An alternative is to measure the errors in the perpendicular direction to the purported
affine subspace. This approach is referred to as orthogonal regression.

4.1 Fitting by a Line [1 Dimension]

The algorithm may be applied to sample points {Xi}mi=1 in any dimension n. Let the line have origin A
and unit-length direction D, both n × 1 vectors. Define Y i = Xi − A, which can be written as Y i =
(D · Y i)D+D⊥

i where D⊥
i is the perpendicular vector from Xi to its projection on the line. The squared

length of this vector is |D⊥
i |2 = |Y i − diD|2. The error function for the least-squares minimization is

E(A,D) =
∑m

i=1 |D
⊥
i |2. Two alternate forms for this function are

E(A,D) =

m∑
i=1

(
Y T

i

(
I −DDT

)
Y i

)
(21)

and

E(A,D) = DT

(
m∑
i=1

(
(Y i · Y i)I − Y iY

T
i

))
D = DTMD (22)

where M is a positive semidefinite symmetric matrix that depends on A and the Y i but not in D.

Compute the derivative of equation (21) with respect to A to obtain

∂E

∂A
= −2

[
I −DDT

] m∑
i=1

Y i (23)

At a minimum value of E, it is necessary that this derivative is zero, which it is when
∑m

i=1 Y i = 0, implying
A = (1/m)

∑m
i=1 Xi, the average of the sample points. In fact there are infinitely many solutions, A+ sD,

for any scalar s. This is simply a statement that A is a point on the best-fit line, but any other point on the
line may serve as the origin for that line.

Equation (22) is a quadratic form DTMD whose minimum is the smallest eigenvalue of M , computed using
standard eigensystem solvers. A corresponding unit length eigenvector D completes our construction of the
least-squares line. The covariance matrix of the input points is C =

∑m
i=1 Y iY

T
i . Defining δ =

∑m
i=1 Y

T
i Y i,

we see that M = δI − C, where I is the identity matrix. Therefore, M and C have the same eigenspaces.
The eigenspace corresponding to the minimum eigenvalue of M is the same as the eigenspace corresponding
to the maximum eigenvalue of C. In an implementation, it is sufficient to process C and avoid the additional
cost to compute M .

11

4.1.1 Pseudocode for the General Case

Listing 4 contains pseudocode for fitting a line to points in n dimensions with n ≥ 2.

Listing 4. Pseudocode for fitting a line to points in n dimensions using orthogonal regression. The number
of input points must be at least 2. The returned Boolean value is true as long as the covariance matrix of
the linear system has a 1-dimensional eigenspace for the maximum eigenvalue of the covariance matrix.

bool FitOrthogonalLine(int numPoints, Vector<n> points[],
Vector<n>& origin, Vector<n>& direction)

{
// Compute the mean of the points.
Vector<n> mean = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

mean += points[i];
}
mean /= numPoints;

// Compute the covariance matrix of the points.
Matrix<n,n> C = Matrix<n,n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector<n> diff = points[i] = mean;
C += OuterProduct(diff, diff); // diff * diffˆT

}

// Compute the eigenvalues and eigenvectors of C, where the eigenvalues are sorted
// in nondecreasing order (eigenvalues[0] <= eigenvalues[1] <= ...).
Real eigenvalues[n];
Vector<n> eigenvectors[n];
SolveEigensystem(C, eigenvalues, eigenvectors);

// Set the output information.
origin = mean;
direction = eigenvectors[n=1];

// The fitted line is unique when the maximum eigenvalue has multiplicity 1.
return eigenvalues[n=2] < eigenvalues[n=1];

}

Specializations for 2 and 3 dimensions are simple, computing only the upper-triangular elements of C and
passing them to specialized eigensolvers for 2 and 3 dimensions. Implementations are ApprOrthogonalLine2.h
and ApprOrthogonalLine3.h.

4.2 Fitting by a Hyperplane [(n− 1) Dimensions]

The algorithm may be applied to sample points {Xi}mi=1 in any dimension n. Let the hyperplane be defined
implicitly by N · (X − A) = 0, where N is a unit-length normal to the hyperplane and A is a point on
the hyperplane. Define Y i = Xi − A, which can be written as Y i = (N · Y i)N + N⊥

i where N⊥
i is a

vector that is perpendicular to N . The squared length of the projection of Y i onto the normal line for the
hyperplane is (N ·Y i)

2. The error function for the least-squares minimization is E(A,N) =
∑m

i=1(N ·Y i)
2.

Two alternate forms for this function are

E(A,N) =

m∑
i=1

(
Y T

i

(
NNT

)
Y i

)
(24)

12

https://www.geometrictools.com/GTE/Mathematics/ApprOrthogonalLine2.h
https://www.geometrictools.com/GTE/Mathematics/ApprOrthogonalLine3.h

and

E(A,N) = NT

(
m∑
i=1

Y iY
T
i

)
N = NTCN (25)

where C =
∑m

i=1 Y iY
T
i is the covariance matrix of the Y i.

Compute the derivative of equation (24) with respect to A to obtain

∂E

∂A
= 2

(
NNT

) m∑
i=1

Y i (26)

At a minimum value of E, it is necessary that this derivative is zero, which it is when
∑m

i=1 Y i = 0, implying
A = (1/m)

∑m
i=1 Xi, the average of the sample points. In fact there are infinitely many solutions, A+W ,

where W is any vector perpendicular to N . This is simply a statement that the average is on the best-fit
hyperplane, but any other point on the hyperplane may serve as the origin for that hyperplane.

Equation (25) is a quadratic form NTCN whose minimum is the smallest eigenvalue of C, computed using
standard eigensystem solvers. A corresponding unit-length eigenvector N completes our construction of the
least-squares hyperplane.

4.2.1 Pseudocode for the General Case

Listing 5 contains pseudocode for fitting a hyperplane to points in n dimensions with n ≥ 3.

Listing 5. Pseudocode for fitting a line to points in n dimensions using orthogonal regression. The number
of input points must be at least n. The returned Boolean value is true as long as the covariance matrix of
the linear system has a 1-dimensional eigenspace for the minimum eigenvalue of the covariance matrix.

bool FitOrthogonalHyperplane(int numPoints, Vector<n> points[],
Vector<n>& origin, Vector<n>& normal)

{
// Compute the mean of the points.
Vector<n> mean = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

mean += points[i];
}
mean /= numPoints;

// Compute the covariance matrix of the points.
Matrix<n,n> C = Matrix<n,n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector<n> diff = points[i] = mean;
C += OuterProduct(diff, diff); // diff * diffˆT

}

// Compute the eigenvalues and eigenvectors of M, where the eigenvalues are sorted
// in nondecreasing order (eigenvalues[0] <= eigenvalues[1] <= ...).
Real eigenvalues[n];
Vector<n> eigenvectors[n];
SolveEigensystem(C, eigenvalues, eigenvectors);

// Set the output information.
origin = mean;
normal = eigenvectors[0];

// The fitted hyperplane is unique when the minimum eigenvalue has multiplicity 1.
return eigenvalues[0] < eigenvalues[1];

}

13

A specialization for 3 dimensions is simple, computing only the upper-triangular elements of C and passing
them to a specialized eigensolver for 3 dimensions. An implementations is ApprOrthogonalPlane3.h.

4.3 Fitting by a Flat [k Dimensions]

Orthogonal regression to fit n-dimensional points by a line or by a hyperplane can be generalized to fitting
by an affine subspace called a k-dimensional flat, where you may choose k such that 1 ≤ k ≤ n− 1. A line
is a 1-flat and a hyperplane is an (n− 1)-flat.

For dimension n = 3, we fit with flats that are either lines (k = 1) or planes (k = 2). For dimensions n ≥ 4
and flat dimensions 1 ≤ k ≤ n − 1, the generalization of orthogonal regression is the following. The bases
mentioned here are for the linear portion of the affine subspace; that is, the basis vectors are relative to an
origin at a point A. The flat has an orthonormal basis {F j}kj=1 and the orthogonal complement has an

orthonormal basis {P j}n−k
j=1 . The union of the two bases is an orthonormal basis for Rn. Any input point

Xi, 1 ≤ i ≤ m, can be represented by

Xi = A+

k∑
j=1

fijF j +

n−k∑
j=1

pijP j =

A+

k∑
j=1

fijF j

+

n−k∑
j=1

pijP j

 (27)

The left-parenthesized term is the portion of Xi that lives in the flat and the right-parenthesized is the
portion that is the deviation of Xi from the flat. The least-squares problem is about choosing the two bases
so that the sum of squared lengths of the deviations is as small as possible.

Define Y i = Xi −A. The basis coefficients are fij = F j · Y i and pij = P j · Y i. The squared length of

the deviation is
∑n−k

j=1 p2ij . The error function for the least-squares minimization is the sum of the squared

lengths for all inputs, E =
∑m

i=1

∑n−k
j=1 p2ij . Two alternate forms for this function are

E(A,P 1, . . .P n−k) =

m∑
i=1

Y T
i

n−k∑
j=1

P jP
T
j

Y i (28)

and

E(A,P 1, . . .P n−k) =

n−k∑
j=1

P T
j

(
m∑
i=1

Y iY
T
i

)
P j =

n−k∑
j=1

P T
j CP j (29)

where C =
∑

i=1 Y iY
T
i .

Compute the derivative of equation (28) with respect to A to obtain

∂E

∂A
= 2

n−k∑
j=1

P jP
T
j

 m∑
i=1

Y i (30)

At a minimum value of E, it is necessary that this derivative is zero, which it is when
∑m

i=1 Y i = 0, implying
A = (1/m)

∑m
i=1 Xi, the average of the sample points. In fact there are infinitely many solutions, A+W ,

where W is any vector in the orthogonal complement of the subspace spanned by the P j ; this subspace is

14

https://www.geometrictools.com/GTE/Mathematics/ApprOrthogonalPlane3.h

the one spanned by the F j . This is simply a statement that the average is on the best-fit flat, but any other
point on the flat may serve as the origin for that flat. Because we are choosing A to be the average of the
input points, the matrix C is the covariance matrix for the input points.

The last term in equation (29) is a sum of quadratic forms involving the matrix C and the vectors P j that
are a basis (unit length, mutually perpendicular). The minimum value of the quadratic form is the smallest
eigenvalue λ1 of C, so we may choose P 1 to be a unit-length eigenvector of C corresponding to λ1. We must
choose P 2 to be unit length and perpendicular to P 1. If the eigenspace for λ1 is 1-dimensional, the next
smallest value we can attain by the quadratic form is the smallest eigenvalue λ2 for which λ1 < λ2. P 2 is
chosen to be a corresponding unit-length eigenvector. However, if λ1 has an eigenspace of dimension larger
than 1, we can choose P 2 in that eigenspace but which is perpendicular to P 1.

Generally, let {λℓ}rℓ=1 be the r distinct eigenvalues of the covariance matrix C; we know 1 ≤ r ≤ n and
λ1 < λ2 < · · · < λr. Let the dimension of the eigenspace for λℓ be dℓ ≥ 1; we know that

∑r
ℓ=1 dℓ = n. List

the eigenvalues and eigenvectors in order of increasing eigenvalue, including repeated values,

λ1 · · · λ1

V 1
1 · · · V 1

d1︸ ︷︷ ︸
d1 terms

λ2 · · · λ2

V 2
1 · · · V 2

d2︸ ︷︷ ︸
d2 terms

· · ·
λr · · · λr

V r
1 · · · V r

dr︸ ︷︷ ︸
dr terms

(31)

The list has n items. The eigenvalue dℓ has an eigenspace with orthonormal basis {V ℓ
j}

dℓ
j=1. In this list,

choose the first k eigenvectors to be P 1 through P k and choose the last n−k eigenvectors to be F 1 through
F n−k.

It is possible that one (or more) of the P j and one (or more) of the F j are in the eigenspace for the same
eigenvalue. In this case, the fitted flat is not unique, and one should re-examine the choice of dimension k
for the fitted flat. This is analogous to the following situations in dimension n = 3:

� The input points are nearly collinear but you are trying to fit those points with a plane. The covariance
matrix likely has two distinct eigenvalues λ1 < λ2 with d1 = 2 and d2 = 1. The basis vectors are
P 1 = V 1

1, F 1 = V 1
2, and F 2 = V 2

1. The first two of these are from the same eigenspace.

� The input points are spread out over a portion of a plane (and are not nearly collinear) but you are
trying to fit those points with a line. The covariance matrix likely has two distinct eigenvalues λ1 < λ2

with d1 = 1 and d2 = 2. The basis vectors are P 1 = V 1
1, P 2 = V 2

1, and F 1 = V 2
2. The last two of

these are from the same eigenspace.

� The input points are not well fit by a flat of any dimension. For example, your input points are
uniformly distributed over a sphere. The covariance matrix likely has one distinct eigenvalue λ1 of
multiplicity d1 = 3. Neither a line nor a plane is a good fit to the input points—in either case, a
P -vector and an F -vector are in the same eigenspace.

The computational algorithm is to compute the average A and covariance matrix of the points. Use an
eigensolver whose output eigenvalues are sorted in nondecreasing order. Choose the F j to be the last n− k
eigenvectors output by the eigensolver.

4.3.1 Pseudocode for the General Case

Listing 6 contains pseudocode for fitting a k-dimensional flat to points in n-dimensions where n ≥ 2 and
1 ≤ k ≤ n− 1.

15

Listing 6. Pseudocode for fitting a k-dimensional flat to points in n dimensions using orthogonal regression.
The number of input points must be at least k + 1. The returned Boolean value is true as long as the
covariance matrix of the linear system has a basis of eigenvectors sorted by nondecreasing eigenvalues for
which the following holds. The subbasis that spans the linear space of the flat and the subbasis that spans
the orthogonal complement of the linear space of the flat do not both contain basis vectors from the same
eigenspace.

bool FitOrthogonalFlat(int numPoints, Vector<n> points[],
Vector<n>& origin, Vector<k>& flatBasis, Vector<n=k>& complementBasis)

{
// Compute the mean of the points.
Vector<n> mean = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

mean += points[i];
}
mean /= numPoints;

// Compute the covariance matrix of the points.
Matrix<n,n> C = Matrix<n,n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector<n> diff = points[i] = mean;
C += OuterProduct(diff, diff); // diff * diffˆT

}

// Compute the eigenvalues and eigenvectors of M, where the eigenvalues are sorted
// in nondecreasing order (eigenvalues[0] <= eigenvalues[1] <= ...).
Real eigenvalues[n];
Vector<n> eigenvectors[n];
SolveEigensystem(C, eigenvalues, eigenvectors);

// Set the output information. The basis for the fitted flat corresponds
// to the largest variances and the basis for the complement of the fitted
// flat corresponds to the smallest variances.
origin = mean;
for (int i = 0; i < n = k; ++i)
{

complementBasis[i] = eigenvectors[i];
}
for (int i = 0; i < k; ++i)
{

flatBasis[i] = eigenvectors[n = k + i];
}

// The fitted flat and its complement do not have vectors from the same eigenspace.
return eigenvalues[n = k = 1] < eigenvalues[n = k];

}

In the special case of fitting with a line (k = 1), the line direction is the only element in flatBasis. In the special
case of fitting with a hyperplane (k = n− 1), the hyperplane normal is the only element in complementBasis.

5 Fitting a Hypersphere to Points

The classic cases are fitting 2-dimensional points by circles and 3-dimensional points by spheres. In n-
dimensions, the objects are called hyperspheres, defined implicitly by the quadratic equation |C−X|2 = r2,
where C is the center and r is the radius. Three algorithms are presented for fitting points by hyperspheres.

16

5.1 Fitting Using Differences of Lengths and Radius

The sample points are {Xi}mi=1. The least-squares error function involves the squares of differences between
lengths and radius,

E(C, r) =

m∑
i=1

(|C −Xi| − r)
2

(32)

The minimization is based on computing points where the gradient of E is zero. The partial derivative with
respect to r is

∂E

∂r
= −2

m∑
i=1

(|C −Xi| − r) (33)

Setting the derivative equal to zero and solving for the radius,

r =
1

m

m∑
i=1

|C −Xi| (34)

which says that the radius is the average of the distances from the sample points to the center C. The
partial derivative with respect to C is

∂E
∂C = 2

∑m
i=1 (|C −Xi| − r) ∂|C−Xi|

∂C

= 2
∑m

i=1 (|C −Xi| − r) C−Xi

|C−Xi|

= 2
∑m

i=1

(
(C −Xi)− r C−Xi

|C−Xi|

) (35)

Setting the derivative equal to zero and solving for the center,

C =
1

m

m∑
i=1

Xi + r
1

m

m∑
i=1

C − Xi

|C − Xi|
=

1

m

m∑
i=1

Xi +

(
1

m

m∑
i=1

|C −Xi|

)(
1

m

m∑
i=1

C − Xi

|C − Xi|

)
(36)

The average of the samples is X̄. Define length Li = |C −Xi|; the average of the lengths is L̄. Define
unit-length vector U i = (C −Xi)/|C −Xi|; the average of the unit-length vectors is Ū . Equation (36)
becomes

C = X̄ + L̄Ū =: F (C) (37)

were the last equality defines the vector-valued function F . The function depends on the independent
variable C because both L̄ and Ū depend on C. Fixed-point iteration can be applied to solve equation (37),

C0 = X̄; Ci+1 = F (Ci), i ≥ 0 (38)

Depending on the distribution of the samples, it is possible to choose a different initial guess for C0 that
(hopefully) leads to faster convergence.

5.1.1 Pseudocode for the General Case

Listing 7 contains pseudocode for fitting a hypersphere to points. The case n = 2 is for circles and the case
n = 3 is for spheres.

17

Listing 7. Fitting a hypersphere to points using least squares based on squared differences of lengths and
radius. If you want the incoming hypersphere center to be the initial guess for the center, set inputCenterIsIni-
tialGuess; otherwise, the initial guess is computed to be the average of the samples. The maximum number
of iterations is also specified. The returned function value is the number of iterations used.

int FitHypersphere(int numPoints, Vector<n> X[], int maxIterations, bool inputCenterIsInitialGuess,
Vector<n>& center, Real& radius)

{
// Compute the average of the data points.
Vector<n> averageX = X[0];
for (int i = 1; i < numPoints; ++i)
{

averageX += X[i];
}
averageX /= numPoints;

// The initial guess for the center is either the incoming center of the
// average of the sample points.
if (!inputCenterIsInitialGuess)
{

center = averageX;
}

int iteration;
for (iteration = 0; iteration < maxIterations; ++iteration)
{

// Update the estimate for the center.
Vector<n> previousCenter = center;

// Compute average L and average U.
Real averageL = 0;
Vector<n> averageU = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector<n> CmXi = center = X[i];
Real length = Length(CmXi);
if (length > 0)
{

averageL += length;
averageU == CmXi / length;

}
}
averageL /= numPoints;
averageU /= numPoints;

center = averageX + averageL * averageU;
radius = averageL;

// Test for convergence.
if (center == previousCenter)
{

break;
}

}

return ++iteration;
}

The convergence test uses an exact equality, that the previous center C ′ and the current center C are the
same. In practice you might want to specify a small ε > 0 and instead exit when |C −C ′| ≤ ε.

Specializations for 2 and 3 dimensions have the same implementation as the general case. Implementations
are ApprCircle2.h and ApprSphere3.h.

18

https://www.geometrictools.com/GTE/Mathematics/ApprCircle2.h
https://www.geometrictools.com/GTE/Mathematics/ApprSphere3.h

5.2 Fitting Using Differences of Squared Lengths and Squared Radius

The sample points are {Xi}mi=1. The least-squares error function involves the squares of differences between
squared lengths and squared radius,

E(C, r2) =

m∑
i=1

(
|C −Xi|2 − r2

)2
(39)

The minimization is based on computing points where the gradient of E is zero. The partial derivative with
respect to r2 is

∂E

∂r2
= −2

m∑
i=1

(
|C −Xi|2 − r2

)
(40)

Define ∆i = C −Xi. Setting the derivative to zero and solving for the squared radius,

r2 =
1

m

m∑
i=1

|C −Xi|2 =
1

m

m∑
i=1

∆T
i ∆i (41)

which says that the squared radius is the average of the squared distances from the sample points to the
center C. The partial derivative with respect to C is

∂E

∂C
= 4

m∑
i=1

(
|C −Xi|2 − r2

)
(C −Xi) = 4

m∑
i=1

(
∆T

i ∆i − r2
)
∆i (42)

Setting this to zero, the center and radius must satisfy

m∑
i=1

(
∆T

i ∆i − r2
)
∆i = 0 (43)

Expanding the squared lengths,
∆T

i ∆i = |C|2 − 2CTXi + |Xi|2 (44)

Substituting into equation (41),

r2 = |C|2 − 2CT

(
1

m

m∑
i=1

Xi

)
+

1

m

m∑
i=1

|Xi|2 = |C|2 − 2CTA+
1

m

m∑
i=1

|Xi|2 (45)

where A = (
∑m

i=1 Xi) /m is the average of the samples. Define Y i = Xi −A. Some algebra will show that

∆T
i ∆i − r2 = |C|2 − 2CTXi + |Xi|2 −

(
|C|2 − 2CTA+ 1

m

∑m
j=1 |Xj |2

)
= −2CTY i + |Xi|2 − 1

m

∑m
j=1 |Xj |2

= −2(C −A)TY i + |Y i|2 − 1
m

∑m
j=1 |Y j |2

= −2(C −A)TY i +Bi

(46)

where the last equality defines Bi. Equation (43) becomes

0 =
∑m

i=1

(
∆T

i ∆i − r2
)
∆i

=
∑m

i=1

(
−2(C −A)TY i +Bi

)
((C −A)− Y i)

=
(
(C −A)T

∑m
i=1 Y i

)
(C −A) + 2

(∑m
i=1 Y iY

T
i

)
(C −A) + (

∑m
i=1 Bi) (C −A)−

∑m
i=1 BiY i

(47)

19

It is easily shown that
∑m

i=1 Y i = 0 and
∑m

i=1 Bi = 0; therefore,

0 = 2

(
m∑
i=1

Y iY
T
i

)
(C −A)−

m∑
i=1

(
Y T

i Y i

)
Y i (48)

The least-squares center is obtained by solving the previous equation,

C = A+
1

2

(
m∑
i=1

Y Y T
i

)−1 m∑
i=1

(
Y T

i Y i

)
Y i (49)

5.2.1 Pseudocode for the General Case

Listing 8 contains pseudocode for fitting a hypersphere to points. The case n = 2 is for circles and the case
n = 3 is for spheres.

Listing 8. Fitting a hypersphere to points using least squares based on squared differences of squared
lengths and square radius. The algorithm requires inverting the covariance matrix. If the matrix is invertible,
the output center and radius are valid and the function returns true. If the matrix is not invertible, the function
returns false, and the center and radius are invalid (but set to zero so at least they are initialized).

bool FitHypersphere(int numPoints, Vector<n> X[], Vector<n>& center, Real& radius)
{

// Compute the average of the data points.
Vector<n> A = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

A += X[i];
}
A /= numPoints;

// Compute the covariance matrix M of the Y[i] = X[i]=A and the right=hand side R of the linear
// system M*(C=A) = R.
Matrix<n, n> M = Matrix<n, n>::ZERO;
Vector<n> R = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector<n> Y = X[i] = A;
Matrix<n, n> YYT = OuterProduct(Y, Y); // Y*Transpose(Y)
Real YTY = Dot(Y, Y); // Transpose(Y)*Y
M += YYT;
R += YTY * Y;

}
R /= 2;

// Solve the linear system M*(C=A) = R for the center C. The function ’bool Solve(M, R, S)’ tries
// to solve the linear system M*S = R. If M is invertible, the function returns true and S is the
// solution. If M is not invertible, the function returns false and S is invalid.
Vector<n> CmA;
if (Solve(M, R, CmA))
{

center = A + CmA;
Real rsqr = 0;
for (int i = 0; i < numPoints; ++i)
{

Vector<n> delta = X[i] = center;
rsqr += Dot(delta, delta);

}
rsqr /= numPoints;
radius = sqrt(rsqr);

20

return true;
}
else
{

center = Vector<n>::ZERO;
radius = 0;
return false;

}
}

5.2.2 Pseudocode for Circles

Listing 9 is a specialization of Listing 8 for circles in 2 dimensions. The matrix inversion requires only
computing the upper-triangular part of the covariance matrix and uses cofactors for inversion.

Listing 9. Fitting a circle to points using least squares based on squared differences of squared lengths
and square radius. The algorithm requires inverting the covariance matrix. If the matrix is invertible, the
output center and radius are valid and the function returns true. If the matrix is not invertible, the function
returns false, and the center and radius are invalid (but set to zero so at least they are initialized).

bool FitCircle(int numPoints, Vector2 X[], Vector2& center, Real& radius)
{

// Compute the average of the data points.
Vector2 A = { 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

A += X[i];
}
A /= numPoints;

// Compute the covariance matrix M of the Y[i] = X[i]=A and the right=hand side R of the linear
// system M*(C=A) = R.
Real M00 = 0, M01 = 0, M11 = 0;
Vector2 R = { 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

Vector2 Y = X[i] = A;
Real Y0Y0 = Y[0] * Y[0], Y0Y1 = Y[0] * Y[1], Y1Y1 = Y[1] * Y[1];
M00 += Y0Y0; M01 += Y0Y1; M11 += Y1Y1;
R += (Y0Y0 + Y1Y1) * Y;

}
R /= 2;

// Solve the linear system M*(C=A) = R for the center C.
Real det = M00 * M11 = M01 * M01;
if (det != 0)
{

center[0] = A[0] + (M11 * R[0] = M01 * R[1]) / det;
center[1] = A[1] + (M00 * R[1] = M01 * R[0]) / det;
Real rsqr = 0;
for (int i = 0; i < numPoints; ++i)
{

Vector2 delta = X[i] = center;
rsqr += Dot(delta, delta);

}
rsqr /= numPoints;
radius = sqrt(rsqr);
return true;

}
else
{

center = { 0, 0 };

21

radius = 0;
return false;

}
}

5.2.3 Pseudocode for Spheres

Listing 10 is a specialization of Listing 8 for spheres in 3 dimensions. The matrix inversion requires only
computing the upper-triangular part of the covariance matrix and uses cofactors for inversion.

Listing 10. Fitting a sphere to points using least squares based on squared differences of squared lengths
and square radius. The algorithm requires inverting the covariance matrix. If the matrix is invertible, the
output center and radius are valid and the function returns true. If the matrix is not invertible, the function
returns false, and the center and radius are invalid (but set to zero so at least they are initialized).

bool FitSphere(int numPoints, Vector3 X[], Vector3& center, Real& radius)
{

// Compute the average of the data points.
Vector3 A = { 0, 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

A += X[i];
}
A /= numPoints;

// Compute the covariance matrix M of the Y[i] = X[i]=A and the right=hand side R of the linear
// system M*(C=A) = R.
Real M00 = 0, M01 = 0, M02 = 0, M11 = 0, M12 = 0, M22 = 0;
Vector3 R = { 0, 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

Vector2 Y = X[i] = A;
Real Y0Y0 = Y[0] * Y[0], Y0Y1 = Y[0] * Y[1], Y0Y2 = Y[0] * Y[2];
Real Y1Y1 = Y[1] * Y[1], Y1Y2 = Y[1] * Y[2], Y2Y2 = Y[2] * Y[2];
M00 += Y0Y0; M01 += Y0Y1; M02 += Y0Y2;
M11 += Y1Y1; M12 += Y1Y2; M22 += Y2Y2;
R += (Y0Y0 + Y1Y1 + Y2Y2) * Y;

}
R /= 2;

// Solve the linear system M*(C=A) = R for the center C.
Real cof00 = M11 * M22 = M12 * M12;
Real cof01 = M02 * M12 = M01 * M22;
Real cof02 = M01 * M12 = M02 * M11;
Real det = M00 * cof00 + M01 * cof01 + M02 * cof02;
if (det != 0)
{

Real cof11 = M00 * M22 = M02 * M02;
Real cof12 = M01 * M02 = M00 * M12;
Real cof22 = M00 * M11 = M01 * M01;
center[0] = A[0] + (cof00 * R[0] + cof01 * R[1] + cof02 * R[2]) / det;
center[1] = A[1] + (cof01 * R[0] + cof11 * R[1] + cof12 * R[2]) / det;
center[2] = A[2] + (cof02 * R[0] + cof12 * R[1] + cof22 * R[2]) / det;
Real rsqr = 0;
for (int i = 0; i < numPoints; ++i)
{

Vector3 delta = X[i] = center;
rsqr += Dot(delta, delta);

}
rsqr /= numPoints;
radius = sqrt(rsqr);
return true;

22

}
else
{

center = { 0, 0, 0 };
radius = 0;
return false;

}
}

5.3 Fitting the Coefficients of a Quadratic Equation

The general quadratic equation that represents a hypersphere in n dimensions is

b0 + b1 ·X + b2|X|2 = 0 (50)

where b0 and b2 ̸= 0 are scalar constants and b1 is an n× 1 vector of scalars. Define

b =

b0

b1

b2

 , V =

1

X

|X|2

 (51)

which are both (n + 2) × 1 vectors. The quadratic equation is b · V = 0. Because b is not zero, we can
remove a degree of freedom by requiring |b| = 1.

Given samples {Xi}mi=1, we can estimate the constants using a least-squares algorithm where the error
function is

E(b) =

m∑
i=1

(b · V i)
2 = bT

(
m∑
i=1

V iV
T
i

)
b = bTV b (52)

where as a tuple, V i = (1,Xi, |Xi|2), and where V =
∑m

i=1 V iV
T
i is a positive semidefinite matrix (sym-

metric, eigenvalues are nonnegative). The error function is minimized by a unit-length eigenvector b that
corresponds to the minimum eigenvalue of V . The equation (50) is factored into∣∣∣∣X +

b1
2b2

∣∣∣∣2 =

∣∣∣∣ b12b2

∣∣∣∣2 − b0
b2

(53)

from which we see that the hypersphere center isC = −b1/(2b2) and the radius is r =
√
(|b1|2 − 4b0b2)/(4b22).

As is typical of these types of problems, it is better to subtract translate the samples by their average to
obtain numerical robustness when computing with floating-point arithmetic. Define A = (

∑m
i=1 Xi) and

Y i = Xi −A. Equation (50) becomes

f0 + f1 · Y + f2|Y |2 = 0 (54)

where

b =

b0

b1

b2

 =

f0 − f1 ·A+ f2|A|2

f1 − 2f2A

f2

 =

1 −AT |A|2

0 I −2A

0 0T 1

f0

f1

f2

 = Mf (55)

23

with I the n× n identity matrix and 0 the n× 1 zero vector. The last equality defines the (n+ 2)× (n+ 2)
upper-triangular matrix M and the (n+ 2)× 1 vector f . The error function is now

E(f) = bTV b = (Rf)TV (Rf) = fT
(
RTV R

)
f = fTWf (56)

where the last equation defines the positive semidefinite matrix W . Observe that

W = RT

(
m∑
i=1

V iV
T
i

)
R =

m∑
i=1

(
RTV i

) (
RTV i

)T
=

m∑
i=1

W iW
T
i (57)

where

W i = RTV i =

1 0T 0

−A I 0

|A|2 −2AT 1

1

Xi

|Xi|2

 =

1

Xi −A

|Xi −A|2

 (58)

Therefore, we can subtract A from the samples, compute the matrix W , extract its eigenvector f corre-
sponding to its minimum eigenvalue, compute b = Rf and then the center and radius using equation (53).
The matrix W written as a block matrix and divided by the number of points m to keep the numerical
intermediate values on the order of the sample values is

W =

1 0T 1

m

∑m
i=1 |Y i|2

0 1
m

∑m
i=1 Y iY

T
i

1
m

∑m
i=1 |Y i|2Y i

1
m

∑m
i=1 |Y i|2 1

m

∑m
i=1 |Y i|2Y i

1
m |Y i|4

 (59)

5.3.1 Pseudocode for the General Case

Listing 11 contains pseudocode for fitting a hypersphere to points. The case n = 2 is for circles and the case
n = 3 is for spheres.

Listing 11. Fitting a hypersphere to points using least squares to fit the coefficients of a quadratic equation
defining the hypersphere. The algorithm requires computing the squared radius in terms of the components
of an eigenvector. For samples not really distributed well on a hypersphere, the purported squared radius
might be negative. The function returns true when that computation is nonnegative or false when it is
negative.

bool FitHypersphere(int numPoints, Vector<n> X[], Vector<n>& center, Real& radius)
{

// Compute the average of the data points and the squared length of the average.
Vector<n> A = Vector<n>::ZERO;
for (int i = 0; i < numPoints; ++i)
{

A += X[i];
}
A /= numPoints;
Real sqrLenA = Dot(A, A);

// Compute the components of W. Block(r, c, rsize, csize) is an accessor to the block
// whose upper=left location is (r, c) and whose size is rsize=by=csize. The indices
// r and c are zero=based.
Matrix<n + 2, n + 2> W = Matrix<n + 2, n + 2>::ZERO;

24

for (int i = 0; i < numPoints; ++i)
{

Vector<n> Y = X[i] = A;
Matrix<n, n> YYT = OuterProduct(Y, Y); // Y*Transpose(Y)
Real YTY = Dot(Y, Y); // Transpose(Y)*Y
Vector YTYY = YTY * Y;
Real YTYYTY = YTY * YTY;
W.Block(0, 0, 1, 1) += 1;
W.Block(0, n + 1, 1, 1) += YTY;
W.Block(1, 1, n, n) += YYT;
W.Block(1, n + 1, n, 1) += YTYY;
W.Block(n + 1, 0, 1, 1) += YTY;
W.Block(n + 1, 1, 1, n) += YTYY;
W.Block(n + 1, n + 1, 1, 1) += YTYYTY;

}
W /= numPoints;

// Compute the eigenvalues and eigenvectors of M, where the eigenvalues are sorted
// in nondecreasing order (eigenvalues[0] <= eigenvalues[1] <= ...).
Real eigenvalues[n + 2];
Vector<n> eigenvectors[n + 2];
SolveEigensystem(W, eigenvalues, eigenvectors);

// Block(i, isize) is an accessor to the block whose initial location is i and whose
// size is isize.
Real f0 = eigenvectors[0].Block(0, 1);
Vector<n> f1 = eigenvectors[0].Block(1, n);
Real f2 = eigenvectors[0].Block(n + 1, 1);
Real b0 = f0 = Dot(f1, A) + f2 * sqrLenA;
Vector<n> b1 = f1 = 2 * f2 * A;
Real b2 = f2;

if (b2 != 0)
{

Real discr = Dot(b1, b1) = 4 * b0 * b2;
if (discr >= 0)
{

center = =b1 / (2 * b2);
radius = sqrt(discr / (4 * b2 * b2));
return true;

}
}

center = Vector<n>::ZERO;
radius = 0;
return false;

}

5.3.2 Pseudocode for Circles

Listing 12 contains pseudocode for fitting a circle to points.

Listing 12. Fitting a circle to points using least squares to fit the coefficients of a quadratic equation
defining the hypersphere. The algorithm requires computing the squared radius in terms of the components
of an eigenvector. For samples not really distributed well on a hypersphere, the purported squared radius
might be negative. The function returns true when that computation is nonnegative or false when it is
negative.

bool FitCircle(int numPoints, Vector2 X[], Vector2& center, Real& radius)
{

// Compute the average of the data points and the squared length of the average.
Vector2 A = { 0, 0 };
for (int i = 0; i < numPoints; ++i)

25

{
A += X[i];

}
A /= numPoints;
Real sqrLenA = Dot(A, A);

// Compute the upper=triangular components of W.
Matrix4x4 W = Matrix4x4::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector2 Y = X[i] = A;
Real Y0Y0 = Y[0] * Y[0], Y0Y1 = Y[0] * Y[1], Y1Y1 = Y[1] * Y[1];
Real RR = Y0Y0 + Y1Y1, RRRR = RR * RR;
Real Y0RR = Y0 * RR, Y1RR = Y1 * RR;
W(0, 3) += RR;
W(1, 1) += Y0Y0;
W(1, 2) += Y0Y1;
W(1, 3) += Y0RR;
W(2, 2) += Y1Y1;
W(2, 3) += Y1RR;
W(3, 3) += RRRR;

}
W /= numPoints;
W(0, 0) = 1;

// Fill in the lower=triangular components of W.
W(3, 0) = W(0, 3);
W(2, 1) = W(1, 2);
W(3, 1) = W(1, 3);
W(3, 2) = W(2, 3);

// Compute the eigenvalues and eigenvectors of M, where the eigenvalues are sorted
// in nondecreasing order
// eigenvalues[0] <= eigenvalues[1] <= eigenvalues[2] <= eigenvalues[3]
Real eigenvalues[4];
Vector4 eigenvectors[4];
SolveEigensystem(W, eigenvalues, eigenvectors);

Real f0 = eigenvectors[0][0];
Vector2 f1 = { eigenvectors[0][1], eigenvectors[0][2] };
Real f2 = eigenvectors[0][3];
Real b0 = f0 = Dot(f1, A) + f2 * sqrLenA;
Vector2 b1 = f1 = 2 * f2 * A;
Real b2 = f2;

if (b2 != 0)
{

Real discr = Dot(b1, b1) = 4 * b0 * b2;
if (discr >= 0)
{

center = =b1 / (2 * b2);
radius = sqrt(discr / (4 * b2 * b2));
return true;

}
}

center = Vector2::ZERO;
radius = 0;
return false;

}

5.3.3 Pseudocode for Spheres

Listing 13 contains pseudocode for fitting a sphere to points.

26

Listing 13. Fitting a sphere to points using least squares to fit the coefficients of a quadratic equation
defining the hypersphere. The algorithm requires computing the squared radius in terms of the components
of an eigenvector. For samples not really distributed well on a hypersphere, the purported squared radius
might be negative. The function returns true when that computation is nonnegative or false when it is
negative.

bool FitSphere(int numPoints, Vector3 X[], Vector3& center, Real& radius)
{

// Compute the average of the data points and the squared length of the average.
Vector3 A = { 0, 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

A += X[i];
}
A /= numPoints;
Real sqrLenA = Dot(A, A);

// Compute the upper=triangular components of W.
Matrix5x5 W = Matrix5x5::ZERO;
for (int i = 0; i < numPoints; ++i)
{

Vector3 Y = X[i] = A;
Real Y0Y0 = Y[0] * Y[0], Y0Y1 = Y[0] * Y[1], Y1Y1 = Y[1] * Y[1];
Real Y1Y1 = Y[1] * Y[1], Y1Y2 = Y[1] * Y[2], Y2Y2 = Y[2] * Y[2];
Real RR = Y0Y0 + Y1Y1 + Y2Y2, RRRR = RR * RR;
Real Y0RR = Y0 * RR, Y1RR = Y1 * RR, Y2RR = Y2 * RR;
W(0, 4) += RR;
W(1, 1) += Y0Y0;
W(1, 2) += Y0Y1;
W(1, 3) += Y0Y2;
W(1, 4) += Y0RR;
W(2, 2) += Y1Y1;
W(2, 3) += Y1Y2;
W(2, 4) += Y1RR;
W(3, 3) += Y2Y2;
W(3, 4) += Y2RR;
W(4, 4) += RRRR;

}
W /= numPoints;
W(0, 0) = 1;

// Fill in the lower=triangular components of W.
W(4, 0) = W(0, 4);
W(2, 1) = W(1, 2);
W(3, 1) = W(1, 3);
W(4, 1) = W(1, 4);
W(3, 2) = W(2, 3);
W(4, 2) = W(2, 4);
W(4, 3) = W(3, 4);

// Compute the eigenvalues and eigenvectors of M, where the eigenvalues are sorted
// in nondecreasing order
// eigenvalues[0] <= eigenvalues[1] <= eigenvalues[2] <= eigenvalues[3] <= eigenvalues[4]
Real eigenvalues[5];
Vector5 eigenvectors[5];
SolveEigensystem(W, eigenvalues, eigenvectors);

Real f0 = eigenvectors[0][0];
Vector3 f1 = { eigenvectors[0][1], eigenvectors[0][2], eigenvectors[0][3] };
Real f2 = eigenvectors[0][4];
Real b0 = f0 = Dot(f1, A) + f2 * sqrLenA;
Vector3 b1 = f1 = 2 * f2 * A;
Real b2 = f2;

if (b2 != 0)
{

Real discr = Dot(b1, b1) = 4 * b0 * b2;
if (discr >= 0)
{

center = =b1 / (2 * b2);

27

radius = sqrt(discr / (4 * b2 * b2));
return true;

}
}

center = Vector3::ZERO;
radius = 0;
return false;

}

6 Fitting a Hyperellipsoid to Points

The classic cases are fitting 2-dimensional points by ellipses and 3-dimensional points by ellipsoids. In
n-dimensions, the objects are called hyperellipsoids, defined implicitly by the quadratic equation

(X −C)TS(X −C) = 1 (60)

The center of the hyperellipsoid is the n× 1 vector C, the n× n matrix S is positive definite, and the n× 1
vector X is any point on the hyperellipsoid. The matrix S can be factored using an eigendecomposition,
S = RDRT, where R is an n × n rotation matrix whose n × 1 columns are unit-length vectors U i for
0 ≤ i < n that form a right-handed orthonormal basis. The n × n matrix D is diagonal with diagonal
elements di = 1/e2i for 0 ≤ i < n. The extent ei > 0 is the distance from C to the two extreme points of the
hyperellipsoid in the direction U i. The matrix S can be expressed as

S =

n−1∑
i=0

U iU
T
i

e2i
=

n−1∑
i=0

V iV
T
i

e2i |V i|2
(61)

The second equality uses vectors V i that are not necessarily unit length, which is useful when robust
computations require arbitrary precision arithmetic for exact results. The length of V i is not necessary to
compute; rather, we compute |V i|2 = V i · V i to eliminate floating-point rounding errors that occur when
normalizing V i to obtain U i.

Let the samples be {Xi}mi=1. A nonlinear least-squares error function used for the fitting is

E(C, S) =
1

m

m∑
i=1

[
(Xi −C)

T
S (Xi −C)− 1

]2
(62)

An iterative algorithm is presented for locating the parameters C and S. It is based on gradient descent,
which requires derivative computations. The symmetric matrix S has n(n + 1)/2 parameters consisting of
the upper-triangular part of the matrix. The vector C has n parameters.

Define ∆i = Xi −C. The first-order derivative of E with respect to the center is

∂E

∂C
=
−4
m

m∑
i=1

(
∆T

i S∆i − 1
)
S∆i (63)

The first-order derivative of E with respect to the component src of S is

∂E

∂src
=

2
m

∑m
i=1

(
∆T

i S∆i − 1
)
∆T

i Brr∆i, r = c

2
m

∑m
i=1

(
∆T

i S∆i − 1
)
∆T

i (Brc +Bcr)∆i, r ̸= c
(64)

28

where Brc is the matrix whose elements are all 0 except for the entry in row r and column c which is 1.

The algorithm uses a 2-Step gradient step whereby the center and matrix are alternately updated.

6.1 Updating the Estimate of the Center

Given initial guesses C and S for the hyperellipsoid, the center can be updated to C ′ = C + tN for t ≥ 0,
where N = −∂E/∂C is the negative of the gradient of E in the C direction at the initial guess. This is one
step of the gradient descent algorithm, searching in the direction of largest decrease of E in the C parameter.
Define the function

g(t) = E(C + tN , S)

= 1
m

∑m
i=1

[
(tN −∆i)

T
S (tN −∆i)− 1

]2
= 1

n

∑m
i=1

[(
NTSN

)
t2 −

(
2NTS∆i

)
t+

(
∆T

i S∆i − 1
)]2

= 1
n

∑m
i=1

(
ct2 − 2bit+ ai

)2
(65)

where c = NTSN , bi = NTS∆i and ai = ∆T
i S∆i − 1. Some algebra will show that

g(t) = g0 + g1t+ g2t
2 + g3t

3 + g4t
4 (66)

where

g0 =
1

m

m∑
i=1

a2i , g1 =
−4
m

m∑
i=1

aibi, g2 =
4

m

m∑
i=1

b2i +
2c

m

m∑
i=1

ai, g3 =
−4c
m

m∑
i=1

bi, g4 = c2 (67)

The derivative is g′(t) = g1 + 2g2t+ 3g3t
2 + 4g4t

3.

Observe that g(t) ≥ 0 because it is the nonnegative error function evaluated along a line in the domain. In
practice, one never expects the minimum of E to be zero, so g(t) > 0. In particular, g(0) > 0. The search
is in the largest direction of decrease for E along any line through the initial guess, which implies g′(0) ≤ 0.
If g′(0) = 0 with g(0) a local minimum, the line search terminates. If g′(0) < 0, notice that the coefficient
g4 > 0, so g′(∞) = ∞. These conditions guarantee that g′(t) has at least one root for t > 0. Of all such
roots, let T be the root for which g(T) is the smallest value. It must be the case that g(T) < g(0), so in fact
E(C, S) < E(C + TN) and the updated estimate for the center is C ′ = C + TN .

6.2 Updating the Estimate of the Matrix

Given initial guesses C and S for the hyperellipsoid, the matrix can be updated to S′ = S + tN for t ≥ 0,
where N = −∂E/∂S is the negative of the gradient of E in the S direction at the initial guess. This is
another step of the gradient descent algorithm, searching in the direction of largest decrease of E in the S
parameter. Define the function

h(t) = E(C, S + tN)

= 1
m

∑m
i=1

[
∆T

i (S + tN)∆i − 1
]2

= 1
m

∑m
i=1

[(
∆T

i N∆i

)
t+

(
∆T

i S∆i − 1
)]2

= 1
m

∑m
i=1 (bit+ ai)

2

(68)

29

where bi = ∆T
i N∆i and ai = ∆T

i S∆i − 1. Some algebra will show that

h(t) = h0 + h1t+ h2t
2 (69)

where

h0 =
1

m

m∑
i=1

a2i , h1 =
2

m

m∑
i=1

aibi, h2 =
1

m

m∑
i=1

b2i (70)

The derivative is h′(t) = h1 + 2h2t.

Observe that h(t) ≥ 0 because it is the nonnegative error function evaluated along a line in the domain. In
practice, one never expects the minimum of E to be zero, so h(t) > 0. In particular, h(0) > 0. The search
is in the largest direction of decrease for E along any line through the initial guess, which implies h′(0) ≤ 0.
If h′(0) = 0 with h(0) a local minimum, the line search terminates. If h′(0) < 0, notice that the coefficient
h2 > 0, so h′(∞) = ∞. These conditions guarantee that h′(t) has at least one root for t > 0. Of all such
roots, let T be the root for which h(T) is the smallest value. It must be the case that h(T) < h(0).

We need to ensure that S + TN is positive definite. If it is positive definite, the updated estimate for the
matrix is S′ = S + TN . If it is not positive definite, the root is halved and S′ = S + (T/2)N is tested for
positive definiteness. If it is still not positive definite, the halving is repeated until a power p > 0 is obtained
for which S′ = S + (T/2p)N is positive definite.

The test for positive definiteness uses Sylvester’s criterion which says that S is positive definite if all of
its leading principal minors are positive. The minors are determinants of the upper-left 1 × 1 block, the
upper-left 2× 2 block, and so on through the determinant of S itself. For n = 2, S is positive definite when

det
[
s00

]
> 0, det

 s00 s01

s01 s11

 > 0 (71)

For n = 3, S is positive definite when

det
[
s00

]
> 0, det

 s00 s01

s01 s11

 > 0, det

s00 s01 s02

s01 s11 s12

s02 s12 s22

 > 0 (72)

6.3 Pseudocode for the Algorithm

The initial guesses for C and S can be provided by the caller or they can be estimated internally. In the
Geometric Tools implementation, the internal algorithm is to compute an oriented bounding box for the
input points and use the box center as the initial C. The initial S is compute from the box axes and box
extents using equation (61). Listing 14 contains pseudocode for the algorithm.

Listing 14. Pseudocode for fitting a hyperellipsoid to points. The number of iterations is specified by the
caller. The function can be called multiple times, the first time allowing the internal estimate of the initial
center and matrix. A subsequent call uses the hyperellipsoid from the previous call. The function returns
the error function value that can be monitored by the caller to decide whether or not to make subsequent
calls.

30

template <size t N, typename Real>
Real DoFit(vector<Vector<N, Real>> const& points, size t numIterations,

bool useHyperellipsoidForInitialGuess, Hyperellipsoid<N, Real>& hyperellipsoid)
{

Vector<N, Real> C;
Matrix<N, N, Real> A; // the zero matrix
if (useHyperellipsoidForInitialGuess)
{

C = hyperellipsoid.center;
for (size t i = 0; i < N; ++i)
{

Vector<N, Real> product = OuterProduct(hyperellipsoid.axis[i], hyperellipsoid.axis[i]);
A += product / (hyperellipsoid.extent[i] * hyperellipsoid.extent[i]);

}
}
else
{

OrientedBox<N, Real> box = GetBoundingBox(points);
C = box.center;
for (size t i = 0; i < N; ++i)
{

Vector<N, Real> product = OuterProduct(box.axis[i], box.axis[i]);
A += product / (box.extent[i] * box.extent[i]);

}
}

Real error = ErrorFunction(points, C, A);
for (size t i = 0; i < numIterations; ++i)
{

error = UpdateMatrix(points, C, A);
error = UpdateCenter(points, A, C);

}

// Extract the hyperellipsoid axes and extents.
std::array<Real, N> eigenvalue;
std::array<Vector<N, Real>, N> eigenvector;
DoEigendecomposition(A, eigenvalue, eigenvector);

hyperellipsoid.center = C;
for (size t i = 0; i < N; ++i)
{

hyperellipsoid.axis[i] = eigenvector[i];
hyperellipsoid.extent[i] = 1 / sqrt(eigenvalue[i]);

}

return error;
}

7 Fitting a Cylinder to 3D Points

This document describes an algorithm for fitting a set of 3D points with a cylinder. The assumption is that
the underlying data is modeled by a cylinder and that errors have caused the points not to be exactly on
the cylinder. You could very well try to fit a random set of points, but the algorithm is not guaranteed to
produce a meaningful solution.

7.1 Representation of a Cylinder

An infinite cylinder is specified by an axis containing a point C and having unit-length direction W . The
radius of the cylinder is r > 0. Two more unit-length vectors U and V may be defined so that {U ,V ,W }

31

is a right-handed orthonormal set; that is, all vectors are unit-length, mutually perpendicular, and with
U × V = W , V ×W = U , and W ×U = V . Any point X may be written uniquely as

X = C + y0U + y1V + y2W = C +RY (73)

where R is a rotation matrix whose columns are U , V , and W and where Y is a column vector whose rows
are y0, y1, and y2. To be on the cylinder, we need

r2 = y20 + y21

= (U · (X −C))2 + (V · (X −C))2

= (X −C)T(UUT + V V T)(X −C)

= (X −C)T(I −WW T)(X −C)

(74)

where I is the identity matrix. Because the unit-length vectors form an orthonormal set, it is necessary that
I = UUT + V V T +WW T. A finite cylinder is obtained by bounding the points in the axis direction,

|y2| = |W · (X −C)| ≤ h/2 (75)

where h > 0 is the height of the cylinder.

7.2 The Least-Squares Error Function

Let {Xi}ni=1 be the input point set. An error function for a cylinder fit based on Equation (74) is

E(r2,C,W) =

n∑
i=1

[
F (Xi; r

2,C,W)
]2

=

n∑
i=1

[
(Xi −C)T

(
I −WW T

)
(Xi −C)− r2

]2
(76)

where the cylinder axis is a line containing point C and having unit-length direction W and the cylinder
radius is r. Thus, the error function involves 6 parameters: 1 for the squared radius r2, 3 for the point
C, and 2 for the unit-length direction W . These parameters form the 6-tuple q in the generic discussion
presented previously.

For numerical robustness, it is advisable to subtract the sample mean A = (
∑n

i=1 Xi)/n from the samples,
Xi ← Xi −A. This preconditioning is assumed in the mathematical derivations to follow, in which case∑n

i=1 Xi = 0.

In the following discussion, define

P = I −WW T, r2i = (C −Xi)
TP (C −Xi) (77)

The matrix P represents a projection onto a plane with normal W , so P 2 = P and depends only on the
direction W . The term r2i depends on the center C and the direction W . The error function is written
concisely as E =

∑n
i=1(r

2
i − r2)2.

32

7.3 An Equation for the Radius

The partial derivative of the error function with respect to the squared radius is ∂E/∂r2 = −2
∑n

i=1(r
2
i −r2).

Setting this to zero, we have the constraint

0 =

n∑
i=1

(r2i − r2) (78)

which leads to

r2 =
1

n

n∑
i=1

r2i (79)

Thus, the squared radius is the average of the squared distances of the projections of Xi −C onto a plane
containing C and having normal W . The right-hand side depends on the parameters C and W .

Observe that

r2i − r2 = r2i − 1
n

∑n
j=1 r

2
j

= (C −Xi)
TP (C −Xi)− 1

n

∑n
j=1(C −Xj)

TP (C −Xj)

= CTPC − 2XT
i PC +XT

i PXi − 1
n

∑n
j=1

(
CTPC − 2XT

j PC +XT
j PXj

)
= CTPC − 2XT

i PC +XT
i PXi −CTPC + 2

n

(∑n
j=1 X

T
j

)
PC − 1

n

∑n
j=1 X

T
j PXj

=
(

1
n

∑n
j=1 X

T
j −XT

i

)
2PC +

(
XT

i PXi − 1
n

∑n
j=1 X

T
j PXj

)
= −XT

i 2PC +
(
XT

i PXi − 1
n

∑n
j=1 X

T
j PXj

)
(80)

The last equality is based on the precondition
∑n

j=1 Xj = 0.

7.4 An Equation for the Center

The partial derivative with respect to the center is ∂E/∂C = −4
∑n

i=1(r
2
i − r2)P (Xi −C). Setting this to

zero, we have the constraint

0 =
∑n

i=1(r
2
i − r2)P (Xi −C)

=
∑n

i=1(r
2
i − r2)PXi −

[∑n
i=1(r

2
i − r2)

]
PC

=
∑n

i=1(r
2
i − r2)PXi

(81)

where the last equality is a consequence of Equation (78). Multiply equation (80) by PXi, sum over i, and
use equation (81) to obtain

0 = −2P
(∑n

i=1 XiX
T
i

)
PC +

∑n
i=1

(
XT

i PXi

)
PXi −

(
1
n

∑n
j=1 X

T
j PXj

)
P
∑n

i=1 Xi

= −2P
(∑n

i=1 XiX
T
i

)
PC +

∑n
i=1

(
XT

i PXi

)
PXi

(82)

where the last equality is based on the precondition
∑n

i=1 Xi = 0. We wish to solve this equation for C, but
observe that C + tW are valid centers for all t. It is sufficient to compute a center that has no component

33

in the W -direction; that is, we may construct a point for which C = PC. It suffices to solve Equation (82)
for PC written as the linear system A(PC) = B/2 where

A = P

(
1

n

n∑
i=1

XiX
T
i

)
P, B =

1

n

n∑
i=1

(
XT

i PXi

)
PXi (83)

The projection matrix is symmetric, P = PT, a condition that leads to the right-hand side of the equation
defining A. We have used P = P 2 to introduce an additional P factor, XT

i PXi = XT
i P

2Xi = XT
i P

TPXi,
which leads to the right-hand side of the equation defining B.

The matrix A is singular because the projection matrix P is singular, so we cannot directly invert A to solve
the equation. The linear system involves terms that live only in the plane perpendicular to W , so in fact
the linear system reduces to two equations in two unknowns in the projection space and is solvable as long
as the coefficient matrix is invertible.

Choose U and V so that {U ,V ,W } is a right-handed orthonormal set; then PXi = µiU + νiV and
PC = k0U + k1V , where µi = U ·Xi, νi = V ·Xi, k0 = U ·PC, and k1 = V ·PC. The matrix A becomes

A =

(
1

n

n∑
i=1

µ2
i

)
UUT +

(
1

n

n∑
i=1

µiνi

)(
UV T + V UT

)
+

(
1

n

n∑
i=1

ν2i

)
V V T (84)

and the vector B becomes

B =
1

n

n∑
i=1

(µ2
i + ν2i)(µiU + νiV) (85)

The vector A(PC) becomes

A(PC) =

(
k0
n

n∑
i=1

µ2
i +

k1
n

n∑
i=1

µiνi

)
U +

(
k0
n

n∑
i=1

µiνi +
k1
n

n∑
i=1

ν2i

)
V (86)

Equating this to B/2 and grouping the coefficients for U and V leads to the linear system 1
n

∑n
i=1 µ

2
i

1
n

∑n
i=1 µiνi

1
n

∑n
i=1 µiνi

1
n

∑n
i=1 ν

2
i

 k0

k1

 =
1

2

 1
n

∑n
i=1(µ

2
i + ν2i)µi

1
n

∑n
i=1(µ

2
i + ν2i)νi

 (87)

The coefficient matrix is the covariance matrix of the projection of the samples onto the plane perpendicular
to W . Intuitively, this matrix is invertible as long as the projections do not lie on a line. If the matrix
is singular (or nearly singular numerically), the original samples lie on a plane (or nearly lie on a plane
numerically). They are not fitted well by a cylinder or, if you prefer, they are fitted by a cylinder with
infinite radius.

The matrix system of Equation (87) has solution

 k0

k1

 = 1

2

(
1
n

∑n
i=1

µ2
i

1
n

∑n
i=1

ν2
i
−

(
1
n

∑n
i=1

µiνi

)2)
 1

n

∑n
i=1 ν2

i − 1
n

∑n
i=1 µiνi

− 1
n

∑n
i=1 µiνi

1
n

∑n
i=1 µ2

i

 1
n

∑n
i=1(µ

2
i + ν2

i)µi

1
n

∑n
i=1(µ

2
i + ν2

i)νi

 (88)

which produces the cylinder center PC = k0U + k1V ; use this instead of C in Equation (74).

34

Although the solution appears to depend on the choice of U and V , it does not. Let W = (w0, w1, w2) and
define the skew symmetric matrix

S =

0 −w2 w1

w2 0 −w0

−w1 w0 0

 (89)

By definition of skew symmetry, ST = −S. This matrix represents the cross product operation: Sξ = W ×ξ
for any vector ξ. Because {U ,V ,W } is a right-handed orthonormal set, it follows that SU = V and
SV = −U . It can be shown also that S = V UT −UV T. Define matrix Â by

Â =

(
1

n

n∑
i=1

ν2i

)
UUT −

(
1

n

n∑
i=1

µiνi

)(
UV T + V UT

)
+

(
1

n

∑
i=1

µn
i

)
V V T = SAST (90)

Effectively, this generates a 2× 2 matrix that is the adjugate of the 2× 2 matrix representing A. It has the
property

ÂA = δP, δ =

n∑
i=1

µ2
i

n∑
i=1

ν2i −

(
n∑

i=1

µiνi

)2

(91)

The trace of a matrix is the sum of the diagonal entries. Observe that Trace(P) = 2 because |W |2 = 1.
Taking the trace of ÂA = δP , we obtain 2δ = Trace(ÂA). The cylinder center is obtained by multiplying
A(PC) = B/2 by Â, using the definitions in equation (83) and using equation (91),

PC =
Â

Trace(ÂA)

(
1

n

n∑
i=1

(
XT

i PXi

)
PXi

)
=

Â

Trace(ÂA)

(
1

n

n∑
i=1

(
XT

i PXi

)
Xi

)
(92)

where the last equality uses ÂP = Â because STP = ST. Equation (92) is independent of U and V but
dependent on W .

7.5 An Equation for the Direction

Let the direction be parameterized as W (s) = (w0(s), w1(s)), w2(s)), where s is a 2-dimensional parameter.
For example, spherical coordinates is such a parameterization: W = (cos s0 sin s1, sin s0 sin s1, cos s1) for
s0 ∈ [0, 2π) and s1 ∈ [0, π/2], where w2(s0, s1) ≥ 0. The partial derivatives of E are

∂E

∂sk
= 2

n∑
i=1

(r2i − r2)(C −Xi)
T ∂P

∂sk
(C −Xi) (93)

Solving ∂E/∂sk = 0 in closed form is not tractable. It is possible to generate a system of polynomial
equations in the components of W , use elimination theory to obtain a polynomial in one variable, and then
find its roots. This approach is generally tedious and not robust numerically.

Alternatively, we can skip root finding for ∂E/∂sk = 0, instead substituting Equations (80) and (92) directly
into the error function E/n = 1

n

∑n
i=1(r

2
i − r2)2 to obtain a nonnegative function,

G(W) =
1

n

n∑
i=1

XT
i PXi −

1

n

n∑
j=1

XT
j PXj − 2XT

i

Â

Trace(ÂA)

 1

n

n∑
j=1

(
XT

j PXj

)
Xj

2

(94)

35

A numerical algorithm for locating the minimum of G can be used. Or, as is shown in the sample code,
the domain for (s0, s1) may be partitioned into samples at which G is evaluated. The sample producing the
minimum G-value determines a reasonable direction W . The center C and squared radius r2 are inherent
in the evaluation of G, so in the end we have a fitted cylinder. The evaluations of G are expensive for a large
number of samples: equation (94) contains summations in a term that is then squared, followed by another
summation.

Some algebraic manipulation lead to encapsulating the summations, allowing us to precompute the summa-
tions and represent G(W) as a rational polynomial of the components of W . This approach increases the
performance on the CPU. It also allows an efficient implementation for massively parallel performance on
the GPU—one GPU thread per direction vector that is sampled from a hemisphere.

The projection matrix P is determined by its upper-triangular elements p = (p00, p01, p02, p11, p12, p22). We
can write the following, where p is represented as a 6× 1 vector,

XT
i PXi −

1

n

n∑
j=1

XT
j PXj = p · (ξi − µ) = p · δi (95)

The 6× 1 vectors ξi, µ and δi are defined next (written as 6-tuples). As a 3-tuple, let Xi = (xi, yi, zi),

ξi =
(
x2
i , 2xiyi, 2xizi, y

2
i , 2yizi, z

2
i

)
, µ =

1

n

n∑
i=1

ξi, δi = ξi − µ (96)

We can also write

1

n

n∑
j=1

(
XT

j PXj

)
Xj =

 1

n

n∑
j=1

Xjξ
T
j

p =

 1

n

n∑
j=1

Xjδ
T
j

p (97)

The last equality is true because
∑n

j=1 Xj = 0 implies
∑n

j=1 Xjµ
T = 0. Define

Q = Â/Trace(ÂA), F0 =
1

n

n∑
j=1

XjX
T
j , F1 =

1

n

n∑
j=1

Xjδ
T
j , F2 =

1

n

n∑
j=1

δjδ
T
j (98)

where Q and F0 are 3× 3, F1 is 3× 6 and F2 is 6× 6; then

G(W) = 1
n

∑n
i=1

[
pTδi − 2XT

i QF1p
]2

= 1
n

∑n
i=1

[(
pTδi

)2 − 4
(
pTδi

) (
XT

i QF1p
)
+ 4

(
XT

i QF1p
)2]

= pTF2p− 4pTFT
1 QF1p+ 4pTFT

1 Q
TF0QF1p

(99)

The precomputations for the input samples {Y i}ni=1 is the following and must be done so in the order
specified. These steps are independent of direction vectors W .

1. Compute A = 1
n (
∑n

i=1 Y i).

2. Compute Xi = Y i −A for all i.

3. Compute µ = 1
n

∑n
i=1(x

2
i , 2xiyi, 2xizi, y

2
i , 2yizi, z

2
i), δi = (x2

i , 2xiyi, 2xizi, y
2
i , 2yizi, z

2
i)− µ for all i.

36

4. Compute F0 = 1
n

∑n
i=1 XiX

T
i , F1 = 1

n

∑n
i=1 Xiδ

T
i , F2 = 1

n

∑n
i=1 δiδ

T
i .

For each specified direction W , do the following steps.

1. Compute the projection matrix P = I −WW T and the skew-symmetric matrix S.

2. Compute A = PF0P , Â = SAST, ÂA, Trace(ÂA).

3. Compute Q = Â/Trace(ÂA).

4. Store the upper-triangular entries of P in p.

5. Compute α = F1p and β = Qα.

6. Compute G = pTF2p− 4αTβ + 4βTF0β.

7. The corresponding center is PC = β.

8. The corresponding squared radius is r2 = 1
n

∑n
i=1 r

2
i where r2i = (PC − PXi)

T(PC − PXi). This

factors to r2 = p · µ+ βTβ.

The sample application that used equation (94) directly was really slow. On an Intel
®

Core
TM

i7-6700
CPU at 3.40 GHz, the single-threaded version for 10765 points required 129 seconds and the multithreaded
version using 8 hyperthreads required 22 seconds. The evaluation of G using the precomputed summations
is much faster. The single-threaded version required 85 milliseconds and the multithreaded version using 8
hyperthreads required 22 milliseconds.

7.6 Fitting for a Specified Direction

Although one may apply root-finding or minimization techniques to estimate the global minimum of E, as
shown previously, in practice it is possible first to obtain a good estimate for the direction W . Using this
direction, we may solve for C = PC in Equation (92) and then r2 in Equation (79).

For example, suppose that the Xi are distributed approximately on a section of a cylinder so that the least-
squares line that fits the data provides a good estimate for the direction W . This vector is a unit-length
eigenvector associated with the largest eigenvalue of the covariance matrix A =

∑n
i=1 XiX

T
i . We may use

a numerical eigensolver to obtain W , and then solve the aforementioned equations for the cylinder center
and squared radius.

The distribution can be such that the estimated direction W from the covariance matrix is not good, as is
shown in the experiments of the next section.

7.7 Pseudocode and Experiments

The simplest algorithm to implement involves the minimization of the function G in Equation (94). An
implemention is shown in Listing 15.

37

Listing 15. Pseudocode for preprocessing the sample points. The output X[] is the array of sample
points translated by the average. The other outputs are mu for µ, F0 for F0, F1 for F1 and F2 for F2. The
pseudocode is algo given for evaluating the function G(W) and generating the corresponding PC and r2.

void Preprocess(int n, Vector3 points[n], Vector3 X[n],
Vector3& average, Vector6& mu, Matrix3x3& F0, Matrix3x6& F1, Matrix6x6&F2)

{
average = { 0, 0, 0 };
for (int i = 0; i < n; ++i)
{

average += points[i];
}
average /= n;
for (int i = 0; i < n; ++i)
{

X[i] = points[i] = average;
}

Vector6 zero = { 0, 0, 0, 0, 0, 0 };
Vector6 products[n];
MakeZero(products);
mu = zero;
for (int i = 0; i < n; ++i)
{

products[i][0] = X[i][0] * X[i][0];
products[i][1] = X[i][0] * X[i][1];
products[i][2] = X[i][0] * X[i][2];
products[i][3] = X[i][1] * X[i][1];
products[i][4] = X[i][1] * X[i][2];
products[i][5] = X[i][2] * X[i][2];
mu[0] += products[i][0];
mu[1] += 2 * products[i][1];
mu[2] += 2 * products[i][2];
mu[3] += products[i][3];
mu[4] += 2 * products[i][4];
mu[5] += products[i][5];

}
mu /= n;

MakeZero(F0);
MakeZero(F1);
MakeZero(F2);
for (int i = 0; i < n; ++i)
{

Vector6 delta;
delta[0] = products[i][0] = mu[0];
delta[1] = 2 * products[i][1] = mu[1];
delta[2] = 2 * products[i][2] = mu[2];
delta[3] = products[i][3] = mu[3];
delta[4] = 2 * products[i][4] = mu[4];
delta[5] = products[i][5] = mu[5];
F0(0, 0) += products[i][0];
F0(0, 1) += products[i][1];
F0(0, 2) += products[i][2];
F0(1, 1) += products[i][3];
F0(1, 2) += products[i][4];
F0(2, 2) += products[i][5];
F1 += OuterProduct(X[i], delta);
F2 += OuterProduct(delta, delta);

}
F0 /= n;
F0(1, 0) = F0(0, 1);
F0(2, 0) = F0(0, 2);
F0(2, 1) = F0(1, 2);
F1 /= n;
F2 /= n;

}

Real G(int n, Vector3 X[n], Vector3 mu, Matrix3x3 F0, Matrix3x6 F1, Matrix6x6 F2, Vector3 W,
Vector3& PC, Real& rSqr)

{

38

Matrix3x3 P = Matrix3x3::Identity() = OuterProduct(W, W); // P = I = W * WˆT
// S = {{0, =w2, w1}, {w2, 0, =w0}, {=w1, w0, 0}}, inner braces are rows
Matrix3x3 S(0, =W[2], W[1], W[2], 0, =W[0], =W[1], W[0], 0);
Matrix3x3 A = P * F0 * P;
Matrix3x3 hatA = =(S * A * S);
Matrix3x3 hatAA = hatA * A;
Real trace = Trace(hatAA);
Matrix3x3 Q = hatA / trace;
Vector6 p = { P(0, 0), P(0, 1), P(0, 2), P(1, 1), P(1, 2), P(2, 2) };
Vector3 alpha = F1 * p;
Vector3 beta = Q * alpha;
Real error = (Dot(p, F2 * p) = 4 * Dot(alpha, beta) + 4 * Dot(beta, F0 * beta)) / n;
PC = beta;
rsqr = Dot(p, mu) + Dot(beta, beta);
return error;

}

The fitting is performed by searching a large number of directions W , as shown in Listing 16.

Listing 16. Fitting a cylinder to a set of points.

// The X[] are the points to be fit. The outputs rSqr, C, and W are the
// cylinder parameters. The function return value is the error function
// evaluated at the cylinder parameters.
Real FitCylinder (int n, Vector3 points[n], Real& rSqr, Vector3& C, Vector3& W)
{

Vector3 X[n];
Vector3 mu;
Matrix3x3 F0;
Matrix3x6 F1;
Matrix6x6 F2;
Preprocess(n, points, X, average, mu, F0, F1, F2);

// Choose imax and jmax as desired for the level of granularity you
// want for sampling W vectors on the hemisphere.
Real minError = infinity;
W = Vector3::Zero();
C = Vector3::Zero();
rSqr = 0;
for (int j = 0; j <= jmax; ++j)
{

Real phi = halfPi * j / jmax; // in [0,pi/2]
Real csphi = cos(phi), snphi = sin(phi);
for (int i = 0; i < imax; ++i)
{

Real theta = twoPi * i / imax; // in [0,2*pi)
Real cstheta = cos(theta), sntheta = sin(theta);
Vector3 currentW(cstheta * snphi, sntheta * snphi, csphi);
Vector3 currentC;
Real currentRSqr;
Real error = G(n, X, mu, F0, F1, F2, currentW, currentC, currentRSqr);
if (error < minError)
{

minError = error;
W = currentW;
C = currentC;
rSqr = currentRSqr;

}
}

}

// Translate the center to the original coordinate system.
C += average;

return minError;
}

39

The following experiments show how well the cylinder fitting works.

A regular lattice of 64 × 65 samples were chosen for a cylinder centered at the origin, with axis direction
(0, 0, 1), with radius 1, and height 4. The samples are (cos θj , sin θj , zij), where θj = 2πj/64 and zij =
−2 + 4i/64 for 0 ≤ i ≤ 64 and 0 ≤ j < 64. The fitted center, radius, and axis direction are the actual ones
(modulo numerical round-off errors). Figure 1 shows a rendering of the points (in black) and a wire frame
of the fitted cylinder (in blue).

Figure 1. Fitting of samples on a cylinder ring that is cut perpendicular to the cylinder axis.

A lattice of samples was chosen for the same cylinder but the samples are skewed to lie on a cut that is not
perpendicular to the cylinder axis. The samples are (cos θj , sin θj , zij), where θj = 2πj/64 for 0 ≤ j < 64
and zij = −b+ cos θj + 2bi/64 for b = 1/4 and 0 ≤ i ≤ 64. The fitted center, radius, and axis direction are
the actual ones (modulo numerical round-off errors). Figure 2 shows a rendering of the points (in black) and
a wire frame of the fitted cylinder (in blue).

40

Figure 2. Fitting of samples on a cylinder ring that is cut skewed relative to the cylinder axis.

In this example, if you were to compute the covariance matrix of the samples and choose the cylinder axis
direction to be the eigenvector in the direction of maximum variance, that direction is skewed relative to the
original cylinder axis. The fitted parameters are (approximately) W = (0.699, 0, 0.715), PC = (0, 0, 0), and
r2 = 0.511. Figure 3 shows a rendering of the points (in black) and a wire frame of the fitted cylinder (in
blue).

41

Figure 3. Fitting of samples on a cylinder ring that is cut skewed relative to the cylinder axis. The direction
W was chosen to be an eigenvector corresponding to the maximum eigenvalue of the covariance matrix of
the samples.

You can see that the fitted cylinder is not a good approximation to the points.

Figure 4 shows a point cloud generated from a DIC file (data set courtesy of Carolina Lavecchia) and the
fitted cylinder. The data set has nearly 11000 points.

42

Figure 4. A view of a fitted point cloud.

Figure 5 shows a different view of the point cloud and cylinder.

43

Figure 5. Another view of a fitted point cloud, looking along the top of the cyliner to get an idea of how
well the cylinder fits the data.

7.8 Fitting a Cylinder to a Triangle Mesh

Imagine having a triangle mesh that approximates a portion of an infinite cylinder. When the triangles have
small area and have normal vectors perpendicular to the cylinder axis, the projection of the triangles onto a
plane perpendicular to the cylinder axis covers a region also of small area. If you were to project the cylinder
itself onto the plane, you get a circle (not a disk) that covers a region of zero area. This suggests locating a
direction D on the hemisphere of points (x, y, z) with z ≥ 0 for which the sum of areas of projections of the
triangles of the mesh is minimized.

Let the mesh have n points {P i}n=1
i=0 and m triangles, each a triple (i0, i1, i2) of indices into the points. Given

a unit-length direction D, let U and V be vectors for which {U ,V ,D} is a right-handed orthonormal set.

For numerical robustness, compute the average A =
(∑n−1

i=0 P i

)
/n and replace P i ← (P i−A). The points

are projected onto a plane perpendicular to D; they are (ui, vi) = (U · P i,V · P i). Given the vertices of a

44

projected triangle, say (u0, v0), (u1, v1) and (u2, v2), the area of the projected triangle is

A =
1

2

∣∣(u1 − u0, v1 − v0) · (u2 − u0, v2 − v0)
⊥∣∣ (100)

where (u, v)⊥ = (v,−u). The areas can be summed over all projected triangles, ignoring the overlap of
projections; that is, the sum of areas is generally larger than the area of the union of the projections.

Pseudocode for a simple search over the hemisphere of directions to locate a minimum sum of areas is shown
in Listing 17.

Listing 17. A simple search over the hemisphere of directions to locate a direction that minimizes the
sum of areas of projected triangles. The factor 1/2 is ignored, so the minimum is over twice the area.

struct Cylinder { Vector3 center, direction; Real radius, height; };
struct Circle { Vector2 center; Real radius; };

Cylinder FitMeshByCylinder(int numPoints, Vector3 points[], int numTriangles, int3 triangles[])
{

// Translate the points so that the average is the origin (for numerical robustness).
Vector3 localPoints[] = points[];
Vector3 average = { 0, 0, 0 };
for (int i = 0; i < numPoints; ++i)
{

average += points[i];
}
average /= numPoints;
for (int i = 0; i < numPoints; ++i)
{

localPoints = points[i] = average;
}

// Locate the direction D that minimizes the sum of the areas of the
// projected triangles.
Vector3 D;
SearchForMinimum(numPoints, localPoints, numTriangles, triangles, D);

// Project the points onto a plane perpendicular to D. This is the
// setup for fitting the projected points by a circle.
Vector3 U, V;
ComputeOrthonormalBasis(D, U, V);
Vector2 projections[numPoints];
Real hmin = infinity, hmax = 0;
for (int i = 0; i < numPoints; ++i)
{

T h = Dot(D, localPoints[i]);
hmin = min(h, hmin);
hmax = max(h, hmax);
projections[i][0] = Dot(U, localPoints[i]);
projections[i][1] = Dot(V, localPoints[i]);

}

// The file ApprCircle2.h has a class with member function FitUsingSquaredLength
// that can be used for the fitting of the projected points by a circle.
Circle circle;
FitPointsByCircle(numPoints, projections, circle);

// Inverse project the circle to obtain cylinder parameters.
cylinder.center = average + (circle.center[0] * U + circle.center[1] * V) + ((hmax + hmin) / 2) * D;
cylinder.direction = D;
cylinder.radius = circle.radius;
cylinder.height = hmax = hmin;

}

void SearchForMinimum(int numPoints, Vector3 points[], int numTriangles, int3 triangles[],
Vector3& minDirection, Real& minMeasure)

45

{
// Handle the north pole (0,0,1) separately.
minDirection = { 0, 0, 1 };
Real minMeasure = GetMeasure(minDirection, numPoints, points, numTriangles, triangles);

// Process a regular grid of (theta,phi) angles.
for (int j = 1; j <= numPhiSamples; ++j)
{

Real phi = (pi / 2) * j / numPhiSamples; // in [0,pi/2]
Real csphi = cos(phi), snphi = sin(phi);
for (int i = 0; i < numThetaSamples; ++i)
{

Real theta = 2 * pi * i / numThetaSamples; // in [0,2*pi)
Real cstheta = cos(theta), std::sin(theta);
Vector3 direction = { cstheta * snphi, sntheta * snphi, csphi };
Real measure = GetMeasure(direction, numPoints, points, numTriangles, triangles);
if (measure < minMeasure)
{

minDirection = direction;
minMeasure = measure;

}
}

}
}

Real GetMeasure(Vector3 D, int numPoints, Vector3 points[], int numTriangles, int3 triangles[])
{

Vector3 U, V;
ComputeOrthonormalBasis(D, U, V);
Vector2 projections[numPoints];
for (int i = 0; i < numPoints; ++i)
{

projections[i][0] = Dot(U, points[i]);
projections[i][1] = Dot(V, points[i]);

}

// Add up 2*area of the triangles.
Real measure = 0;
for (int t = 0; t < numTriangles; ++t)
{

Vector2 V[3];
for (int i = 0; i < 3; ++i)
{

V[i] = projections[triangles[t][i]];
}
measure += abs(edge10[0] * edge20[1] = edge10[1] * edge20[0]);

}
return measure;

}

8 Fitting a Cone to 3D Points

A double-sided cone has cone vertex V , unit-length cone axis direction U , and cone angle θ ∈ (0, π/2). The
double-sided cone is defined algebraically by those points X for which

UT

(
X − V

|X − V |

)
= cos(θ) (101)

The double-sided cone consists of two single-sided cones, the positive cone where UT(X − V) ≥ 0 and the
negative cone where UT(X − V) ≤ 0. The algorithm described here is an attempt to fit a positive cone to
a set of points.

46

A positive cone can be written as a quadratic equation by squaring the left-hand and right-hand sides of
equation (101),

(X − V)T
(
cos(θ)2I −UUT

)
(X − V) = 0 (102)

with the constraint that UT(X − V) ≥ 0. Define ∆ = X − V and Û = U/ cos(θ), so that |Û | > 1 and

F (X;V , Û) = ∆T
(
I − ÛÛ

T
)
∆ = ∆T∆−

(
Û

T
∆
)2

= 0 (103)

The partial derivatives of F with respect to the cone parameters are

∂F

∂V
= −2

(
∆−

(
Û

T
∆
)
Û
)
,

∂F

∂Û
= −2

(
Û

T
∆
)
∆ (104)

The nonlinear least-squares fitting of points {Xi}n−1
i=0 computes V and Û to minimize the error function

E(V , Û) =
1

n

n−1∑
i=0

F (Xi;V , Û)2 (105)

There are 6 independent parameters, the 3 components of V and the 3 components of Û . Standard iterative
minimizers such as the Gauss–Newton method or the Levenberg–Marquardt method can be used to estimate
the parameters. The partial derivatives of E are needed to compute the Jacobian matrix. Define ∆i =
Xi − V . The partial derivatives of E(V , Û) are

∂E

∂V
=

2

n

n−1∑
i=0

F (Xi;V , Û)
∂F

∂V
(Xi;V , Û) =

−4
n

n−1∑
i=0

(
∆T

i ∆i −
(
Û

T
∆i

)2)(
∆i −

(
Û

T
∆i

)
Û
)

(106)

and

∂E

∂Û
=

2

n

n−1∑
i=0

F (Xi;V , Û)
∂F

∂Û
(Xi;V , Û) =

−4
n

n−1∑
i=0

(
∆T

i ∆i −
(
Û

T
∆i

)2)(
Û

T
∆i

)
∆i (107)

The points to be fit should be distributed approximately uniformly near the positive cone. Generally, fitting
a quadric surface to a set of points that purportedly live near a small patch of the quadric surface will
not work well. The least-squares error function computes the errors only near the patch. The problem is
ill conditioned in that small changes in the error function can cause large changes in the quadric surface
parameters. Usually the collection of surfaces that fit the points have candidates that do not provide an
accurate enough fit for an application’s needs.

An initial choice of parameters is required to start the iterative least-squares process for E(V , Û). Without
any application-specific knowledge about the sample points, an initial choice of parameters assumes the
sample points are dense on a frustum of a cone. Various surface integrals are computed over that frustum,
producing continuous formulations of important quantities. Those formulations are then replaced by discrete
values based on the samples Xi that are to be fit by the cone. The integrals involve ratio expressions that
are defined by

ρn =

∫ h1

h0
hn−1 dh∫ h1

h0
h dh

=
1
n (h

n
1 − hn

0)
1
2 (h

2
1 − h2

0)
(108)

47

where h0 is the minimum height for the frustum and h1 is the maximum height for the frustum. The heights
are measured in the direction of the cone axis.

The cone frustum surface is parameterized by

P (h, ϕ) = V + hU + (h tan θ)((cosϕ)W 0 + (sinϕ)W 1), h ∈ [h0, h1], ϕ ∈ [0, 2π) (109)

where 0 ≤ h0 < h1. The set {U ,W 0,W 1} is a right-handed orthonormal basis for R3; that is, the vectors
are unit length, mutually perpendicular, and U = W 0 ×W 1. Define the rotation matrix R = [U W 0 W 1]
whose columns are the specified basis vectors and define the 3× 1 vector

Y (h, ϕ) =

h

h tan θ cosϕ

h tan θ sinϕ

 (110)

The parameterization of the surface is concisely

P (h, ϕ) = V +RY (h, ϕ) (111)

The surface integrals are formulated next for the parameterized cone. For notational convenience, I will use
Y with the understanding that it depends on h and ϕ.

8.1 Estimation of the Cone Axis Direction

The element of surface area for the cone frustum surface is

dA = |∂P /∂h× ∂P /∂ϕ| dh dϕ

= |(U + (tan θ) ((cosϕ)W 0 + (sinϕ)W 1))× ((h tan θ) ((− sinϕ)W 0 + (cosϕ)W 1))| dh dϕ

= (h tan θ) |(− sinϕ)U ×W 0 + (cosϕ)U ×W 1 + (tan θ)W 0 ×W 1| dh dϕ

= (h tan θ)
√

sin2 ϕ+ cos2 ϕ+ tan2 θ dh dϕ

= (h tan θ)
√
1 + tan2 θ dh dϕ

= (h tan θ)
√

1/ cos2 θ dh dϕ

= (h tan θ/ cos θ) dh dϕ

(112)

and the surface area of the cone frustum is

A =

∫ h1

h0

∫ 2π

0

dA =

∫ h1

h0

∫ 2π

0

(h tan θ/ cos θ) dh dϕ = π
tan θ

cos θ
(h2

1 − h2
0) (113)

48

The average of Y over the cone frustum surface is

Y = 1
A

∫ h1

h0

∫ 2π

0
Y dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
Y h dh dϕ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0

1

tan θ cosϕ

tan θ sinϕ

 h2 dh dϕ

= ρ3

1

0

0

(114)

The average of Y TY over the cone frustum surface is

Y TY = 1
A

∫ h1

h0

∫ 2π

0
Y TY dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
Y TY h dh dϕ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
(1 + tan2 θ)h3 dh dϕ

= ρ4 sec
2 θ

(115)

The average of Y Y T over the cone frustum surface is

Y Y T = 1
A

∫ h1

h0

∫ 2π

0
Y Y T dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
Y Y T h dh dϕ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0

1 tan θ cosϕ tan θ sinϕ

tan θ cosϕ tan2 θ cos2 ϕ tan2 θ sinϕ cosϕ

tan θ sinϕ tan2 θ sinϕ cosϕ tan2 θ sin2 ϕ

 h3 dh dϕ

= ρ4 Diag
(
1, 1

2 tan
2 θ, 1

2 tan
2 θ
)

(116)

The average of Y Y TY over the cone frustum surface is

Y Y TY = 1
A

∫ h1

h0

∫ 2π

0
Y Y TY dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
Y Y TY h dh dϕ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
(1 + tan2 θ)

1

tan θ cosϕ

tan θ sinϕ

 h4 dh dϕ

= ρ5 sec
2 θ

1

0

0

(117)

49

The average of the points over the cone frustum surface is

C = 1
A

∫ h1

h0

∫ 2π

0
P (h, ϕ) dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
(V + hU + h tan θ (cosϕW 0 + sinϕW 1)) (h tan θ/ cos θ) dh dϕ

= V + ρ3U

(118)

Define the difference D = V −C = −ρ3U , in which case P −C = D+RY . Define Z = P −C and define
i to be the 3× 1 vector which as a 3-tuple is (1, 0, 0). Observe that Ri = U . The average of ZZT over the
cone frustum surface is

ZZT = 1
A

∫ h1

h0

∫ 2π

0
ZZT dA

= 1
A

∫ h1

h0

∫ 2π

0

(
DDT +DY TRT +RY DT +RY Y TRT

)
dA

= DDT +DY
T
RT +RY DT +RY Y TRT

= (−ρ3U)(−ρ3U)T + (−ρ3U)(ρ3i)
TRT +R(ρ3i)(−ρ3U)T

+ R(ρ4 Diag
(
1, 1

2 tan
2 θ, 1

2 tan
2 θ
)
)RT

= (ρ4 − ρ23)UUT + 1
2ρ4 tan

2 θ(W 0W
T
0 +W 1W

T
1)

= RDiag
(
ρ4 − ρ23,

1
2ρ4 tan

2 θ, 1
2ρ4 tan

2 θ
)
RT

(119)

The matrix ZZT is the covariance matrix of the cone frustum surface points and its eigendecomposition is
given by the right-hand side of equation (119). In a numerical implementation, we need to identify which
eigenvector output by the eigensolver corresponds to U . The convariance matrix of the point samples is used

to estimate ZZT. Numerically, we cannot expect two distinct eigenvalues λ1 = p4−p23 and λ2 = (p4 tan
2 θ)/4,

the first with multiplicity 1 and the second with multiplicity 2. For if we obtained such a result numerically,
selection of U is trivial. Even theoretically we could have a problem when there is a single eigenvalue of
multiplicity 3.

If the point samples are nearly on a cone frustum, let the numerically computed eigenvalues be sorted as
λ1 ≤ λ2 ≤ λ3. We could compute λ2 − λ1 and λ3 − λ2 and claim that the minimum difference is due to
numerical rounding errors. The conclusion is that those two eigenvalues are theoretically a single eigenvalue.
The other eigenvalue is the one associated with U . Some experiments showed that this is not a reliable
way to select U ; in particular, if the eigenvalues are nearly equal, it is not clear which eigenvector should
be assigned to U . The next derivation provides the selection of U , which avoids the unreliable eigenvalue
analysis.

The average of ZZTZ over the cone frustum surface is

ZZTZ = 1
A

∫ h1

h0

∫ 2π

0
ZZTZ dA

= 1
A

∫ h1

h0

∫ 2π

0

(
(DTD)D + (2DDTR)Y + (Y TY)D(DTD)RY +

+ (2RY Y TRT)D +RY Y TY
)

= (DTD)D + (2DDTR)Y + Y TY D + (DTD)RY + 2RY Y TRTD +RY Y TY

= (−ρ33 + 2ρ33 − ρ3ρ4 sec
2 θ + ρ33 − 2ρ3ρ4 + ρ5 sec

2 θ)U

= (2p3(ρ
2
3 − ρ4) + (ρ5 − ρ3ρ4) sec

2 θ)U

(120)

50

If we have good estimates for C and ZZTZ, we can estimate the cone axis U by normalizing the right-hand
side of the last equality in equation (120). This has a pitfall, however, because the normalization does not
take into account the sign of the coefficient of U in that equation. It might be necessary to use the negative
of the normalized vector; this is discussed as part of the next subsection.

8.2 Estimate of the Cone Vertex and Cone Angle

Let C be the average of the points Xi and used as an estimate of C. Let Zi = Xi −C. The estimate of

ZZTZ is computed from the discrete set of points. The estimate is normalized to obtain U . Listing 18 has
code to compute the estimates.

Listing 18. Code to generate estimates of C and ZZTZ, the latter used to estimate U .

template <typename T>
void ComputeEstimates(std::vector<Vector3<T>> const& X, Vector3<T>& C, Vector3<T>& U)
{

C = { 0, 0, 0 };
for (size t i = 0; i < X.size(); ++i)
{

C += X[i];
}
C /= static cast<T>(X.size());

U = { 0.0, 0.0, 0.0 };
for (size t i = 0; i < X.size(); ++i)
{

Vector3<T> Z = X[i] = C; // Z[i]
U += Z * Dot(Z, Z); // Z[i] * Z[i]ˆT * Z[i]

}
Normalize(U);

}

Listing 19 shows how to estimate the slope of a line on the cone surface, which determines the cone angle.
During the process, it is determined whether −U should be used instead of U . The listing also shows how
to estimate the cone vertex once the cone angle and correct cone axis direction are known.

Listing 19. Code to estimate the cone angle and cone vertex. The code also determines whether to use
−U instead of U .

template <typename T>
void InitializeCone(std::vector<Vector3<T>> const& X, Vector3<T>& V,

Vector3<T>& U, T& angle)
{

Vector3<T> C{};
ComputeEstimates(X, C, U);

// Compute the signed heights of the points along the cone axis relative to C.
// These are the projections of the points onto the line C+t*U. Also compute
// the radial distances of the points from the line C+t*U.
std::vector<Vector2<T>> hrPairs(X.size());
T hMin = std::numeric limits<T>::max(), hMax = =hMin;
for (size t i = 0; i < X.size(); ++i)
{

Vector3<T> delta = X[i] = C;
T h = Dot(U, delta);
hMin = std::min(hMin, h);

51

hMax = std::max(hMax, h);
Vector3<T> projection = delta = Dot(U, delta) * U;
T r = Length(projection);
hrPairs[i] = { h, r };

}

// The radial distance is considered to be a function of height. Fit the
// (h,r) pairs with a line: r = rAverage = hrSlope * (h = hAverage);
ApprHeightLine2<double> fitter{};
fitter.Fit(hrPairs);
std::pair<Vector2<T>, Vector2<T>> parameters = fitter.GetParameters();
T hAverage = parameters.first[0];
T rAverage = parameters.first[1];
T hrSlope = parameters.second[0];

// If U is directed so that r increases as h increases, U is the correct
// cone axis estimate. However, if r decreases as h increases, =U is the
// correct cone axis estimate.
if (hrSlope < 0)
{

U = =U;
hrSlope = =hrSlope;
std::swap(hMin, hMax);
hMin = =hMin;
hMax = =hMax;

}

// Compute the extreme radial distance values for the points.
T rMin = rAverage + hrSlope * (hMin = hAverage);
T rMax = rAverage + hrSlope * (hMax = hAverage);
T hRange = hMax = hMin;
T rRange = rMax = rMin;

// Using trigonometry and right triangles, compute the tangent
// function of the cone angle.
T tanAngle = rRange / hRange;
angle = std::atan2(rRange, hRange);

// Compute the cone vertex.
T offset = rMax / tanAngle = hMax;
V = C = offset * U;

}

The initial cone estimate is used to start the minimizer iterations. The implementation is ApprCone3.h. The
caller of the fitting function has the option to use the initial cone estimate provider here. If the application
provides enough information to generate a user-created initial cone, the implementation also supports this.

9 Fitting a Parabola to 2D Points of the Form (x, f(x))

Given a set of samples {(xi, yi)}m−1
i=0 , fit them with a parabola.

9.1 An Algorithm

The fitting function is
z = u0x

2 + u1x+ u2 = U ·Q(x) (121)

52

https://www.geometrictools.com/GTE/Mathematics/ApprCone3.h

where U = (u0, u1, u2) and Q(x) = (x2, x, 1). Select U to minimize the sum of squared errors

E(U) =

m−1∑
i=0

(U ·Qi − yi)
2 (122)

where Qi = Q(xi). Floating-point rounding errors and large-magnitude inputs can affect the quality of the
fit.

The minimum occurs when the gradient of E(U) with respect to the coefficients uj is the zero vector,

∇E = 2

m−1∑
i=0

(U ·Qi − yi)Qi = 0 (123)

Some algebra converts this to a system of 3 equations in 3 unknowns,(
m−1∑
i=0

QiQ
T
i

)
U =

m−1∑
i=0

yiQi (124)

The product QiQ
T
i is a product of the 3× 1 matrix Qi with the 1× 3 matrix QT

i , which is a 3× 3 matrix.

Define the 3× 3 symmetric matrix A =
∑m−1

i=0 QiQ
T
i and the 3× 1 vector B =

∑m−1
0=1 yiQi. The choice for

U is the solution to the linear system of equations AU = B. The entries of A and B indicate summations
over the appropriate product of variables. For example, s(x3) =

∑m−1
i=0 x3

i :
s(x4) s(x3) s(x2)

s(x3) s(x2) s(x)

s(x2) s(x) s(1)

u0

u1

u2

 =

s(yx2)

s(yx)

s(y)

 (125)

9.2 A Robust Algorithm

The fitting function is
y − b = v0(x− a)2 + v1(x− a) + v2 = V ·Q(x− a) (126)

where V = (v0, v1, v2, Q(x) is the function defined for the previous algorithm, and (a, b) is the average of

the inputs, (a, b) =
(∑m−1

i=0 (xi, yi)
)
/m. Select V to minimize the sum of squared errors

E(V) =

m−1∑
i=0

(V ·Qi − (yi − b))2 (127)

where Qi = Q(xi − a). Subtracting the average of the inputs from those inputs can lead to a better quality
fit.

The minimum occurs when the gradient of E(V) with respect to the coefficients vj is the zero vector,

∇E = 2

m−1∑
i=0

(V ·Qi − (yi − b))Qi = 0 (128)

53

Some algebra converts this to a system of 3 equations in 3 unknowns,(
m−1∑
i=0

QiQ
T
i

)
V =

m−1∑
i=0

(yi − b)Qi (129)

The product QiQ
T
i is a product of the 3× 1 matrix Qi with the 1× 3 matrix QT

i , which is a 3× 3 matrix.

Define the 3× 3 symmetric matrix A =
∑m−1

i=0 QiQ
T
i and the 3× 1 vector B =

∑m−1
0=1 (yi− b)Qi. The choice

for U is the solution to the linear system of equations AU = B. The entries of A and B indicate summations
over the appropriate product of variables. For example, s(x̄3) =

∑m−1
i=0 (xi−a)3, where (x̄, ȳ) = (x−a, y−b),

s(x̄4) s(x̄3) s(x̄2)

s(x̄3) s(x̄2) s(x̄)

s(x̄2) s(x̄) s(1)

v0

v1

v2

 =

s(ȳx̄2)

s(ȳx̄)

s(ȳ)

 (130)

The relationship between U and V is

(v0, v1, v2) = (u0, 2au0 + u1, a
2u0 + au1 + u2 − b) (131)

An implementation is ApprParabola2.h.

10 Fitting a Paraboloid to 3D Points of the Form (x, y, f(x, y))

Given a set of samples {(xi, yi, zi)}m−1
i=0 , fit them with a paraboloid.

10.1 An Algorithm

The fitting function is

z = u0x
2 + u1xy + u2y

2 + u3x+ u4y + u5 = U ·Q(x, y) (132)

where U = (u0, u1, u2, u3, u4, u5) and Q(x, y) = (x2, xy, y2, x, y, 1). Select U to minimize the sum of squared
errors

E(U) =

m−1∑
i=0

(U ·Qi − zi)
2 (133)

where Qi = Q(xi, yi). Floating-point rounding errors and large-magnitude inputs can affect the quality of
the fit.

The minimum occurs when the gradient of E(U) with respect to the coefficients uj is the zero vector,

∇E = 2

m−1∑
i=0

(U ·Qi − zi)Qi = 0 (134)

54

https://www.geometrictools.com/GTE/Mathematics/ApprParabola2.h

Some algebra converts this to a system of 6 equations in 6 unknowns,(
m−1∑
i=0

QiQ
T
i

)
U =

m−1∑
i=0

ziQi (135)

The product QiQ
T
i is a product of the 6× 1 matrix Qi with the 1× 6 matrix QT

i , which is a 6× 6 matrix.

Define the 6× 6 symmetric matrix A =
∑m−1

i=0 QiQ
T
i and the 6× 1 vector B =

∑m−1
0=1 ziQi. The choice for

U is the solution to the linear system of equations AU = B. The entries of A and B indicate summations
over the appropriate product of variables. For example, s(x3y) =

∑m−1
i=0 x3

i yi:

s(x4) s(x3y) s(x2y2) s(x3) s(x2y) s(x2)

s(x3y) s(x2y2) s(xy3) s(x2y) s(xy2) s(xy)

s(x2y2) s(xy3) s(y4) s(xy2) s(y3) s(y2)

s(x3) s(x2y) s(xy2) s(x2) s(xy) s(x)

s(x2y) s(xy2) s(y3) s(xy) s(y2) s(y)

s(x2) s(xy) s(y2) s(x) s(y) s(1)

u0

u1

u2

u3

u4

u5

=

s(zx2)

s(zxy)

s(zy2)

s(zx)

s(zy)

s(z)

(136)

10.2 A Robust Algorithm

The fitting function is

z − c = v0(x− a)2 + v1(x− a)(y − b) + v2(y − b)2 + v3(x− a) + v4(y − b) + v5 = V ·Q(x− a, y − b) (137)

where V = (v0, v1, v2, v3, v4, v5), Q(x, y) is the function defined for the previous algorithm, and (a, b, c) is

the average of the inputs, (a, b, c) =
(∑m−1

i=0 (xi, yi, zi)
)
/m. Select V to minimize the sum of squared errors

E(V) =

m−1∑
i=0

(V ·Qi − (zi − c))2 (138)

where Qi = Q(xi − a, yi − b). Subtracting the average of the inputs from those inputs can lead to a better
quality fit.

The minimum occurs when the gradient of E(V) with respect to the coefficients vj is the zero vector,

∇E = 2

m−1∑
i=0

(V ·Qi − (zi − c))Qi = 0 (139)

Some algebra converts this to a system of 6 equations in 6 unknowns,(
m−1∑
i=0

QiQ
T
i

)
V =

m−1∑
i=0

(zi − c)Qi (140)

The product QiQ
T
i is a product of the 6× 1 matrix Qi with the 1× 6 matrix QT

i , which is a 6× 6 matrix.

55

Define the 6 × 6 symmetric matrix A =
∑m−1

i=0 QiQ
T
i and the 6 × 1 vector B =

∑m−1
0=1 (zi − c)Qi. The

choice for U is the solution to the linear system of equations AU = B. The entries of A and B indicate
summations over the appropriate product of variables. For example, s(x̄3ȳ) =

∑m−1
i=0 (xi− a)3(yi− b), where

(x̄, ȳ, z̄) = (x− a, y − b, z − c),

s(x̄4) s(x̄3ȳ) s(x̄2ȳ2) s(x̄3) s(x̄2ȳ) s(x̄2)

s(x̄3ȳ) s(x̄2ȳ2) s(x̄ȳ3) s(x̄2ȳ) s(x̄ȳ2) s(x̄ȳ)

s(x̄2ȳ2) s(x̄ȳ3) s(ȳ4) s(x̄ȳ2) s(ȳ3) s(ȳ2)

s(x̄3) s(x̄2ȳ) s(x̄ȳ2) s(x̄2) s(x̄ȳ) s(x̄)

s(x̄2ȳ) s(x̄ȳ2) s(ȳ3) s(x̄ȳ) s(ȳ2) s(ȳ)

s(x̄2) s(x̄ȳ) s(ȳ2) s(x̄) s(ȳ) s(1)

v0

v1

v2

v3

v4

v5

=

s(z̄x̄2)

s(z̄x̄ȳ)

s(z̄ȳ2)

s(z̄x̄)

s(z̄ȳ)

s(z̄)

(141)

The relationship between U and V is

(v0, v1, v2, v3, v4, v5) = (u0, u1, u2, 2au0+bu1+u3, au1+2bu2+u4, a
2u0+abu1+b2u2+au3+bu4+q5−c) (142)

An implementation is ApprParaboloid3.h.

56

https://www.geometrictools.com/GTE/Mathematics/ApprParaboloid3.h

	1 Introduction
	2 The General Formulation for Nonlinear Least-Squares Fitting
	3 Affine Fitting of Points Using Height Fields
	3.1 Fitting by a Line in 2 Dimensions
	3.1.1 Pseudocode for Fitting by a Line

	3.2 Fitting by a Plane in 3 Dimensions
	3.2.1 Pseudocode for Fitting by a Plane

	3.3 Fitting by a Hyperplane in n+1 Dimensions
	3.3.1 Pseudocode for Fitting a Hyperplane

	4 Affine Fitting of Points Using Orthogonal Regression
	4.1 Fitting by a Line [1 Dimension]
	4.1.1 Pseudocode for the General Case

	4.2 Fitting by a Hyperplane [(n-1) Dimensions]
	4.2.1 Pseudocode for the General Case

	4.3 Fitting by a Flat [k Dimensions]
	4.3.1 Pseudocode for the General Case

	5 Fitting a Hypersphere to Points
	5.1 Fitting Using Differences of Lengths and Radius
	5.1.1 Pseudocode for the General Case

	5.2 Fitting Using Differences of Squared Lengths and Squared Radius
	5.2.1 Pseudocode for the General Case
	5.2.2 Pseudocode for Circles
	5.2.3 Pseudocode for Spheres

	5.3 Fitting the Coefficients of a Quadratic Equation
	5.3.1 Pseudocode for the General Case
	5.3.2 Pseudocode for Circles
	5.3.3 Pseudocode for Spheres

	6 Fitting a Hyperellipsoid to Points
	6.1 Updating the Estimate of the Center
	6.2 Updating the Estimate of the Matrix
	6.3 Pseudocode for the Algorithm

	7 Fitting a Cylinder to 3D Points
	7.1 Representation of a Cylinder
	7.2 The Least-Squares Error Function
	7.3 An Equation for the Radius
	7.4 An Equation for the Center
	7.5 An Equation for the Direction
	7.6 Fitting for a Specified Direction
	7.7 Pseudocode and Experiments
	7.8 Fitting a Cylinder to a Triangle Mesh

	8 Fitting a Cone to 3D Points
	8.1 Estimation of the Cone Axis Direction
	8.2 Estimate of the Cone Vertex and Cone Angle

	9 Fitting a Parabola to 2D Points of the Form (x,f(x))
	9.1 An Algorithm
	9.2 A Robust Algorithm

	10 Fitting a Paraboloid to 3D Points of the Form (x,y,f(x,y))
	10.1 An Algorithm
	10.2 A Robust Algorithm

