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1 Introduction

This document describes least-squares minimization algorithms for fitting point sets by linear structures
or quadratic structures. The organization is somewhat different from that of the previous version of the
document. Modifications include the following.

• A section on the general formulation for nonlinear least-squares fitting is now available. The stan-
dard approach is to estimate parameters using numerical minimizers (Gauss–Newton or Levenberg–
Marquardt).

• A new algorithm for fitting points by a circle, sphere or hypersphere is provided. The algorithm is
non-iterative, so the computation time is bounded and small.

• In the previous version, the sections about fitting of points by ellipses or ellipsoids were severely lacking
details and not useful for developing algorithms. Several algorithms are now provided for such fitting,
including a general approach for fitting points by hyperellipsoids.

• The document for fitting points by a cylinder has been moved to this document. The website hyperlink
to the cylinder document has been redirected to this document.

• A section has been added for fitting points by a single-sided cone.

• Pseudocode is now provided for each of the algorithms. Hyperlinks still exist for those algorithms
implemented in the GTEngine source code.

Other documents using least-squares algorithms for fitting points with curve or surface structures are avail-
able at the website. The document for fitting points with a torus is new to the website (as of August
2018).

• Least-Squares Fitting of Data with Polynomials

• Least-Squares Fitting of Data with B-Spline Curves

• Least-Squares Reduction of B-Spline Curves

• Fitting 3D Data with a Helix

• Least-Squares Fitting of Data with B-Spline Surfaces

• Fitting 3D Data with a Torus

The document Least-Squares Fitting of Segments by Line or Plane describes a least-squares algorithm where
the input is a set of line segments rather than a set of points. The output is a line (segments in n dimensions)
or a plane (segments in 3 dimensions) or a hyperplane (segments in n dimensions).

2 The General Formulation for Nonlinear Least-Squares Fitting

Let F(p) = (F0(p), F1(p), . . . , Fn−1(p)) be a vector-valued function of the parameters p = (p0, p1, ..., pm−1).
The nonlinear least-squares problem is to minimize the real-valued error function E(p) = |F(p)|2.
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Let J = dF/dp = [dFr/dpc] denote the Jacobian matrix, which is the matrix of first-order partial derivatives
of the components of F. The matrix has n rows and m columns, and the indexing (r, c) refers to row r and
column c. A first-order approximation is

F(p + d)
.
= F(p) + J(p)d (1)

where d is an m× 1 vector with small length. Consequently, an approximation to the error function is

E(p + d) = |F(p + d)|2 = |F(p) + J(p)d|2 (2)

The goal is to choose d to minimize |F(p) + J(p)d|2 and, hopefully, with E(p + d) < E(p). Choosing an
initial p0, the hope is that the algorithm generates a sequence pi for which E(pi+1) < E(pi) and, in the
limit, E(pj) approaches the global minimum of E. The algorithm is referred to as Gauss–Newton iteration.

For a single Gauss–Newton iteration, we need to choose d to minimize |F(p) + J(p)d|2 where p is fixed.
This is a linear least-squares problem which can be formulated using the normal equations

JT(p)J(p)d = −JT(p)F(p) (3)

The matrix JTJ is positive semidefinite. If it is invertible, then

d = −(JT(p)J(p))−1F(p) (4)

If it is not invertible, some other algorithm must be used to choose d; one option is to use gradient descent
for the step. A Cholesky decomposition can be used to solve the linear system.

During Gauss–Newton iteration, tf E does not decrease for a step of the algorithm, one can modify the
algorithm to Levenberg–Marquardt iteration. The idea is to smooth the linear system to(

JT(p)J(p) + λI
)
d = −JT(p)F(p) (5)

where I is the identity matrix of appropriate size and λ > 0 is the smoothing factor. The strategy for
choosing the initial λ and how to adjust it as you compute iterations depends on the problem at hand.

For a more detailed discussion, see Gauss–Newton algorithm and Levenberg–Marquardt algorithm. Im-
plementations of the Cholesky decomposition, Gauss–Newton method and Levenberg–Marquardt method
in GTEngine can be found in GteCholeskyDecomposition.h, GteGaussNewtonMinimizer.h and GteLeven-
bergMarquardtMinimizer.h.

3 Affine Fitting of Points Using Height Fields

We have a set of measurements {(Xi, hi)}mi=1 for which Xi ∈ Rn are sampled independent variables and
hi ∈ R is a sampled dependent variable. The hypothesis is that h is related to X via an affine transformation
h = A ·X + b, where A is an n× 1 vector of constants and b is a scalar constant. The goal is to estimate A
and b from the samples. The choice of name h stresses that the measurement errors are in the direction of
height above the plane containing the X measurements.

3.1 Fitting by a Line in 2 Dimensions

The measurements are {(xi, hi}mi=1 where x is an independent variable and h is a dependent variable. The
affine transformation we want to estimate is h = ax+ b, where a and b are scalars. This defines a line that
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best fits the samples in the sense that the sum of the squared errors between the hi and the line values
axi + b is minimized. Note that the error is measured only in the h-direction.

Define the error function for the least-squares minimization to be

E(a, b) =

m∑
i=1

[(axi + b)− hi]2 (6)

This function is nonnegative and its graph is a paraboloid whose vertex occurs when the gradient satisfies
∇E(a, b) = (∂E/∂a, ∂E/∂b) = (0, 0). This leads to a system of two linear equations in a and b which can
be easily solved. Precisely,

0 = ∂E/∂a = 2
∑m
i=1[(axi + b)− hi]xi

0 = ∂E/∂b = 2
∑m
i=1[(axi + b)− hi]

(7)

and so  ∑m
i=1 x

2
i

∑m
i=1 xi∑m

i=1 xi
∑m
i=1 1

 a

b

 =

 ∑m
i=1 xihi∑m
i=1 hi

 (8)

The system is solved by standard numerical algorithms. If implemented directly, this formulation can lead
to an ill-conditioned linear system. To avoid this, you should first compute the averages x̄ = (

∑m
i=1 xi)/m

and h̄ = (
∑m
i=1 hi)/m and subtract them from the data. The fitted line is of the form h− h̄ = ā(x− x̄) + b̄.

The linear system of equations that determines the coefficients is ∑m
i=1(xi − x̄)2 0

0 m

 ā

b̄

 =

 ∑m
i=1(xi − x̄)(hi − h̄)

0

 (9)

and has solution

ā =

∑m
i=1(xi − x̄)(hi − h̄)∑m

i=1(xi − x̄)2
, b̄ = 0 (10)

In terms of the original inputs, a = ā and b = h̄− āx̄.

3.1.1 Pseudocode for Fitting by a Line

Listing 1 contains pseudocode for fitting a height line to points in 2 dimensions.

Listing 1. Pseudocode for fitting a height line to points in 2 dimensions. The number of input points
must be at least 2. The returned Boolean value is true as long as the numerator of equation (10) is positive;
that is, when the points are not all the same point. An implementation in a slightly more general framework
is GteApprHeightLine2.h.

boo l F i tH e i g h t L i n e ( i n t numPoints , Vector2 p o i n t s [ ] ,
Rea l& barX , Rea l& barH , Rea l& barA )

{
// Compute the mean o f the p o i n t s .
Vector2 mean = { 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{
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mean += po i n t s [ i ] ;
}
mean /= numPoints ;

// Compute the l i n e a r system mat r i x and v e c t o r e l ement s .
Rea l xxSum = 0 , xhSum = 0 ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector2 d i f f = p o i n t s [ i ] − mean ;
xxSum += d i f f [ 0 ] ∗ d i f f [ 0 ] ;
l i n e a r += d i f f [ 0 ] ∗ d i f f [ 1 ] ;

}

// So l v e the l i n e a r system .
i f ( xxSum > 0)
{

// Compute the f i t t e d l i n e h ( x ) = barH + barA ∗ ( x − barX ) .
barX = mean [ 0 ] ;
barH = mean [ 1 ] ;
barA = l i n e a r / xxSum ;
r e t u r n t rue ;

}
e l s e
{

// The output i s i n v a l i d . The p o i n t s a r e a l l the same .
barX = 0 ;
barH = 0 ;
barA = 0 ;
r e t u r n f a l s e ;

}
}

3.2 Fitting by a Plane in 3 Dimensions

The measurements are {(xi, yi, h)}mi=1 where x and y are independent variables and h is a dependent variable.
The affine transformation we want to estimate is h = a0x + a1y + b, where a0, a1 and b are scalars. This
defines a plane that best fits the samples in the sense that the sum of the squared errors between the hi and
the plane values a0xi + a1yi + b is minimized. Note that the error is measured only in the h-direction.

Define the error function for the least-squares minimization to be

E(a0, a1, b) =

m∑
i=1

[(a0xi + a1yi + b)− hi]2 (11)

This function is nonnegative and its graph is a hyperparaboloid whose vertex occurs when the gradient sat-
isfies ∇E(a0, a1, b) = (∂E/∂a0, ∂E/∂a1, ∂E/∂b) = (0, 0, 0). This leads to a system of three linear equations
in a0, a1 and b which can be easily solved. Precisely,

0 = ∂E/∂a0 = 2
∑m
i=1[(Axi +Byi + C)− zi]xi

0 = ∂E/∂a1 = 2
∑m
i=1[(Axi +Byi + C)− zi]yi

0 = ∂E/∂b = 2
∑m
i=1[(Axi +Byi + C)− zi]

(12)
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and so 
∑m
i=1 x

2
i

∑m
i=1 xiyi

∑m
i=1 xi∑m

i=1 xiyi
∑m
i=1 y

2
i

∑m
i=1 yi∑m

i=1 xi
∑m
i=1 yi

∑m
i=1 1



a0

a1

b

 =


∑m
i=1 xihi∑m
i=1 yihi∑m
i=1 hi

 (13)

The solution is solved by standard numerical algorithms. If implemented directly, this formulation can lead
to an ill-conditioned linear system. To avoid this, you should first compute the averages x̄ = (

∑m
i=1 xi)/m,

ȳ = (
∑m
i=1 yi)/m and h̄ = (

∑m
i=1 hi)/m and subtract them from the data. The fitted plane is of the form

h− h̄ = ā0(x− x̄) + ā1(y − ȳ) + b̄. The linear system of equations that determines the coefficients is
`00 `01 0

`01 `11 0

0 0 m




ā0

ā1

b̄

 =


∑m

i=1(xi − x̄)2
∑m

i=1(xi − x̄)(yi − ȳ) 0∑m
i=1(xi − x̄)(yi − ȳ)

∑m
i=1(yi − ȳ)2 0

0 0 m




ā0

ā1

b̄



=


∑m

i=1(hi − h̄)(xi − x̄)∑m
i=1(hi − h̄)(yi − ȳ)

0

 =


r0

r1

0


(14)

and has solution

ā0 =
`11r0 − `01r1
`00`11 − `201

, ā1 =
`00r1 − `01r0
`00`11 − `201

, b̄ = 0 (15)

In terms of the original inputs, a0 = ā0, a1 = ā1 and b = h̄− ā0x̄− ā1ȳ.

3.2.1 Pseudocode for Fitting by a Plane

Listing 2 contains pseudocode for fitting a height plane to points in 3 dimensions.

Listing 2. Pseudocode for fitting a height plane to points in 3 dimensions. The number of input points
must be at least 3. The returned Boolean value is true as long as the matrix of the linear system has nonzero
determinant. An implementation in a slightly more general framework is GteApprHeightPlane3.h.

boo l F i tHe i g h tP l a n e ( i n t numPoints , Vector3 p o i n t s [ ] ,
Rea l& barX , Rea l& barY , Rea l& barH , Rea l& barA0 , Rea l& barA1 )

{
// Compute the mean o f the p o i n t s .
Vector3 mean = { 0 , 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

mean += po i n t s [ i ] ;
}
mean /= numPoints ;

// Compute the l i n e a r system mat r i x and v e c t o r e l ement s .
Rea l xxSum = 0 , xySum = 0 , xhSum = 0 , yySum = 0 , yhSum = 0 ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector3 d i f f = p o i n t s [ i ] − mean ;
xxSum += d i f f [ 0 ] ∗ d i f f [ 0 ] ;
xySum += d i f f [ 0 ] ∗ d i f f [ 1 ] ;
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xhSum += d i f f [ 0 ] ∗ d i f f [ 2 ] ;
yySum += d i f f [ 1 ] ∗ d i f f [ 1 ] ;
yhSum += d i f f [ 1 ] ∗ d i f f [ 2 ] ;

}

// So l v e the l i n e a r system .
Rea l det = xxSum ∗ yySum − xySum ∗ xySum ;
i f ( det != 0)
{

// Compute the f i t t e d p l ane h ( x , y ) = barH + barA0 ∗ ( x − barX ) + barA1 ∗ ( y − barY ) .
barX = mean [ 0 ] ;
barY = mean [ 1 ] ;
barH = mean [ 2 ] ;
barA0 = (yySum ∗ xhSum − xySum ∗ yhSum) / det ;
barA1 = (xxSum ∗ yhSum − xySum ∗ xhSum) / det ;
r e t u r n t rue ;

}
e l s e
{

// The output i s i n v a l i d . The p o i n t s a r e a l l the same or they a r e c o l l i n e a r .
barX = 0 ;
barY = 0 ;
barH = 0 ;
barA0 = 0 ;
barA1 = 0 ;
r e t u r n f a l s e ;

}
}

3.3 Fitting by a Hyperplane in n+ 1 Dimensions

The measurements are {(Xi, hi)}mi=1 where the n components of X are independent variables and h is a
dependent variable. The affine transformation we want to estimate is h = A ·X + b, where A is an n × 1
vector of constants and b is a scalar constant. This defines a hyperplane that best fits the samples in the
sense that the sum of the squared errors between the hi and the hyperplane values A ·Xi + b is minimized.
Note that the error is measured only in the h-direction.

Define the error function for the least-squares minimization to be

E(A, b) =

m∑
i=1

[(A ·Xi + b)− hi]2 (16)

This function is nonnegative and its graph is a hyperparaboloid whose vertex occurs when the gradient
satisfies ∇E(A, b) = (∂E/∂A, ∂E/∂b) = (0, 0). This leads to a system of n+ 1 linear equations in A and b
which can be easily solved. Precisely,

0 = ∂E/∂A = 2
∑m
i=1[(A ·Xi + b)− hi]Xi

0 = ∂E/∂b = 2
∑m
i=1[(A ·Xi + b)− hi]

(17)

and so  ∑m
i=1 XiX

T
i

∑m
i=1 Xi∑m

i=1 XT
i

∑m
i=1 1

 A

b

 =

 ∑m
i=1 hiXi∑m
i=1 hi

 (18)
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The solution is solved by standard numerical algorithms. If implemented directly, this formulation can lead to
an ill-conditioned linear system. To avoid this, you should first compute the averages X̄ = (

∑m
i=1 Xi)/m and

h̄ = (
∑m
i=1 hi)/m and subtract them from the data. The fitted hyperplane is of the form h−h̄ = Ā·(X−X̄)+b̄.

The linear system of equations that determines the coefficients is ∑m
i=1

(
Xi − X̄

) (
Xi − X̄

)T
0

0T m

 Ā

b̄

 =

 ∑m
i=1(hi − h̄)

(
Xi − X̄

)
0

 (19)

and has solution

Ā =

(
m∑
i=1

(Xi − X̄)(Xi − X̄)T

)−1( m∑
i=1

(hi − h̄)(Xi − X̄)

)
, b̄ = 0 (20)

In terms of the original inputs, A = Ā and b = h̄− Ā · X̄.

3.3.1 Pseudocode for Fitting a Hyperplane

Listing 3 contains pseudocode for fitting a height hyperplane to points in n+ 1 dimensions.

Listing 3. Pseudocode for fitting a height hyperplane to points in n+ 1 dimensions. The number of input
points must be at least n. The returned Boolean value is true as long as the matrix of the linear system has
nonzero determinant.

boo l F i tHe i gh tHype r p l an e ( i n t numPoints , Vector<n + 1> p o i n t s [ ] ,
Vector<n>& barX , Rea l& barH , Vector<n>& barA )

{
// Compute the mean o f the p o i n t s .
Vector<n + 1> mean = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

mean += po i n t s [ i ] ;
}
mean /= numPoints ;

// Compute the l i n e a r system mat r i x and v e c t o r e l ement s . The f u n c t i o n
// Vector<n> Head<n>(Vector<n + 1> V) r e t u r n s (V [ 0 ] , . . . , V [ n−1]) .
Matr ix<n , n> L = Matr ix<n , n> : :ZERO;
Vector<n> R = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n + 1> d i f f = po i n t s [ i ] − mean ;
Vector<n> XminusBarX = Head<n>( d i f f ) ;
Rea l HminusBarH = d i f f [ n ] ;
L += OuterProduct ( XminusBarX , XminusBarX ) ; // (X[ i ]−barX [ i ] )∗ (X[ i ]−barX [ i ] ) ˆT
R += HminusBarH ∗ XminusBarX ;

}

// So l v e the l i n e a r system .
Rea l det = Determinant (L ) ;
i f ( det != 0)
{

// Compute the f i t t e d p l ane h (X) = barH + Dot ( barA , X − barX ) .
barX = Head<n>(mean ) ;
barH = mean [ n ] ;
barA = So l v eL i n ea rSy s t em (L , R ) ; // s o l v e L∗A = R
r e t u r n t rue ;
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}
e l s e
{

// The output i s i n v a l i d . The p o i n t s appear not to l i v e on a
// hype rp l an e ; they might l i v e i n an a f f i n e subspace o f d imens ion
// sma l l e r than n .
barX = Vector<n> : :ZERO;
barH = 0 ;
barA = Vector<n> : :ZERO;
r e t u r n f a l s e ;

}
}

4 Affine Fitting of Points Using Orthogonal Regression

We have a set of measurements {Xi}mi=1 for which Xi ∈ Rn are sampled independent variables. The
hypothesis is that the points are sampled from a k-dimensional affine subspace in n-dimensional space.
Such a space is referred to as a k-dimensional flat. The classic cases include fitting a line to points in n
dimensions and fitting a plane to points in 3 dimensions. The latter is a special case of fitting a hyperplane,
an (n− 1)-dimensional flat, to points in n dimensions.

In the height-field fitting algorithms, the least-squares errors were measured in a specified direction (the
height direction). An alternative is to measure the errors in the perpendicular direction to the purported
affine subspace. This approach is referred to as orthogonal regression.

4.1 Fitting by a Line [1 Dimension]

The algorithm may be applied to sample points {Xi}mi=1 in any dimension n. Let the line have origin A
and unit-length direction D, both n × 1 vectors. Define Yi = Xi − A, which can be written as Yi =
(D ·Yi) D + D⊥i where D⊥i is the perpendicular vector from Xi to its projection on the line. The squared
length of this vector is |D⊥i |2 = |Yi − diD|2. The error function for the least-squares minimization is
E(A,D) =

∑m
i=1 |D

⊥
i |2. Two alternate forms for this function are

E(A,D) =

m∑
i=1

(
YT
i

(
I −DDT

)
Yi

)
(21)

and

E(A,D) = DT

(
m∑
i=1

(
(Yi ·Yi)I −YiY

T
i

))
D = DTMD (22)

where M is a positive semidefinite symmetric matrix that depends on A and the Yi but not in D.

Compute the derivative of equation (21) with respect to A to obtain

∂E

∂A
= −2

[
I −DDT

] m∑
i=1

Yi (23)
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At a minimum value of E, it is necessary that this derivative is zero, which it is when
∑m
i=1 Yi = 0, implying

A = (1/m)
∑m
i=1 Xi, the average of the sample points. In fact there are infinitely many solutions, A + sD,

for any scalar s. This is simply a statement that A is a point on the best-fit line, but any other point on the
line may serve as the origin for that line.

Equation (22) is a quadratic form DTMD whose minimum is the smallest eigenvalue of M , computed using
standard eigensystem solvers. A corresponding unit length eigenvector D completes our construction of the
least-squares line. The covariance matrix of the input points is C =

∑m
i=1 YiY

T
i . Defining δ =

∑m
i=1 YT

i Yi,
we see that M = δI − C, where I is the identity matrix. Therefore, M and C have the same eigenspaces.
The eigenspace corresponding to the minimum eigenvalue of M is the same as the eigenspace corresponding
to the maximum eigenvalue of C. In an implementation, it is sufficient to process C and avoid the additional
cost to compute M .

4.1.1 Pseudocode for the General Case

Listing 4 contains pseudocode for fitting a line to points in n dimensions with n ≥ 2.

Listing 4. Pseudocode for fitting a line to points in n dimensions using orthogonal regression. The number
of input points must be at least 2. The returned Boolean value is true as long as the covariance matrix of
the linear system has a 1-dimensional eigenspace for the maximum eigenvalue of the covariance matrix.

boo l F i tO r t hogona l L i n e ( i n t numPoints , Vector<n> p o i n t s [ ] ,
Vector<n>& o r i g i n , Vector<n>& d i r e c t i o n )

{
// Compute the mean o f the p o i n t s .
Vector<n> mean = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

mean += po i n t s [ i ] ;
}
mean /= numPoints ;

// Compute the c o v a r i a n c e mat r i x o f the p o i n t s .
Matr ix<n , n> C = Matr ix<n , n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n> d i f f = po i n t s [ i ] − mean ;
C += OuterProduct ( d i f f , d i f f ) ; // d i f f ∗ d i f f ˆT

}

// Compute the e i g e n v a l u e s and e i g e n v e c t o r s o f C , where the e i g e n v a l u e s a r e s o r t e d
// i n nonde c r e a s i n g o r d e r ( e i g e n v a l u e s [ 0 ] <= e i g e n v a l u e s [ 1 ] <= . . . ) .
Rea l e i g e n v a l u e s [ n ] ;
Vector<n> e i g e n v e c t o r s [ n ] ;
So l v eE i g en sy s t em (C , e i g e n v a l u e s , e i g e n v e c t o r s ) ;

// Set the output i n f o rma t i o n .
o r i g i n = mean ;
d i r e c t i o n = e i g e n v e c t o r s [ n−1];

// The f i t t e d l i n e i s un ique when the maximum e i g e n v a l u e has m u l t i p l i c i t y 1 .
r e t u r n e i g e n v a l u e s [ n−2] < e i g e n v a l u e s [ n−1];

}
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Specializations for 2 and 3 dimensions are simple, computing only the upper-triangular elements of C and
passing them to specialized eigensolvers for 2 and 3 dimensions. Implementations are GteApprOrthogo-
nalLine2.h and GteApprOrthogonalLine3.h.

4.2 Fitting by a Hyperplane [(n− 1) Dimensions]

The algorithm may be applied to sample points {Xi}mi=1 in any dimension n. Let the hyperplane be defined
implicitly by N · (X−A) = 0, where N is a unit-length normal to the hyperplane and A is a point on the
hyperplane. Define Yi = Xi−A, which can be written as Yi = (N ·Yi)N + N⊥i where N⊥i is a vector that
is perpendicular to N. The squared length of the projection of Yi onto the normal line for the hyperplane is
(N ·Yi)

2. The error function for the least-squares minimization is E(A,N) =
∑m
i=1(N ·Yi)

2. Two alternate
forms for this function are

E(A,N) =

m∑
i=1

(
YT
i

(
NNT

)
Yi

)
(24)

and

E(A,N) = NT

(
m∑
i=1

YiY
T
i

)
N = NTCN (25)

where C =
∑m
i=1 YiY

T
i is the covariance matrix of the Yi.

Compute the derivative of equation (24) with respect to A to obtain

∂E

∂A
= 2

(
NNT

) m∑
i=1

Yi (26)

At a minimum value of E, it is necessary that this derivative is zero, which it is when
∑m
i=1 Yi = 0, implying

A = (1/m)
∑m
i=1 Xi, the average of the sample points. In fact there are infinitely many solutions, A + W,

where W is any vector perpendicular to N. This is simply a statement that the average is on the best-fit
hyperplane, but any other point on the hyperplane may serve as the origin for that hyperplane.

Equation (25) is a quadratic form NTCN whose minimum is the smallest eigenvalue of C, computed using
standard eigensystem solvers. A corresponding unit-length eigenvector N completes our construction of the
least-squares hyperplane.

4.2.1 Pseudocode for the General Case

Listing 5 contains pseudocode for fitting a hyperplane to points in n dimensions with n ≥ 3.

Listing 5. Pseudocode for fitting a line to points in n dimensions using orthogonal regression. The number
of input points must be at least n. The returned Boolean value is true as long as the covariance matrix of
the linear system has a 1-dimensional eigenspace for the minimum eigenvalue of the covariance matrix.

boo l F i tO r thogona lHype rp l ane ( i n t numPoints , Vector<n> p o i n t s [ ] ,
Vector<n>& o r i g i n , Vector<n>& normal )

{
// Compute the mean o f the p o i n t s .
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Vector<n> mean = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

mean += po i n t s [ i ] ;
}
mean /= numPoints ;

// Compute the c o v a r i a n c e mat r i x o f the p o i n t s .
Matr ix<n , n> C = Matr ix<n , n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n> d i f f = po i n t s [ i ] − mean ;
C += OuterProduct ( d i f f , d i f f ) ; // d i f f ∗ d i f f ˆT

}

// Compute the e i g e n v a l u e s and e i g e n v e c t o r s o f M, where the e i g e n v a l u e s a r e s o r t e d
// i n nonde c r e a s i n g o r d e r ( e i g e n v a l u e s [ 0 ] <= e i g e n v a l u e s [ 1 ] <= . . . ) .
Rea l e i g e n v a l u e s [ n ] ;
Vector<n> e i g e n v e c t o r s [ n ] ;
So l v eE i g en sy s t em (C , e i g e n v a l u e s , e i g e n v e c t o r s ) ;

// Set the output i n f o rma t i o n .
o r i g i n = mean ;
normal = e i g e n v e c t o r s [ 0 ] ;

// The f i t t e d hype r p l an e i s un ique when the minimum e i g e n v a l u e has m u l t i p l i c i t y 1 .
r e t u r n e i g e n v a l u e s [ 0 ] < e i g e n v a l u e s [ 1 ] ;

}

A specialization for 3 dimensions is simple, computing only the upper-triangular elements of C and passing
them to a specialized eigensolver for 3 dimensions. An implementations is GteApprOrthogonalPlane3.h.

4.3 Fitting by a Flat [k Dimensions]

Orthogonal regression to fit n-dimensional points by a line or by a hyperplane can be generalized to fitting
by an affine subspace called a k-dimensional flat, where you may choose k such that 1 ≤ k ≤ n− 1. A line
is a 1-flat and a hyperplane is an (n− 1)-flat.

For dimension n = 3, we fit with flats that are either lines (k = 1) or planes (k = 2). For dimensions n ≥ 4
and flat dimensions 1 ≤ k ≤ n − 1, the generalization of orthogonal regression is the following. The bases
mentioned here are for the linear portion of the affine subspace; that is, the basis vectors are relative to
an origin at a point A. The flat has an orthonormal basis {Fj}kj=1 and the orthogonal complement has an

orthonormal basis {Pj}n−kj=1 . The union of the two bases is an orthonormal basis for Rn. Any input point
Xi, 1 ≤ i ≤ m, can be represented by

Xi = A +

k∑
j=1

fijFj +

n−k∑
j=1

pijPj =

A +

k∑
j=1

fijFj

+

n−k∑
j=1

pijPj

 (27)

The left-parenthesized term is the portion of Xi that lives in the flat and the right-parenthesized is the
portion that is the deviation of Xi from the flat. The least-squares problem is about choosing the two bases
so that the sum of squared lengths of the deviations is as small as possible.

Define Yi = Xi − A. The basis coefficients are fij = Fj · Yi and pij = Pj · Yi. The squared length of

the deviation is
∑n−k
j=1 p

2
ij . The error function for the least-squares minimization is the sum of the squared
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lengths for all inputs, E =
∑m
i=1

∑n−k
j=1 p

2
ij . Two alternate forms for this function are

E(A,P1, . . .Pn−k) =

m∑
i=1

YT
i

n−k∑
j=1

PjP
T
j

Yi (28)

and

E(A,P1, . . .Pn−k) =

n−k∑
j=1

PT
j

(
m∑
i=1

YiY
T
i

)
Pj =

n−k∑
j=1

PT
j CPj (29)

where C =
∑
i=1 YiY

T
i .

Compute the derivative of equation (28) with respect to A to obtain

∂E

∂A
= 2

n−k∑
j=1

PjP
T
j

 m∑
i=1

Yi (30)

At a minimum value of E, it is necessary that this derivative is zero, which it is when
∑m
i=1 Yi = 0, implying

A = (1/m)
∑m
i=1 Xi, the average of the sample points. In fact there are infinitely many solutions, A + W,

where W is any vector in the orthogonal complement of the subspace spanned by the Pj ; this subspace is
the one spanned by the Fj . This is simply a statement that the average is on the best-fit flat, but any other
point on the flat may serve as the origin for that flat. Because we are choosing A to be the average of the
input points, the matrix C is the covariance matrix for the input points.

The last term in equation (29) is a sum of quadratic forms involving the matrix C and the vectors Pj that
are a basis (unit length, mutually perpendicular). The minimum value of the quadratic form is the smallest
eigenvalue λ1 of C, so we may choose P1 to be a unit-length eigenvector of C corresponding to λ1. We must
choose P2 to be unit length and perpendicular to P1. If the eigenspace for λ1 is 1-dimensional, the next
smallest value we can attain by the quadratic form is the smallest eigenvalue λ2 for which λ1 < λ2. P2 is
chosen to be a corresponding unit-length eigenvector. However, if λ1 has an eigenspace of dimension larger
than 1, we can choose P2 in that eigenspace but which is perpendicular to P1.

Generally, let {λ`}r`=1 be the r distinct eigenvalues of the covariance matrix C; we know 1 ≤ r ≤ n and
λ1 < λ2 < · · · < λr. Let the dimension of the eigenspace for λ` be d` ≥ 1; we know that

∑r
`=1 d` = n. List

the eigenvalues and eigenvectors in order of increasing eigenvalue, including repeated values,

λ1 · · · λ1

V1
1 · · · V1

d1︸ ︷︷ ︸
d1 terms

λ2 · · · λ2

V2
1 · · · V2

d2︸ ︷︷ ︸
d2 terms

· · ·
λr · · · λr

Vr
1 · · · Vr

dr︸ ︷︷ ︸
dr terms

(31)

The list has n items. The eigenvalue d` has an eigenspace with orthonormal basis {V`
j}
d`
j=1. In this list,

choose the first k eigenvectors to be P1 through Pk and choose the last n− k eigenvectors to be F1 through
Fn−k.

It is possible that one (or more) of the Pj and one (or more) of the Fj are in the eigenspace for the same
eigenvalue. In this case, the fitted flat is not unique, and one should re-examine the choice of dimension k
for the fitted flat. This is analogous to the following situations in dimension n = 3:
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• The input points are nearly collinear but you are trying to fit those points with a plane. The covariance
matrix likely has two distinct eigenvalues λ1 < λ2 with d1 = 2 and d2 = 1. The basis vectors are
P1 = V1

1, F1 = V1
2, and F2 = V2

1. The first two of these are from the same eigenspace.

• The input points are spread out over a portion of a plane (and are not nearly collinear) but you are
trying to fit those points with a line. The covariance matrix likely has two distinct eigenvalues λ1 < λ2
with d1 = 1 and d2 = 2. The basis vectors are P1 = V1

1, P2 = V2
1, and F1 = V2

2. The last two of
these are from the same eigenspace.

• The input points are not well fit by a flat of any dimension. For example, your input points are
uniformly distributed over a sphere. The covariance matrix likely has one distinct eigenvalue λ1 of
multiplicity d1 = 3. Neither a line nor a plane is a good fit to the input points—in either case, a
P-vector and an F-vector are in the same eigenspace.

The computational algorithm is to compute the average A and covariance matrix of the points. Use an
eigensolver whose output eigenvalues are sorted in nondecreasing order. Choose the Fj to be the last n− k
eigenvectors output by the eigensolver.

4.3.1 Pseudocode for the General Case

Listing 6 contains pseudocode for fitting a k-dimensional flat to points in n-dimensions where n ≥ 2 and
1 ≤ k ≤ n− 1.

Listing 6. Pseudocode for fitting a k-dimensional flat to points in n dimensions using orthogonal regression.
The number of input points must be at least k + 1. The returned Boolean value is true as long as the
covariance matrix of the linear system has a basis of eigenvectors sorted by nondecreasing eigenvalues for
which the following holds. The subbasis that spans the linear space of the flat and the subbasis that spans
the orthogonal complement of the linear space of the flat do not both contain basis vectors from the same
eigenspace.

boo l F i tO r t h o g on a l F l a t ( i n t numPoints , Vector<n> p o i n t s [ ] ,
Vector<n>& o r i g i n , Vector<k>& f l a t B a s i s , Vector<n−k>& complementBas i s )

{
// Compute the mean o f the p o i n t s .
Vector<n> mean = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

mean += po i n t s [ i ] ;
}
mean /= numPoints ;

// Compute the c o v a r i a n c e mat r i x o f the p o i n t s .
Matr ix<n , n> C = Matr ix<n , n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n> d i f f = po i n t s [ i ] − mean ;
C += OuterProduct ( d i f f , d i f f ) ; // d i f f ∗ d i f f ˆT

}

// Compute the e i g e n v a l u e s and e i g e n v e c t o r s o f M, where the e i g e n v a l u e s a r e s o r t e d
// i n nonde c r e a s i n g o r d e r ( e i g e n v a l u e s [ 0 ] <= e i g e n v a l u e s [ 1 ] <= . . . ) .
Rea l e i g e n v a l u e s [ n ] ;
Vector<n> e i g e n v e c t o r s [ n ] ;
So l v eE i g en sy s t em (C , e i g e n v a l u e s , e i g e n v e c t o r s ) ;
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// Set the output i n f o rma t i o n . The b a s i s f o r the f i t t e d f l a t c o r r e s pond s
// to the l a r g e s t v a r i a n c e s and the b a s i s f o r the complement o f the f i t t e d
// f l a t c o r r e s pond s to the sm a l l e s t v a r i a n c e s .
o r i g i n = mean ;
f o r ( i n t i = 0 ; i < n − k ; ++i )
{

complementBas i s [ i ] = e i g e n v e c t o r s [ i ] ;
}
f o r ( i n t i = 0 ; i < k ; ++i )
{

f l a t B a s i s [ i ] = e i g e n v e c t o r s [ n − k + i ] ;
}

// The f i t t e d f l a t and i t s complement do not have v e c t o r s from the same e i g e n s p a c e .
r e t u r n e i g e n v a l u e s [ n − k − 1 ] < e i g e n v a l u e s [ n − k ] ;

}

In the special case of fitting with a line (k = 1), the line direction is the only element in flatBasis. In the special
case of fitting with a hyperplane (k = n− 1), the hyperplane normal is the only element in complementBasis.

5 Fitting a Hypersphere to Points

The classic cases are fitting 2-dimensional points by circles and 3-dimensional points by spheres. In n-
dimensions, the objects are called hyperspheres, defined implicitly by the quadratic equation |C−X|2 = r2,
where C is the center and r is the radius. Three algorithms are presented for fitting points by hyperspheres.

5.1 Fitting Using Differences of Lengths and Radius

The sample points are {Xi}mi=1. The least-squares error function involves the squares of differences between
lengths and radius,

E(C, r) =

m∑
i=1

(|C−Xi| − r)2 (32)

The minimization is based on computing points where the gradient of E is zero. The partial derivative with
respect to r is

∂E

∂r
= −2

m∑
i=1

(|C−Xi| − r) (33)

Setting the derivative equal to zero and solving for the radius,

r =
1

m

m∑
i=1

|C−Xi| (34)

which says that the radius is the average of the distances from the sample points to the center C. The partial
derivative with respect to C is

∂E
∂C = 2

∑m
i=1 (|C−Xi| − r) ∂|C−Xi|

∂C

= 2
∑m
i=1 (|C−Xi| − r) C−Xi

|C−Xi|

= 2
∑m
i=1

(
(C−Xi)− r C−Xi

|C−Xi|

) (35)
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Setting the derivative equal to zero and solving for the center,

C =
1

m

m∑
i=1

Xi + r
1

m

m∑
i=1

C− Xi

|C− Xi|
=

1

m

m∑
i=1

Xi +

(
1

m

m∑
i=1

|C−Xi|

)(
1

m

m∑
i=1

C− Xi

|C− Xi|

)
(36)

The average of the samples is X̄. Define length Li = |C − Xi|; the average of the lengths is L̄. Define
unit-length vector Ui = (C − Xi)/|C − Xi|; the average of the unit-length vectors is Ū. Equation (36)
becomes

C = X̄ + L̄Ū =: F(C) (37)

were the last equality defines the vector-valued function F. The function depends on the independent variable
C because both L̄ and Ū depend on C. Fixed-point iteration can be applied to solve equation (37),

C0 = X̄; Ci+1 = F(Ci), i ≥ 0 (38)

Depending on the distribution of the samples, it is possible to choose a different initial guess for C0 that
(hopefully) leads to faster convergence.

5.1.1 Pseudocode for the General Case

Listing 7 contains pseudocode for fitting a hypersphere to points. The case n = 2 is for circles and the case
n = 3 is for spheres.

Listing 7. Fitting a hypersphere to points using least squares based on squared differences of lengths and
radius. If you want the incoming hypersphere center to be the initial guess for the center, set inputCenterIsIni-

tialGuess; otherwise, the initial guess is computed to be the average of the samples. The maximum number
of iterations is also specified. The returned function value is the number of iterations used.

i n t F i tHype r s ph e r e ( i n t numPoints , Vector<n> X [ ] , i n t max I t e r a t i o n s , boo l i n p u t C e n t e r I s I n i t i a l G u e s s ,
Vector<n>& cente r , Rea l& r a d i u s )

{
// Compute the ave rage o f the data p o i n t s .
Vector<n> averageX = X [ 0 ] ;
f o r ( i n t i = 1 ; i < numPoints ; ++i )
{

averageX += X[ i ] ;
}
averageX /= numPoints ;

// The i n i t i a l gue s s f o r the c e n t e r i s e i t h e r the incoming c e n t e r o f the
// ave rage o f the sample p o i n t s .
i f ( ! i n p u t C e n t e r I s I n i t i a l G u e s s )
{

c e n t e r = averageX ;
}

i n t i t e r a t i o n ;
f o r ( i t e r a t i o n = 0 ; i t e r a t i o n < max I t e r a t i o n s ; ++i t e r a t i o n )
{

// Update the e s t ima t e f o r the c e n t e r .
Vector<n> p r e v i o u sC en t e r = c e n t e r ;

// Compute ave rage L and ave rage U.
Rea l ave rageL = 0 ;
Vector<n> averageU = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
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{
Vector<n> CmXi = c en t e r − X[ i ] ;
Rea l l e n g t h = Length (CmXi ) ;
i f ( l e n g t h > 0)
{

ave rageL += l eng t h ;
averageU −= CmXi / l e n g t h ;

}
}
ave rageL /= numPoints ;
averageU /= numPoints ;

c e n t e r = averageX + averageL ∗ averageU ;
r a d i u s = ave rageL ;

// Test f o r conve rgence .
i f ( c e n t e r == p r e v i o u sC en t e r )
{

break ;
}

}

r e t u r n ++i t e r a t i o n ;
}

The convergence test uses an exact equality, that the previous center C′ and the current center C are the
same. In practice you might want to specify a small ε > 0 and instead exit when |C−C′| ≤ ε.

Specializations for 2 and 3 dimensions have the same implementation as the general case. Implementations
are GteApprCircle2.h and GteApprSphere3.h.

5.2 Fitting Using Differences of Squared Lengths and Squared Radius

The sample points are {Xi}mi=1. The least-squares error function involves the squares of differences between
squared lengths and squared radius,

E(C, r2) =

m∑
i=1

(
|C−Xi|2 − r2

)2
(39)

The minimization is based on computing points where the gradient of E is zero. The partial derivative with
respect to r2 is

∂E

∂r2
= −2

m∑
i=1

(
|C−Xi|2 − r2

)
(40)

Define ∆i = C−Xi. Setting the derivative to zero and solving for the squared radius,

r2 =
1

m

m∑
i=1

|C−Xi|2 =
1

m

m∑
i=1

∆T
i ∆i (41)

which says that the squared radius is the average of the squared distances from the sample points to the
center C. The partial derivative with respect to C is

∂E

∂C
= 4

m∑
i=1

(
|C−Xi|2 − r2

)
(C−Xi) = 4

m∑
i=1

(
∆T
i ∆i − r2

)
∆i (42)
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Setting this to zero, the center and radius must satisfy

m∑
i=1

(
∆T
i ∆i − r2

)
∆i = 0 (43)

Expanding the squared lengths,
∆T
i ∆i = |C|2 − 2CTXi + |Xi|2 (44)

Substituting into equation (41),

r2 = |C|2 − 2CT

(
1

m

m∑
i=1

Xi

)
+

1

m

m∑
i=1

|Xi|2 = |C|2 − 2CTA +
1

m

m∑
i=1

|Xi|2 (45)

where A = (
∑m
i=1 Xi) /m is the average of the samples. Define Yi = Xi −A. Some algebra will show that

∆T
i ∆i − r2 = |C|2 − 2CTXi + |Xi|2 −

(
|C|2 − 2CTA + 1

m

∑m
j=1 |Xj |2

)
= −2CTYi + |Xi|2 − 1

m

∑m
j=1 |Xj |2

= −2(C−A)TYi + |Yi|2 − 1
m

∑m
j=1 |Yj |2

= −2(C−A)TYi +Bi

(46)

where the last equality defines Bi. Equation (43) becomes

0 =
∑m
i=1

(
∆T
i ∆i − r2

)
∆i

=
∑m
i=1

(
−2(C−A)TYi +Bi

)
((C−A)−Yi)

=
(
(C−A)T

∑m
i=1 Yi

)
(C−A) + 2

(∑m
i=1 YiY

T
i

)
(C−A) + (

∑m
i=1Bi) (C−A)−

∑m
i=1BiYi

(47)

It is easily shown that
∑m
i=1 Yi = 0 and

∑m
i=1Bi = 0; therefore,

0 = 2

(
m∑
i=1

YiY
T
i

)
(C−A)−

m∑
i=1

(
YT
i Yi

)
Yi (48)

The least-squares center is obtained by solving the previous equation,

C = A +
1

2

(
m∑
i=1

YYT
i

)−1 m∑
i=1

(
YT
i Yi

)
Yi (49)

5.2.1 Pseudocode for the General Case

Listing 8 contains pseudocode for fitting a hypersphere to points. The case n = 2 is for circles and the case
n = 3 is for spheres.
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Listing 8. Fitting a hypersphere to points using least squares based on squared differences of squared
lengths and square radius. The algorithm requires inverting the covariance matrix. If the matrix is invertible,
the output center and radius are valid and the function returns true. If the matrix is not invertible, the function
returns false, and the center and radius are invalid (but set to zero so at least they are initialized).

boo l F i tHype r s ph e r e ( i n t numPoints , Vector<n> X [ ] , Vector<n>& cente r , Rea l& r a d i u s )
{

// Compute the ave rage o f the data p o i n t s .
Vector<n> A = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

A += X[ i ] ;
}
A /= numPoints ;

// Compute the c o v a r i a n c e mat r i x M o f the Y[ i ] = X[ i ]−A and the r i g h t−hand s i d e R o f the l i n e a r
// system M∗(C−A) = R.
Matr ix<n , n> M = Matr ix<n , n> : :ZERO;
Vector<n> R = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n> Y = X[ i ] − A;
Matr ix<n , n> YYT = OuterProduct (Y, Y ) ; // Y∗Transpose (Y)
Rea l YTY = Dot (Y, Y ) ; // Transpose (Y)∗Y
M += YYT;
R += YTY ∗ Y;

}
R /= 2 ;

// So l v e the l i n e a r system M∗(C−A) = R f o r the c e n t e r C . The f u n c t i o n ’ boo l So l v e (M, R , S ) ’ t r i e s
// to s o l v e the l i n e a r system M∗S = R. I f M i s i n v e r t i b l e , the f u n c t i o n r e t u r n s t r u e and S i s the
// s o l u t i o n . I f M i s not i n v e r t i b l e , the f u n c t i o n r e t u r n s f a l s e and S i s i n v a l i d .
Vector<n> CmA;
i f ( So l v e (M, R , CmA) )
{

c e n t e r = A + CmA;
Rea l r s q r = 0 ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n> d e l t a = X[ i ] − c e n t e r ;
r s q r += Dot ( de l t a , d e l t a ) ;

}
r s q r /= numPoints ;
r a d i u s = s q r t ( r s q r ) ;
r e t u r n t rue ;

}
e l s e
{

c e n t e r = Vector<n> : :ZERO;
r a d i u s = 0 ;
r e t u r n f a l s e ;

}
}

5.2.2 Pseudocode for Circles

Listing 9 is a specialization of Listing 8 for circles in 2 dimensions. The matrix inversion requires only
computing the upper-triangular part of the covariance matrix and uses cofactors for inversion.
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Listing 9. Fitting a circle to points using least squares based on squared differences of squared lengths
and square radius. The algorithm requires inverting the covariance matrix. If the matrix is invertible, the
output center and radius are valid and the function returns true. If the matrix is not invertible, the function
returns false, and the center and radius are invalid (but set to zero so at least they are initialized).

boo l F i t C i r c l e ( i n t numPoints , Vector2 X [ ] , Vector2& cen t e r , Rea l& r a d i u s )
{

// Compute the ave rage o f the data p o i n t s .
Vector2 A = { 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

A += X[ i ] ;
}
A /= numPoints ;

// Compute the c o v a r i a n c e mat r i x M o f the Y[ i ] = X[ i ]−A and the r i g h t−hand s i d e R o f the l i n e a r
// system M∗(C−A) = R.
Rea l M00 = 0 , M01 = 0 , M11 = 0 ;
Vector2 R = { 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector2 Y = X[ i ] − A;
Rea l Y0Y0 = Y [ 0 ] ∗ Y[ 0 ] , Y0Y1 = Y [ 0 ] ∗ Y[ 1 ] , Y1Y1 = Y [ 1 ] ∗ Y [ 1 ] ;
M00 += Y0Y0 ; M01 += Y0Y1 ; M11 += Y1Y1 ;
R += (Y0Y0 + Y1Y1) ∗ Y;

}
R /= 2 ;

// So l v e the l i n e a r system M∗(C−A) = R f o r the c e n t e r C .
Rea l det = M00 ∗ M11 − M01 ∗ M01 ;
i f ( det != 0)
{

c e n t e r [ 0 ] = A [ 0 ] + (M11 ∗ R [ 0 ] − M01 ∗ R [ 1 ] ) / det ;
c e n t e r [ 1 ] = A [ 1 ] + (M00 ∗ R [ 1 ] − M01 ∗ R [ 0 ] ) / det ;
Rea l r s q r = 0 ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector2 d e l t a = X[ i ] − c e n t e r ;
r s q r += Dot ( de l t a , d e l t a ) ;

}
r s q r /= numPoints ;
r a d i u s = s q r t ( r s q r ) ;
r e t u r n t rue ;

}
e l s e
{

c e n t e r = { 0 , 0 } ;
r a d i u s = 0 ;
r e t u r n f a l s e ;

}
}

5.2.3 Pseudocode for Spheres

Listing 10 is a specialization of Listing 8 for spheres in 3 dimensions. The matrix inversion requires only
computing the upper-triangular part of the covariance matrix and uses cofactors for inversion.

Listing 10. Fitting a sphere to points using least squares based on squared differences of squared lengths
and square radius. The algorithm requires inverting the covariance matrix. If the matrix is invertible, the
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output center and radius are valid and the function returns true. If the matrix is not invertible, the function
returns false, and the center and radius are invalid (but set to zero so at least they are initialized).

boo l F i tSphe r e ( i n t numPoints , Vector3 X [ ] , Vector3& cen t e r , Rea l& r a d i u s )
{

// Compute the ave rage o f the data p o i n t s .
Vector3 A = { 0 , 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

A += X[ i ] ;
}
A /= numPoints ;

// Compute the c o v a r i a n c e mat r i x M o f the Y[ i ] = X[ i ]−A and the r i g h t−hand s i d e R o f the l i n e a r
// system M∗(C−A) = R.
Rea l M00 = 0 , M01 = 0 , M02 = 0 , M11 = 0 , M12 = 0 , M22 = 0 ;
Vector3 R = { 0 , 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector2 Y = X[ i ] − A;
Rea l Y0Y0 = Y [ 0 ] ∗ Y[ 0 ] , Y0Y1 = Y [ 0 ] ∗ Y[ 1 ] , Y0Y2 = Y [ 0 ] ∗ Y [ 2 ] ;
Rea l Y1Y1 = Y [ 1 ] ∗ Y[ 1 ] , Y1Y2 = Y [ 1 ] ∗ Y[ 2 ] , Y2Y2 = Y [ 2 ] ∗ Y [ 2 ] ;
M00 += Y0Y0 ; M01 += Y0Y1 ; M02 += Y0Y2 ;
M11 += Y1Y1 ; M12 += Y1Y2 ; M22 += Y2Y2 ;
R += (Y0Y0 + Y1Y1 + Y2Y2) ∗ Y;

}
R /= 2 ;

// So l v e the l i n e a r system M∗(C−A) = R f o r the c e n t e r C .
Rea l co f00 = M11 ∗ M22 − M12 ∗ M12 ;
Rea l co f01 = M02 ∗ M12 − M01 ∗ M22 ;
Rea l co f02 = M01 ∗ M12 − M02 ∗ M11 ;
Rea l det = M00 ∗ co f00 + M01 ∗ co f01 + M02 ∗ co f02 ;
i f ( det != 0)
{

Rea l co f11 = M00 ∗ M22 − M02 ∗ M02 ;
Rea l co f12 = M01 ∗ M02 − M00 ∗ M12 ;
Rea l co f22 = M00 ∗ M11 − M01 ∗ M01 ;
c e n t e r [ 0 ] = A [ 0 ] + ( co f00 ∗ R [ 0 ] + co f01 ∗ R [ 1 ] + co f02 ∗ R [ 2 ] ) / det ;
c e n t e r [ 1 ] = A [ 1 ] + ( co f01 ∗ R [ 0 ] + co f11 ∗ R [ 1 ] + co f12 ∗ R [ 2 ] ) / det ;
c e n t e r [ 2 ] = A [ 2 ] + ( co f02 ∗ R [ 0 ] + co f12 ∗ R [ 1 ] + co f22 ∗ R [ 2 ] ) / det ;
Rea l r s q r = 0 ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector3 d e l t a = X[ i ] − c e n t e r ;
r s q r += Dot ( de l t a , d e l t a ) ;

}
r s q r /= numPoints ;
r a d i u s = s q r t ( r s q r ) ;
r e t u r n t rue ;

}
e l s e
{

c e n t e r = { 0 , 0 , 0 } ;
r a d i u s = 0 ;
r e t u r n f a l s e ;

}
}

5.3 Fitting the Coefficients of a Quadratic Equation

The general quadratic equation that represents a hypersphere in n dimensions is

b0 + b1 ·X + b2|X|2 = 0 (50)

23



where b0 and b2 6= 0 are scalar constants and b1 is an n× 1 vector of scalars. Define

b =


b0

b1

b2

 , V =


1

X

|X|2

 (51)

which are both (n + 2) × 1 vectors. The quadratic equation is b · V = 0. Because b is not zero, we can
remove a degree of freedom by requiring |b| = 1.

Given samples {Xi}mi=1, we can estimate the constants using a least-squares algorithm where the error
function is

E(b) =

m∑
i=1

(b ·Vi)
2 = bT

(
m∑
i=1

ViV
T
i

)
b = bTV b (52)

where as a tuple, Vi = (1,Xi, |Xi|2), and where V =
∑m
i=1 ViV

T
i is a positive semidefinite matrix (sym-

metric, eigenvalues are nonnegative). The error function is minimized by a unit-length eigenvector b that
corresponds to the minimum eigenvalue of V . The equation (50) is factored into∣∣∣∣X +

b1

2b2

∣∣∣∣2 =

∣∣∣∣ b1

2b2

∣∣∣∣2 − b0
b2

(53)

from which we see that the hypersphere center is C = −b1/(2b2) and the radius is r =
√

(|b1|2 − 4b0b2)/(4b22).

As is typical of these types of problems, it is better to subtract translate the samples by their average to
obtain numerical robustness when computing with floating-point arithmetic. Define A = (

∑m
i=1 Xi) and

Yi = Xi −A. Equation (50) becomes

f0 + f1 ·Y + f2|Y|2 = 0 (54)

where

b =


b0

b1

b2

 =


f0 − f1 ·A + f2|A|2

f1 − 2f2A

f2

 =


1 −AT |A|2

0 I −2A

0 0T 1



f0

f1

f2

 = M f (55)

with I the n× n identity matrix and 0 the n× 1 zero vector. The last equality defines the (n+ 2)× (n+ 2)
upper-triangular matrix M and the (n+ 2)× 1 vector f. The error function is now

E(f) = bTV b = (Rf)TV (Rf) = fT
(
RTV R

)
f = fTW f (56)

where the last equation defines the positive semidefinite matrix W . Observe that

W = RT

(
m∑
i=1

ViV
T
i

)
R =

m∑
i=1

(
RTVi

) (
RTVi

)T
=

m∑
i=1

WiW
T
i (57)

where

Wi = RTVi =


1 0T 0

−A I 0

|A|2 −2AT 1




1

Xi

|Xi|2

 =


1

Xi −A

|Xi −A|2

 (58)
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Therefore, we can subtract A from the samples, compute the matrix W , extract its eigenvector f corre-
sponding to its minimum eigenvalue, compute b = Rf and then the center and radius using equation (53).
The matrix W written as a block matrix and divided by the number of points m to keep the numerical
intermediate values on the order of the sample values is

W =


1 0T 1

m

∑m
i=1 |Yi|2

0 1
m

∑m
i=1 YiY

T
i

1
m

∑m
i=1 |Yi|2Yi

1
m

∑m
i=1 |Yi|2 1

m

∑m
i=1 |Yi|2Yi

1
m |Yi|4

 (59)

5.3.1 Pseudocode for the General Case

Listing 11 contains pseudocode for fitting a hypersphere to points. The case n = 2 is for circles and the case
n = 3 is for spheres.

Listing 11. Fitting a hypersphere to points using least squares to fit the coefficients of a quadratic equation
defining the hypersphere. The algorithm requires computing the squared radius in terms of the components
of an eigenvector. For samples not really distributed well on a hypersphere, the purported squared radius
might be negative. The function returns true when that computation is nonnegative or false when it is
negative.

boo l F i tHype r s ph e r e ( i n t numPoints , Vector<n> X [ ] , Vector<n>& cente r , Rea l& r a d i u s )
{

// Compute the ave rage o f the data p o i n t s and the squa red l e n g t h o f the ave rage .
Vector<n> A = Vector<n> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

A += X[ i ] ;
}
A /= numPoints ;
Rea l sqrLenA = Dot (A, A ) ;

// Compute the components o f W. Block ( r , c , r s i z e , c s i z e ) i s an a c c e s s o r to the b l o ck
// whose upper− l e f t l o c a t i o n i s ( r , c ) and whose s i z e i s r s i z e−by−c s i z e . The i n d i c e s
// r and c a r e zero−based .
Matr ix<n + 2 , n + 2> W = Matr ix<n + 2 , n + 2> : :ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector<n> Y = X[ i ] − A;
Matr ix<n , n> YYT = OuterProduct (Y, Y ) ; // Y∗Transpose (Y)
Rea l YTY = Dot (Y, Y ) ; // Transpose (Y)∗Y
Vector YTYY = YTY ∗ Y;
Rea l YTYYTY = YTY ∗ YTY;
W. Block (0 , 0 , 1 , 1) += 1 ;
W. Block (0 , n + 1 , 1 , 1) += YTY;
W. Block (1 , 1 , n , n ) += YYT;
W. Block (1 , n + 1 , n , 1) += YTYY;
W. Block ( n + 1 , 0 , 1 , 1) += YTY;
W. Block ( n + 1 , 1 , 1 , n ) += YTYY;
W. Block ( n + 1 , n + 1 , 1 , 1) += YTYYTY;

}
W /= numPoints ;

// Compute the e i g e n v a l u e s and e i g e n v e c t o r s o f M, where the e i g e n v a l u e s a r e s o r t e d
// i n nonde c r e a s i n g o r d e r ( e i g e n v a l u e s [ 0 ] <= e i g e n v a l u e s [ 1 ] <= . . . ) .
Rea l e i g e n v a l u e s [ n + 2 ] ;
Vector<n> e i g e n v e c t o r s [ n + 2 ] ;
So l v eE i g en sy s t em (W, e i g e n v a l u e s , e i g e n v e c t o r s ) ;
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// Block ( i , i s i z e ) i s an a c c e s s o r to the b l o ck whose i n i t i a l l o c a t i o n i s i and whose
// s i z e i s i s i z e .
Rea l f 0 = e i g e n v e c t o r s [ 0 ] . B lock (0 , 1 ) ;
Vector<n> f 1 = e i g e n v e c t o r s [ 0 ] . B lock (1 , n ) ;
Rea l f 2 = e i g e n v e c t o r s [ 0 ] . B lock ( n + 1 , 1 ) ;
Rea l b0 = f0 − Dot ( f1 , A) + f2 ∗ sqrLenA ;
Vector<n> b1 = f1 − 2 ∗ f 2 ∗ A;
Rea l b2 = f2 ;

i f ( b2 != 0)
{

Rea l d i s c r = Dot ( b1 , b1 ) − 4 ∗ b0 ∗ b2 ;
i f ( d i s c r >= 0)
{

c e n t e r = −b1 / (2 ∗ b2 ) ;
r a d i u s = s q r t ( d i s c r / (4 ∗ b2 ∗ b2 ) ) ;
r e t u r n t rue ;

}
}

c e n t e r = Vector<n> : :ZERO;
r a d i u s = 0 ;
r e t u r n f a l s e ;

}

5.3.2 Pseudocode for Circles

Listing 12 contains pseudocode for fitting a circle to points.

Listing 12. Fitting a circle to points using least squares to fit the coefficients of a quadratic equation
defining the hypersphere. The algorithm requires computing the squared radius in terms of the components
of an eigenvector. For samples not really distributed well on a hypersphere, the purported squared radius
might be negative. The function returns true when that computation is nonnegative or false when it is
negative.

boo l F i t C i r c l e ( i n t numPoints , Vector2 X [ ] , Vector2& cen t e r , Rea l& r a d i u s )
{

// Compute the ave rage o f the data p o i n t s and the squa red l e n g t h o f the ave rage .
Vector2 A = { 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

A += X[ i ] ;
}
A /= numPoints ;
Rea l sqrLenA = Dot (A, A ) ;

// Compute the upper−t r i a n g u l a r components o f W.
Matr ix4x4 W = Matr ix4x4 : : ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector2 Y = X[ i ] − A;
Rea l Y0Y0 = Y [ 0 ] ∗ Y[ 0 ] , Y0Y1 = Y [ 0 ] ∗ Y[ 1 ] , Y1Y1 = Y [ 1 ] ∗ Y [ 1 ] ;
Rea l RR = Y0Y0 + Y1Y1 , RRRR = RR ∗ RR;
Rea l Y0RR = Y0 ∗ RR, Y1RR = Y1 ∗ RR;
W(0 , 3) += RR;
W(1 , 1) += Y0Y0 ;
W(1 , 2) += Y0Y1 ;
W(1 , 3) += Y0RR ;
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W(2 , 2) += Y1Y1 ;
W(2 , 3) += Y1RR ;
W(3 , 3) += RRRR;

}
W /= numPoints ;
W(0 , 0) = 1 ;

// F i l l i n the lower−t r i a n g u l a r components o f W.
W(3 , 0) = W(0 , 3 ) ;
W(2 , 1) = W(1 , 2 ) ;
W(3 , 1) = W(1 , 3 ) ;
W(3 , 2) = W(2 , 3 ) ;

// Compute the e i g e n v a l u e s and e i g e n v e c t o r s o f M, where the e i g e n v a l u e s a r e s o r t e d
// i n nonde c r e a s i n g o r d e r
// e i g e n v a l u e s [ 0 ] <= e i g e n v a l u e s [ 1 ] <= e i g e n v a l u e s [ 2 ] <= e i g e n v a l u e s [ 3 ]
Rea l e i g e n v a l u e s [ 4 ] ;
Vector4 e i g e n v e c t o r s [ 4 ] ;
So l v eE i g en sy s t em (W, e i g e n v a l u e s , e i g e n v e c t o r s ) ;

Rea l f 0 = e i g e n v e c t o r s [ 0 ] [ 0 ] ;
Vector2 f 1 = { e i g e n v e c t o r s [ 0 ] [ 1 ] , e i g e n v e c t o r s [ 0 ] [ 2 ] } ;
Rea l f 2 = e i g e n v e c t o r s [ 0 ] [ 3 ] ;
Rea l b0 = f0 − Dot ( f1 , A) + f2 ∗ sqrLenA ;
Vector2 b1 = f1 − 2 ∗ f 2 ∗ A;
Rea l b2 = f2 ;

i f ( b2 != 0)
{

Rea l d i s c r = Dot ( b1 , b1 ) − 4 ∗ b0 ∗ b2 ;
i f ( d i s c r >= 0)
{

c e n t e r = −b1 / (2 ∗ b2 ) ;
r a d i u s = s q r t ( d i s c r / (4 ∗ b2 ∗ b2 ) ) ;
r e t u r n t rue ;

}
}

c e n t e r = Vector2 : : ZERO;
r a d i u s = 0 ;
r e t u r n f a l s e ;

}

5.3.3 Pseudocode for Spheres

Listing 13 contains pseudocode for fitting a sphere to points.

Listing 13. Fitting a sphere to points using least squares to fit the coefficients of a quadratic equation
defining the hypersphere. The algorithm requires computing the squared radius in terms of the components
of an eigenvector. For samples not really distributed well on a hypersphere, the purported squared radius
might be negative. The function returns true when that computation is nonnegative or false when it is
negative.

boo l F i tSphe r e ( i n t numPoints , Vector3 X [ ] , Vector3& cen t e r , Rea l& r a d i u s )
{

// Compute the ave rage o f the data p o i n t s and the squa red l e n g t h o f the ave rage .
Vector3 A = { 0 , 0 , 0 } ;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{
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A += X[ i ] ;
}
A /= numPoints ;
Rea l sqrLenA = Dot (A, A ) ;

// Compute the upper−t r i a n g u l a r components o f W.
Matr ix5x5 W = Matr ix5x5 : : ZERO;
f o r ( i n t i = 0 ; i < numPoints ; ++i )
{

Vector3 Y = X[ i ] − A;
Rea l Y0Y0 = Y [ 0 ] ∗ Y[ 0 ] , Y0Y1 = Y [ 0 ] ∗ Y[ 1 ] , Y1Y1 = Y [ 1 ] ∗ Y [ 1 ] ;
Rea l Y1Y1 = Y [ 1 ] ∗ Y[ 1 ] , Y1Y2 = Y [ 1 ] ∗ Y[ 2 ] , Y2Y2 = Y [ 2 ] ∗ Y [ 2 ] ;
Rea l RR = Y0Y0 + Y1Y1 + Y2Y2 , RRRR = RR ∗ RR;
Rea l Y0RR = Y0 ∗ RR, Y1RR = Y1 ∗ RR, Y2RR = Y2 ∗ RR;
W(0 , 4) += RR;
W(1 , 1) += Y0Y0 ;
W(1 , 2) += Y0Y1 ;
W(1 , 3) += Y0Y2 ;
W(1 , 4) += Y0RR ;
W(2 , 2) += Y1Y1 ;
W(2 , 3) += Y1Y2 ;
W(2 , 4) += Y1RR ;
W(3 , 3) += Y2Y2 ;
W(3 , 4) += Y2RR ;
W(4 , 4) += RRRR;

}
W /= numPoints ;
W(0 , 0) = 1 ;

// F i l l i n the lower−t r i a n g u l a r components o f W.
W(4 , 0) = W(0 , 4 ) ;
W(2 , 1) = W(1 , 2 ) ;
W(3 , 1) = W(1 , 3 ) ;
W(4 , 1) = W(1 , 4 ) ;
W(3 , 2) = W(2 , 3 ) ;
W(4 , 2) = W(2 , 4 ) ;
W(4 , 3) = W(3 , 4 ) ;

// Compute the e i g e n v a l u e s and e i g e n v e c t o r s o f M, where the e i g e n v a l u e s a r e s o r t e d
// i n nonde c r e a s i n g o r d e r
// e i g e n v a l u e s [ 0 ] <= e i g e n v a l u e s [ 1 ] <= e i g e n v a l u e s [ 2 ] <= e i g e n v a l u e s [ 3 ] <= e i g e n v a l u e s [ 4 ]
Rea l e i g e n v a l u e s [ 5 ] ;
Vector5 e i g e n v e c t o r s [ 5 ] ;
So l v eE i g en sy s t em (W, e i g e n v a l u e s , e i g e n v e c t o r s ) ;

Rea l f 0 = e i g e n v e c t o r s [ 0 ] [ 0 ] ;
Vector3 f 1 = { e i g e n v e c t o r s [ 0 ] [ 1 ] , e i g e n v e c t o r s [ 0 ] [ 2 ] , e i g e n v e c t o r s [ 0 ] [ 3 ] } ;
Rea l f 2 = e i g e n v e c t o r s [ 0 ] [ 4 ] ;
Rea l b0 = f0 − Dot ( f1 , A) + f2 ∗ sqrLenA ;
Vector3 b1 = f1 − 2 ∗ f 2 ∗ A;
Rea l b2 = f2 ;

i f ( b2 != 0)
{

Rea l d i s c r = Dot ( b1 , b1 ) − 4 ∗ b0 ∗ b2 ;
i f ( d i s c r >= 0)
{

c e n t e r = −b1 / (2 ∗ b2 ) ;
r a d i u s = s q r t ( d i s c r / (4 ∗ b2 ∗ b2 ) ) ;
r e t u r n t rue ;

}
}

c e n t e r = Vector3 : : ZERO;
r a d i u s = 0 ;
r e t u r n f a l s e ;

}
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6 Fitting a Hyperellipsoid to Points

The classic cases are fitting 2-dimensional points by ellipses and 3-dimensional points by ellipsoids. In
n-dimensions, the objects are called hyperellipsoids, defined implicitly by the quadratic equation

(X−C)TRDRT(X−C) = 1 (60)

The center of the hyperellipsoid is C. The matrix R is an n× n rotation matrix with n× 1 column vectors
Ui for 0 ≤ i < n. These are unit-length vectors that are mutually perpendicular. The matrix D is an n× n
diagonal matrix with diagonal elements di = 1/e2i for 0 ≤ i < n. The extent ei is the distance from C to the
two extreme points of the hyperellipsoid in the direction Ui. The matrix M = RDRT is positive definite
and can be expressed as

M =

n−1∑
i=0

UiU
T
i

e2i
=

n−1∑
i=0

ViV
T
i

e2i |Vi|2
(61)

The second equality uses vectors Vi that are not necessarily unit length, which is useful when robust
computations require arbitrary precision arithmetic for exact results. The length of Vi is not necessary to
compute; rather, we compute |Vi|2 = Vi ·Vi to eliminate floating-point rounding errors that occur when
normalizing Vi to obtain Ui.

Let the samples be {Xi}mi=1. If we choose to mimic the approach for fitting points by hyperspheres using
differences of lengths and squared radius, the equivalent is to minimize the squared distance from points to
the purported hyperellipsoid H. The nonlinear least-squares error function is

E(C, R,D) =

m∑
i=1

L(Xi; C, R,D)2 (62)

where L(X; C, R,D) is the distance from point X to the hyperellipsoid defined by equation (60). This prob-
lem is more difficult to approach than that for fitting hyperspheres. The function L(X; C, R,D) is nontrivial
to compute, as shown by the mathematical details in Distance from a Point to an Ellipse, an Ellipsoid,
or a Hyperellipsoid. If one were to use Gauss–Newton or Levenberg–Marquardt algorithms for minimizing
E(C, R,D), we would need to compute derivatives of L with respect to C, R or D. This is a complicated
endeavor for general dimensions, but it is feasible in dimensions 2 and 3. An alternative is using Powell’s
direction-set method to search for a minimum, an algorithm that does not require computing derivatives.
Even so, the iteration involves a large number of evaluations of L, which is computationally expensive.
Implementations for fitting ellipses and ellipsoids to points using this approach are GteApprEllipse2.h and
GteApprEllipsoid3.h.

6.1 A Tractable Nonlinear Least-Squares Error Function

A more tractable approach uses the nonlinear least-squares error function

E(C, R,D) =

m∑
i=1

[
(Xi −C)

T
RDRT (Xi −C)− 1

]2
(63)

Various algorithms are presented in this section for locating the parameters that minimize E, all requiring
derivative computations. We can parameterize D by its n diagonal components di listed as a vector d. We
can also parameterize R by its n(n − 1)/2 Rodrigues angles θrc for 0 ≤ r < n and r < c < n, listed as
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a vector θ. These angles are the upper-triangular entries of an n × n skew-symmetric matrix S, and R is
generated from them by the exponential map R = exp(S). The error function can then be thought of as a
function E(C,θ,d), which depends on 2n+ n(n− 1)/2 scalar parameters.

In the following discussion, define ∆i = Xi−C. The first-order derivative of E with respect to the center is

∂E

∂C
= −4

m∑
i=1

(
∆T
i RDR

T∆i − 1
)
RDRT∆i (64)

The first-order derivative of E with respect to the component dj of d is

∂E

∂dj
= 2

m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆T
i UjU

T
j ∆i (65)

where Ej is the matrix whose elements are all 0 except for the j-th diagonal entry which is one. The vector
Uj is the unit-length j-th column of R.

The first-order derivatives with respect to the θrc are complicated to compute in high dimensions. However,
we can derive simplified equations for the derivatives of E with respect to those angles,

∂E

∂θrc
= 2

m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆T
i

(
RD

∂RT

∂θrc
+

∂R

∂θrc
DRT

)
∆i (66)

In the matrix-valued expression involving D, R and ∂R/∂θrc, multiply by RT on the left and R on the right
to obtain

D

(
∂RT

∂θrc
R

)
+

(
RT ∂R

∂θrc

)
D =

[
(dk − dj)UT

j

∂Uk

∂θrc

]
= [Mrc,jk] = Mrc (67)

where the right-hand side defines the matrix Mrc and its entry Mrc,jk in row j and column k. The diagonal
entries of M area all zero (Mrc,jj = 0) because the differences dk − dj = 0 for k = j. Mrc is symmetric

(Mrc,kj = Mrc,jk) because of the mutual orthogonality of the unit-length columns of R; that is, UT
j Uk = 0

for j 6= k which implies UT
j ∂Uk/∂θrc = −∂UT

j /∂θrcUk and because (dj − dk) = −(dk − dj).

Define the vector Pjk for j < k to have all 0 entries except at indices j and k where the entries are 1. Define
the vector Njk for j < k to have all 0 entries except at index j where the entry is 1 and at index k where
the entry is −1. The matrix M can be factored into a linear combination of outer products of vectors,

Mrc =

n−1∑
j=0

n−1∑
k=j+1

1

2
Mrc,jk

(
PjkP

T
jk −NjkN

T
jk

)
(68)

Multiplying by R on the left and RT on the right,

RD
∂RT

∂θrc
+

∂R

∂θrc
DRT = RMrcR

T =

n−1∑
j=0

n−1∑
k=j+1

Mrc,jk

(
UjU

T
k + UkU

T
j

)
(69)

where I have used RPjk = Uj + Uk and RNjk = Uj −Uk. Substituting this into equation (66),

∂E

∂θrc
= 2

n−1∑
j=0

n−1∑
k=j+1

Mrc,jk

m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆T
i

(
UjU

T
k + UkU

T
j

)
∆i (70)
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Defining θrr = dr and Mrr,jj = 1, we can extend equation (70) to represent the derivatives with respect to
the diagonal terms of D and the angles that generate R,

∂E

∂θrc
= 2

n−1∑
j=0

n−1∑
k=j

Mrc,jkU
T
j

(
m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i

)
Uk (71)

for 0 ≤ r ≤ c < n.

6.1.1 Angle Derivative for an Ellipse

For 2-dimensional rotations, the only Rodrigues angle is θ01. I will omit the subscript for ease of reading.
The columns of R written as 2-tuples are U0 = (cos θ, sin θ) and U1 = (− sin θ, cos θ). The derivatives are
dU0/dθ = (− sin θ, cos θ) = U1 and dU1/dθ = (− cos θ,− sin θ) = −U0. The matrix M01 has the off-diagonal
entry M01,01 = (d1 − d0)UT

0 dU1/dθ = (d0 − d1). The angle derivative of E is

∂E

∂θ
= (d0 − d1) UT

0

(
m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i

)
U1 (72)

6.1.2 Angle Derivatives for an Ellipsoid

Rodrigues angles are used to parameterize rotation matrices via the exponential map. Specifically, R =
exp(S) for some skew-symmetric matrix

S =


0 −s2 s1

s2 0 −s0
−s1 s0 0

 = Skew(s) (73)

where the last equality defines the skew-symmetric matrix corresponding to the input 3-tuple. Define

s = (s0, s1, s2), θ =
√
s20 + s21 + s22, α(θ) =

sin θ

θ
, β(θ) =

1− cos θ

θ2
(74)

The rotation matrix is

R(s) = I + αS + βS2 =


1− β(s21 + s22) −αs2 + βs0s1 +αs1 + βs0s2

+αs2 + βs0s1 1− β(s20 + s22) −αs0 + βs1s2

−αs1 + βs0s2 +αs0 + βs1s2 1− β(s20 + s21)

 (75)

where R(s) indicates that the rotation matrix is parameterized by the components of s. When s 6= 0, a
unit-length rotation axis is s/θ.

Given a 3 × 3 rotation matrix R = [rij ], the 9 elements of the matrix are dependent; specifically, they are
related by equation (75). Observe that ∂θ/∂s` = s`/θ for any `. Define

γ(θ) =
α′(θ)

θ
=
θ cos θ − sin θ

θ3
, δ(θ) =

β′(θ)

θ
=
θ sin θ − 2(1− cos θ)

θ4
(76)
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where α(θ) and β(θ) are defined in equation (74). The first-order partial derivatives of the rotation matrix
components with respect to the components of s are

∂R

∂s0
=


−δs0(s21 + s22) −γs0s2 + (β + δs20)s1 γs0s1 + (β + δs20)s2

γs0s2 + (β + δs20)s1 −2βs0 − δs0(s20 + s22) −(α+ γs20) + δs0s1s2

−γs0s1 + (β + δs20)s2 (α+ γs20) + δs0s1s2 −2βs0 − δs0(s20 + s21)

 (77)

and

∂R

∂s1
=


−2βs1 − δs1(s21 + s22) −γs1s2 + (β + δs21)s0 (α+ γs21) + δs0s1s2

γs1s2 + (β + δs21)s0 −δs1(s20 + s22) −γs0s1 + (β + δs21)s2

−(α+ γs21) + δs0s1s2 γs0s1 + (β + δs21)s2 −2βs1 − δs1(s20 + s21)

 (78)

and

∂R

∂s2
=


−2βs2 − δs2(s21 + s22) −(α+ γs22) + δs0s1s2 γs1s2 + (β + δs22)s0

(α+ γs22) + δs0s1s2 −2βs2 − δs2(s20 + s22) −γs0s2 + (β + δs22)s1

−γs1s2 + (β + δs22)s0 γs0s2 + (β + δs22)s1 −δs2(s20 + s21)

 (79)

The columns of the matrices are written as

R =
[

U0 U1 U2

]
,
∂R

∂sk
=
[

∂U0

∂sk
∂U1

∂sk
∂U2

∂sk

]
(80)

Define

ε(φ) =
φ− sinφ

φ3
=

1− α(φ)

φ2
= β(φ) + γ(φ) (81)

then some algebra leads to

UT
0
∂U1

∂s0
= −s1β − s0s2ε, UT

0
∂U2

∂s0
= −s2β + s0s1ε, UT

1
∂U2

∂s0
= −1 + (s21 + s22)ε,

UT
0
∂U1

∂s1
= +s0β − s1s2ε, UT

0
∂U2

∂s1
= +1− (s20 + s22)ε, UT

1
∂U2

∂s1
= −s2β − s0s1ε,

UT
0
∂U1

∂s2
= −1 + (s20 + s21)ε, UT

0
∂U2

∂s2
= +s0β + s1s2ε, UT

1
∂U2

∂s2
= +s1β − s0s2ε

(82)

and

RT

(
RD

∂R

∂sk

T

+
∂R

∂sk
DRT

)
R =


0 (d1 − d0)UT

0
∂U1

∂sk
(d2 − d0)UT

0
∂U2

∂sk

(d1 − d0)UT
0
∂U1

∂sk
0 (d2 − d1)UT

1
∂U2

∂sk

(d2 − d0)UT
0
∂U2

∂sk
(d2 − d1)UT

1
∂U2

∂sk
0

 (83)

The angle derivatives of E are

∂E
∂sk

=
(

(d1 − d0)UT
0
∂U1

∂sk

)
UT

0

(∑m
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i

)
U1 +(

(d2 − d0)UT
0
∂U2

∂sk

)
UT

0

(∑m
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i

)
U2 +(

(d2 − d1)UT
1
∂U2

∂sk

)
UT

1

(∑m
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i

)
U2

(84)
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6.2 Initial Choice for the Parameters of the Error Function

Without any application-specific knowledge about the sample points, the simplest initial choice for the center,
axis directions and axis extents is based on fitting the sample points with a Gaussian distribution. The mean
of the distribution is used for the center. The covariance matrix is computed from the sample points and
mean. The eigenvectors of this matrix are used for the axis directions. If M is the covariance matrix, the
eigendecomposition produces M = RDRT, where R is a rotation matrix and D is a diagonal matrix with
nonnegative (but in practice usually positive) diagonal entries di for 0 ≤ i < n. You might choose the
axis extents to be 1/

√
di, but in the limit as the number of samples becomes dense enough to cover a full

hyperellipsoid, this choice of axis extents is not good.

In general dimensions, the initial center is chosen to be the mean of the sample points,

C =
1

m

m∑
i=1

Xi (85)

The covariance matrix is

M =
1

m

m∑
i=1

(Xi −C)(Xi −C)T (86)

Construct a right-handed orthonormal basis of eigenvectors {Uj}n−1j=0 and create the rotation matrix whose
columns are these eigenvectors,

R =
[

U0 U1 · · · Un−1

]
(87)

Let the corresponding eigenvalues be {λj}n−1j=0 . We need to choose initial values for the axis extents {ej}n−1j=0

based on the eigenvalues are other information specific to hyperellipsoids.

6.2.1 Initial Choice for the Parameters of an Ellipse

The ellipse is parameterized by P(θ) = C+ e0 cos(θ)U0 + e1 sin(θ)U1 for θ ∈ [0, 2π). The algebraic equation
that implicitly defines the ellipse is (P(θ) − C)TRDRT(P(θ) − C) = 1, where R = [U0 U1] is a rotation
matrix and D = Diag(1/e20, 1/e

2
1).

The mean of the ellipse points is the average of those points in the sense of integration over the ellipse,

µ = 1
2π

∫ 2π

0
P(θ) dθ

= 1
2π

∫ 2π

0
(C + e0 cos(θ)U0 + e1 sin(θ)U1) dθ

= C + e0
2π

(∫ 2π

0
cos(θ) dθ

)
U0 + e1

2π

(∫ 2π

0
sin(θ) dθ

)
U1

= C

(88)

It is natural to choose the initial center C to be the mean µ of the sample points.
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The covariance matrix for the ellipse is

C = 1
2π

∫ 2π

0
(P(θ)−C)(P(θ)−C)T dθ

= 1
2π

∫ 2π

0
(e0 cos(θ)U0 + e1 sin(θ)U1)(e0 cos(θ)U0 + e1 sin(θ)U1)T dθ

=
e20
2π

(∫ 2π

0
cos2(θ) dθ

)
U0U

T
0 +

e21
2π

(∫ 2π

0
sin2(θ) dθ

)
U1U

T
1

+ e0e1
2π

(∫ 2π

0
cos(θ) sin(θ) dθ

)(
U0U

T
1 + U1U

T
0

)
=

e20
2 U0U

T
0 +

e21
2 U1U

T
1

= RDiag
(
e20
2 ,

e21
2

)
RT

(89)

Computing C to be the covariance matrix for the sample points, factor C = RDiag(λ0, λ1)RT using an
eigendecomposition. The estimates for the axis extents are then ej =

√
2λj for j = 0, 1.

In summary, compute

µ =
1

m

m∑
i=1

Xi, C =
1

m

m∑
i=1

(Xi − µ)(Xi − µ)T (90)

Choose the initial center C = µ. Factor C = RDiag(λ0, λ1)RT where R is a rotation matrix. Choose the
initial orientation to be R. Choose the initial diagonal matrix D = Diag(1/(2λ0), 1/(2λ1)).

6.2.2 Initial Choice for the Parameters of an Ellipsoid

The ellipsoid is parameterized by P(θ, φ) = C + e0 cos(θ) sin(φ)U0 + e1 sin(θ) sin(φ)U1 + e2 cos(φ)U2 for
θ ∈ [0, 2π) and φ ∈ [0, π]. The algebraic equation that implicitly defines the ellipsoid is (P(θ, φ) −
C)TRDRT(P(θ, φ)−C) = 1, where R = [U0 U1 U2] is a rotation matrix and D = Diag(1/e20, 1/e

2
1, 1/e

2
2).

The mean of the ellipsoid points is the average of those points in the sense of integration over the ellipse,

µ = 1
4π

∫ 2π

0

∫ π
0

P(θ, φ) sin(φ) dφ dθ

= 1
4π

∫ 2π

0

∫ π
0

(C + e0 cos(θ) sin(φ)U0 + e1 sin(θ) sin(φ)U1 + e2 cos(φ)U2) sin(φ) dφ dθ

= C + e0
4π

(∫ 2π

0

∫ π
0

cos(θ) sin2(φ) dφ dθ
)

U0 + e1
4π

(∫ 2π

0

∫ π
0

sin(θ) sin2(φ) dφ dθ
)

U1

+ e2
4π

(∫ 2π

0

∫ π
0

cos(φ) sin(φ) dφ dθ
)

U2

= C

(91)

It is natural to choose the initial center C to be the mean µ of the sample points.

34



The covariance matrix for the ellipsoid is

C = 1
4π

∫ 2π

0

∫ π
0

(P(θ)−C)(P(θ)−C)T sin(φ) dφ dθ

= 1
4π

∫ 2π

0

∫ π
0

(e0 cos(θ) sin(φ)U0 + e1 sin(θ) sin(φ)U1 + e2 cos(φ)U2)

(e0 cos(θ) sin(φ)U0 + e1 sin(θ) sin(φ)U1 + e2 cos(φ)U2)T sin(φ) dφ dθ

=
e20
4π

(∫ 2π

0

∫ π
0

cos2(θ) sin3(φ) dφ dθ
)

U0U
T
0

+
e21
4π

(∫ 2π

0

∫ π
0

sin2(θ) sin3(φ) dφ dθ
)

U1U
T
1

+
e22
4π

(∫ 2π

0

∫ π
0

cos2(φ) sin(φ) dφ dθ
)

U2U
T
2

+ e0e1
4π

(∫ 2π

0

∫ π
0

cos(θ) sin(θ) sin3(φ) dφ dθ
)(

U0U
T
1 + U1U

T
0

)
+ e0e2

4π

(∫ 2π

0

∫ π
0

cos(θ) cos(φ) sin2(φ) dφ dθ
)(

U0U
T
2 + U2U

T
0

)
+ e1e2

4π

(∫ 2π

0

∫ π
0

sin(θ) cos(φ) sin2(φ) dφ dθ
)(

U1U
T
2 + U2U

T
1

)
=

e20
3 U0U

T
0 +

e21
3 U1U

T
1 +

e22
3 U2U

T
2

= RDiag
(
e20
3 ,

e21
3 ,

e22
3

)
RT

(92)

Computing C to be the covariance matrix for the sample points, factor C = RDiag(λ0, λ1, λ2)RT using an
eigendecomposition. The estimates for the axis extents are then ej =

√
3λj for j = 0, 1, 2.

In summary, compute

µ =
1

m

m∑
i=1

Xi, C =
1

m

m∑
i=1

(Xi − µ)(Xi − µ)T (93)

Choose the initial center C = µ. Factor C = RDiag(λ0, λ1, λ2)RT where R is a rotation matrix. Choose the
initial orientation to be R. Choose the initial diagonal matrix D = Diag(1/(3λ0), 1/(3λ1), 1/(3λ2)).

6.2.3 Initial Choice for the Parameters of a Hyperellipsoid

Let Sn be the hypersphere of center 0 and radius 1 that lives in Rn+1; for example, S1 is the unit circle in
R2 centered at the origin and S2 is the unit sphere in R3 centered at the origin. Generally, the hypersphere
is a smooth n-dimensional manifold that lives in (n + 1)-dimensional space. It is implicitly defined by
x20 + · · ·+ x2n = 1 and can be parameterized by

x0 = cosφ0

x1 = sinφ0 cosφ1

x2 = sinφ0 sinφ1 cosφ2
...

xn−1 = sinφ0 · · · sinφn−2 cosφn−1

xn = sinφ0 · · · sinφn−2 sinφn−1

(94)

where φ0 ∈ [0, π] for 0 ≤ i ≤ n − 2 and φn−2 ∈ [0, 2π). The parameterization for the circle S1 is x0 =
cosφ0 and x1 = sinφ0. The parameterization for the sphere S2 is x0 = cosφ0, x2 = sinφ0 cosφ1 and
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x3 = sinφ0 sinφ1. The parameterization for the hypersphere S3 is x0 = cosφ0, x1 = sinφ0 cosφ1, x2 =
sinφ0 sinφ1 cosφ2 and x3 = sinφ0 sinφ1 sinφ2. The angles can be listed as components of a vector φ =
(φ0, . . . , φn−1).

The infinitesimal measure of surface area on Sn is

dAn = sinn−1(φ0) sinn−2(φ1) · · · sin(φn−2) dφ0 · · · dφn−1 (95)

For example, the infinitesimal arc length on the circle S1 (the specialization of surface area to a curve) is
dA1 = dφ0. The infinitesimal surface area of the sphere S2 is dA2 = sin(φ0) dφ0 dφ1. The infinitesimal
surface area of the hypersphere S3 is dA3 = sin2(φ0) sin(φ1) dφ0 dφ1 dφ2. The total surface area of Sn is

An =

∫
Sn
dAn =

2π(n+1)/2

Γ((n+ 1)/2)
(96)

where Γ(z) is the gamma function.

The hyperellipsoid is parameterized by

P(φ) = C +

n−1∑
j=0

ejxj(φ)Uj (97)

The algebraic equation that implicitly defines the ellipsoid is

(P(φ)−C)TRDRT(P(φ)−C) = 1 (98)

where R = [U0 · · · Un−1] is a rotation matrix and D = Diag(1/e20, . . . , 1/e
2
n−1).

The mean of the hyperellipsoid points is the average of those points in the sense of integration over the
hyperellipsoid,

µ = 1
An

∫
Sn

P(θ, φ) dAn

= 1
An

∫
Sn

(
C +

∑n−1
j=0 ejxj(φ)Uj

)
dAn

= C +
∑n−1
j=0

(∫
Sn
xj(φ) dAn

)
Uj

= C

(99)

All the integrals evaluate to zero. It is natural to choose the initial center C to be the mean µ of the sample
points.

The covariance matrix for the hyperellipsoid is

C = 1
An

∫
Sn

(P(φ)−C)(P(φ)−C)T dAn

= 1
An

∫
Sn

(
∑n−1
j=0 ejxj(φ)Uj)(

∑n−1
j=0 ejxj(φ)Uj)

T dAn

=
∑n−1
j=0

∑n−1
k=0

ejek
An

(∫
Sn
xj(φ)xk(φ) dAn

)
UjU

T
k

=
∑n−1
j=0

e2j
n UjU

T
j

= RDiag
(
e20
n , . . . ,

e2n−1

n

)
RT

(100)

The integrals evaluate to
∫
Sn
xj(φ)xk(φ) dAn = 0 for j 6= k and

∫
Sn
x2j (φ) dAn = An/n. Computing C to be

the covariance matrix for the sample points, factor C = RDiag(λ0, . . . , λn−1)RT using an eigendecomposition.
The estimates for the axis extents are then ej =

√
nλj for 0 ≤ j < n.
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In summary, compute

µ =
1

m

m∑
i=1

Xi, C =
1

m

m∑
i=1

(Xi − µ)(Xi − µ)T (101)

Choose the initial center C = µ. Factor C = RDiag(λ0, . . . , λn−1)RT where R is a rotation matrix. Choose
the initial orientation to be R. Choose the initial diagonal matrix D = Diag(1/(nλ0), . . . , 1/(nλn−1)).

6.3 Fitting Using Derivative-Based Methods

Three methods for minimization via iteration and that use derivative information for the error function are
gradient descent, the Gauss–Newton method and the Levenberg–Marquardt method. Gradient descent is a
conservative method that can require a large number of iterations until convergence. The Gauss–Newton
method is an aggressive method, one that hopes to converge in a small number of iterations. The Levenberg–
Marquardt method is adaptive and uses step size that vary between those of gradient descent and those of
Gauss–Newton.

Each of the methods has a well-known general framework. All that is required for using the framework is
to implement the error function and its derivatives. The error function is equation (63). The derivative
functions are equations (64), (65) and (70).

6.4 Fitting by Reduction to Polynomial Equations

We are now ready to formulate equations for computing where the gradient of E(C, R,D) is the zero vector.
Setting equation (64) to zero and using the invertibility of RDRT, we obtain

m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆i = 0 (102)

The n(n+ 1)/2 equations (71) form a linear system of n(n+ 1)/2 unknowns whose matrix of coefficients is
invertible because of the orthonormality of the columns of R. The vector of unknowns is therefore the zero
vector, summarized by

UT
j

(
m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i

)
Uk = 0 (103)

for 0 ≤ j ≤ k < n. The matrices ∆i∆
T
i are symmetric, so equation (103) is forcing all the entries of the

weighted sum of these matrices to be zero; therefore,

m∑
i=1

(
∆T
i RDR

T∆i − 1
)

∆i∆
T
i = 0 (104)

The solutions to the nonlinear equations (102) and (104) must be solved for C, R and D that minimize
E(C, R,D). Define P = [pij ] = RDRT, which is a positive definite matrix. As a symmetric matrix, it has
n(n + 1)/2 independent entries (the diagonal and upper triangular elements). Recall that ∆i = Xi − C.
The aforementioned two equations are linear in the entries of P . Equation (102) is cubic in the entries of C
and equation (104) is quartic in the entries of C. Therefore, we have a system of polynomial equations that
can be reduced to a single polynomial equation using elimination theory and resultants.
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Define P = RDRT, a positive definite matrix. Equation (104) can be viewed as a system of n(n+1)/2 linear
equations in the n(n + 1)/2 unique entries of P . Only the upper-triangular entries of the various matrices
need to be considered. Define p to be the upper-triangular elements of P listed in row-major order except
that the off-diagonal terms are multiplied by 2. The system can be written as Ap = b, where A and b are
dependent only on C and the sample points. Generally, we expect A to be invertible. Symbolically, invert
A to obtain Aadj/ det(A), where Aadj is the adjugate matrix of A (the transpose of matrix of cofactors), and
compute p = Aadjb/ det(A). Substitute this into equation (102) and multiply through to obtain a system
of polynomial equations that depend only on C. These equations can be reduced to a single polynomial
equation in one of the components of C. The roots of that polynomial are computed, and other components
of C are evaluated based on the intermediate steps of the reduction. For all roots, keep track of the one that
minimizes E.

6.4.1 Reduction for an Ellipse

Let the samples be (xi, yi) and let the center be C = (c0, c1). Define sjk =
∑m
i=1(xi − c0)j(yi − c1)k. The

matrix A and vectors b and p mentioned in the general discussion are the following for dimension 2. Notice
that the off-diagonal entry of P = RDRT is scaled by 2,

A =


s40 s31 s22

s31 s22 s13

s22 s13 s04

 , b =


s20

s11

s02

 , p =


p00

2p01

p11

 (105)

Define

r0 =


s30

s21

s12

 , r1 =


s21

s12

s03

 (106)

Solve Ap = b for p and substitute into equation (102) to obtain

rT0A
adjb− s10 det(A) = 0, rT1A

adjb− s01 det(A) = 0 (107)

The degree of the ri is 3, the degree of the elements of Aadj is 8, the degree of b is 2 and the degree of
det(A) is 12. Therefore, each of these equations is a polynomial of degree 13 in the 2 components of C.
The reduced polynomial of one component will be of symbolic degree 132 = 169. Naturally, you need access
to a robust polynomial root finder. The computation of the coefficients can be performed using arbitrary
precision arithmetic (for exact rational arithmetic). After that, computing the roots will require modern-day
methods for obtaining bounding intervals for roots, after which a switch to floating-point arithmetic can be
made to bisect the roots.

As an alternative to elimination theory, it might be possible to solve numerically the two polynomial equations
by other means. For example, a GPGPU approach could be used that samples (c0, c1) in a rectangle
containing the initial center guess and looks for that sample leading to the minimum sum of squares of the
polynomials.
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6.4.2 Reduction for an Ellipsoid

Let the samples be (xi, yi, zi) and let the center be C = (c0, c1, c2). Define sjk` =
∑m
i=1(xi − c0)j(yi −

c1)k(zi − c2)`. The matrix A and vectors b and p mentioned in the general discussion are the following for
dimension 3. Notice that the off-diagonal entries of P = RDRT are scaled by 2,

A =



s400 s310 s301 s220 s211 s202

s310 s220 s211 s130 s121 s112

s301 s211 s202 s121 s112 s103

s220 s130 s121 s040 s031 s022

s211 s121 s112 s031 s022 s013

s202 s112 s103 s022 s013 s004


, b =



s200

s110

s101

s020

s011

s002


, p =



p00

2p01

2p02

p11

2p12

p22


(108)

Define

r0 =



s300

s210

s201

s120

s111

s102


, r1 =



s210

s120

s111

s030

s021

s012


, r2 =



s201

s111

s102

s021

s012

s003


(109)

Solve Ap = b for p and substitute into equation (102) to obtain

rT0A
adjb− s100 det(A) = 0, rT1A

adjb− s010 det(A) = 0, rT2A
adjb− s001 det(A) = 0 (110)

The degree of the ri is 3, the degree of the elements of Aadj is 20, the degree of b is 2 and the degree of
det(A) is 24. Therefore, each of these equations is a polynomial of degree 25 in the 3 components of C. The
reduced polynomial of one component will be of symbolic degree 253 = 15625. The large degree makes this
not an attractive approach.

As an alternative to elimination theory, it might be possible to solve numerically the three polynomial
equations by other means. For example, a GPGPU approach could be used that samples (c0, c1, c2) in a
rectangular solid containing the initial center guess and looks for that sample leading to the minimum sum
of squares of the polynomials.

7 Fitting a Cylinder to 3D Points

This document describes an algorithm for fitting a set of 3D points with a cylinder. The assumption is that
the underlying data is modeled by a cylinder and that errors have caused the points not to be exactly on
the cylinder. You could very well try to fit a random set of points, but the algorithm is not guaranteed to
produce a meaningful solution.
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7.1 Representation of a Cylinder

An infinite cylinder is specified by an axis containing a point C and having unit-length direction W. The
radius of the cylinder is r > 0. Two more unit-length vectors U and V may be defined so that {U,V,W}
is a right-handed orthonormal set; that is, all vectors are unit-length, mutually perpendicular, and with
U×V = W, V×W = U, and W×U = V. Any point X may be written uniquely as

X = C + y0U + y1V + y2W = C +RY (111)

where R is a rotation matrix whose columns are U, V, and W and where Y is a column vector whose rows
are y0, y1, and y2. To be on the cylinder, we need

r2 = y20 + y21

= (U · (X−C))2 + (V · (X−C))2

= (X−C)T(UUT + VVT)(X−C)

= (X−C)T(I −WWT)(X−C)

(112)

where I is the identity matrix. Because the unit-length vectors form an orthonormal set, it is necessary that
I = UUT + VVT + WWT. A finite cylinder is obtained by bounding the points in the axis direction,

|y2| = |W · (X−C)| ≤ h/2 (113)

where h > 0 is the height of the cylinder.

7.2 The Least-Squares Error Function

Let {Xi}ni=1 be the input point set. An error function for a cylinder fit based on Equation (112) is

E(r2,C,W) =

n∑
i=1

[
F (Xi; r

2,C,W)
]2

=

n∑
i=1

[
(Xi −C)T

(
I −WWT

)
(Xi −C)− r2

]2
(114)

where the cylinder axis is a line containing point C and having unit-length direction W and the cylinder
radius is r. Thus, the error function involves 6 parameters: 1 for the squared radius r2, 3 for the point
C, and 2 for the unit-length direction W. These parameters form the 6-tuple q in the generic discussion
presented previously.

For numerical robustness, it is advisable to subtract the sample mean A = (
∑n
i=1 Xi)/n from the samples,

Xi ← Xi − A. This preconditioning is assumed in the mathematical derivations to follow, in which case∑n
i=1 Xi = 0.

In the following discussion, define

P = I −WWT, r2i = (C−Xi)
TP (C−Xi) (115)

The matrix P represents a projection onto a plane with normal W, so P 2 = P and depends only on the
direction W. The term r2i depends on the center C and the direction W. The error function is written
concisely as E =

∑n
i=1(r2i − r2)2.
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7.3 An Equation for the Radius

The partial derivative of the error function with respect to the squared radius is ∂E/∂r2 = −2
∑n
i=1(r2i −r2).

Setting this to zero, we have the constraint

0 =

n∑
i=1

(r2i − r2) (116)

which leads to

r2 =
1

n

n∑
i=1

r2i (117)

Thus, the squared radius is the average of the squared distances of the projections of Xi −C onto a plane
containing C and having normal W. The right-hand side depends on the parameters C and W.

Observe that

r2i − r2 = r2i − 1
n

∑n
j=1 r

2
j

= (C−Xi)
TP (C−Xi)− 1

n

∑n
j=1(C−Xj)

TP (C−Xj)

= CTPC− 2XT
i PC + XT

i PXi − 1
n

∑n
j=1

(
CTPC− 2XT

j PC + XT
j PXj

)
= CTPC− 2XT

i PC + XT
i PXi −CTPC + 2

n

(∑n
j=1 XT

j

)
PC− 1

n

∑n
j=1 XT

j PXj

=
(

1
n

∑n
j=1 XT

j −XT
i

)
2PC +

(
XT
i PXi − 1

n

∑n
j=1 XT

j PXj

)
= −XT

i 2PC +
(
XT
i PXi − 1

n

∑n
j=1 XT

j PXj

)
(118)

The last equality is based on the precondition
∑n
j=1 Xj = 0.

7.4 An Equation for the Center

The partial derivative with respect to the center is ∂E/∂C = −4
∑n
i=1(r2i − r2)P (Xi −C). Setting this to

zero, we have the constraint

0 =
∑n
i=1(r2i − r2)P (Xi −C)

=
∑n
i=1(r2i − r2)PXi −

[∑n
i=1(r2i − r2)

]
PC

=
∑n
i=1(r2i − r2)PXi

(119)

where the last equality is a consequence of Equation (116). Multiply equation (118) by PXi, sum over i,
and use equation (119) to obtain

0 = −2P
(∑n

i=1 XiX
T
i

)
PC +

∑n
i=1

(
XT
i PXi

)
PXi −

(
1
n

∑n
j=1 XT

j PXj

)
P
∑n
i=1 Xi

= −2P
(∑n

i=1 XiX
T
i

)
PC +

∑n
i=1

(
XT
i PXi

)
PXi

(120)

where the last equality is based on the precondition
∑n
i=1 Xi = 0. We wish to solve this equation for C, but

observe that C + tW are valid centers for all t. It is sufficient to compute a center that has no component
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in the W-direction; that is, we may construct a point for which C = PC. It suffices to solve Equation (120)
for PC written as the linear system A(PC) = B/2 where

A = P

(
1

n

n∑
i=1

XiX
T
i

)
P, B =

1

n

n∑
i=1

(
XT
i PXi

)
PXi (121)

The projection matrix is symmetric, P = PT, a condition that leads to the right-hand side of the equation
defining A. We have used P = P 2 to introduce an additional P factor, XT

i PXi = XT
i P

2Xi = XT
i P

TPXi,
which leads to the right-hand side of the equation defining B.

The matrix A is singular because the projection matrix P is singular, so we cannot directly invert A to solve
the equation. The linear system involves terms that live only in the plane perpendicular to W, so in fact
the linear system reduces to two equations in two unknowns in the projection space and is solvable as long
as the coefficient matrix is invertible.

Choose U and V so that {U,V,W} is a right-handed orthonormal set; then PXi = µiU + νiV and
PC = k0U + k1V, where µi = U ·Xi, νi = V ·Xi, k0 = U · PC, and k1 = V · PC. The matrix A becomes

A =

(
1

n

n∑
i=1

µ2
i

)
UUT +

(
1

n

n∑
i=1

µiνi

)(
UVT + VUT

)
+

(
1

n

n∑
i=1

ν2i

)
VVT (122)

and the vector B becomes

B =
1

n

n∑
i=1

(µ2
i + ν2i )(µiU + νiV) (123)

The vector A(PC) becomes

A(PC) =

(
k0
n

n∑
i=1

µ2
i +

k1
n

n∑
i=1

µiνi

)
U +

(
k0
n

n∑
i=1

µiνi +
k1
n

n∑
i=1

ν2i

)
V (124)

Equating this to B/2 and grouping the coefficients for U and V leads to the linear system 1
n

∑n
i=1 µ

2
i

1
n

∑n
i=1 µiνi

1
n

∑n
i=1 µiνi

1
n

∑n
i=1 ν

2
i

 k0

k1

 =
1

2

 1
n

∑n
i=1(µ2

i + ν2i )µi

1
n

∑n
i=1(µ2

i + ν2i )νi

 (125)

The coefficient matrix is the covariance matrix of the projection of the samples onto the plane perpendicular
to W. Intuitively, this matrix is invertible as long as the projections do not lie on a line. If the matrix
is singular (or nearly singular numerically), the original samples lie on a plane (or nearly lie on a plane
numerically). They are not fitted well by a cylinder or, if you prefer, they are fitted by a cylinder with
infinite radius.

The matrix system of Equation (125) has solution

 k0
k1

 = 1

2

(
1
n

∑n
i=1

µ2
i

1
n

∑n
i=1

ν2
i
−
(

1
n

∑n
i=1

µiνi

)2)
 1

n

∑n
i=1 ν

2
i − 1

n

∑n
i=1 µiνi

− 1
n

∑n
i=1 µiνi
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 (126)

which produces the cylinder center PC = k0U + k1V; use this instead of C in Equation (112).
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Although the solution appears to depend on the choice of U and V, it does not. Let W = (w0, w1, w2) and
define the skew symmetric matrix

S =


0 −w2 w1

w2 0 −w0

−w1 w0 0

 (127)

By definition of skew symmetry, ST = −S. This matrix represents the cross product operation: Sξ = W×ξ
for any vector ξ. Because {U,V,W} is a right-handed orthonormal set, it follows that SU = V and
SV = −U. It can be shown also that S = VUT −UVT. Define matrix Â by

Â =

(
1

n

n∑
i=1

ν2i

)
UUT −

(
1

n

n∑
i=1

µiνi

)(
UVT + VUT

)
+

(
1

n

∑
i=1

µni

)
VVT = SAST (128)

Effectively, this generates a 2× 2 matrix that is the adjugate of the 2× 2 matrix representing A. It has the
property

ÂA = δP, δ =

n∑
i=1

µ2
i

n∑
i=1

ν2i −

(
n∑
i=1

µiνi

)2

(129)

The trace of a matrix is the sum of the diagonal entries. Observe that trace(P ) = 2 because |W|2 = 1.
Taking the trace of ÂA = δP , we obtain 2δ = trace(ÂA). The cylinder center is obtained by multiplying
A(PC) = B/2 by Â, using the definitions in equation (121) and using equation (129),

PC =
Â

trace(ÂA)

(
1

n

n∑
i=1

(
XT
i PXi

)
PXi

)
=

Â

trace(ÂA)

(
1

n

n∑
i=1

(
XT
i PXi

)
Xi

)
(130)

where the last equality uses ÂP = Â because STP = ST. Equation (130) is independent of U and V but
dependent on W.

7.5 An Equation for the Direction

Let the direction be parameterized as W(s) = (w0(s), w1(s)), w2(s)), where s is a 2-dimensional parameter.
For example, spherical coordinates is such a parameterization: W = (cos s0 sin s1, sin s0 sin s1, cos s1) for
s0 ∈ [0, 2π) and s1 ∈ [0, π/2], where w2(s0, s1) ≥ 0. The partial derivatives of E are

∂E

∂sk
= 2

n∑
i=1

(r2i − r2)(C−Xi)
T ∂P

∂sk
(C−Xi) (131)

Solving ∂E/∂sk = 0 in closed form is not tractable. It is possible to generate a system of polynomial
equations in the components of W, use elimination theory to obtain a polynomial in one variable, and then
find its roots. This approach is generally tedious and not robust numerically.

Alternatively, we can skip root finding for ∂E/∂sk = 0, instead substituting Equations (118) and (130)
directly into the error function E/n = 1

n

∑n
i=1(r2i − r2)2 to obtain a nonnegative function,

G(W) =
1

n

n∑
i=1

XT
i PXi −

1

n

n∑
j=1

XT
j PXj − 2XT

i

Â

trace(ÂA)

 1

n

n∑
j=1

(
XT
j PXj

)
Xj

2

(132)
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A numerical algorithm for locating the minimum of G can be used. Or, as is shown in the sample code,
the domain for (s0, s1) may be partitioned into samples at which G is evaluated. The sample producing the
minimum G-value determines a reasonable direction W. The center C and squared radius r2 are inherent in
the evaluation of G, so in the end we have a fitted cylinder. The evaluations of G are expensive for a large
number of samples: equation (132) contains summations in a term that is then squared, followed by another
summation.

Some algebraic manipulation lead to encapsulating the summations, allowing us to precompute the summa-
tions and represent G(W) as a rational polynomial of the components of W. This approach increases the
performance on the CPU. It also allows an efficient implementation for massively parallel performance on
the GPU—one GPU thread per direction vector that is sampled from a hemisphere.

The projection matrix P is determined by its upper-triangular elements p = (p00, p01, p02, p11, p12, p22). We
can write the following, where p is represented as a 6× 1 vector,

XT
i PXi −

1

n

n∑
j=1

XT
j PXj = p · (ξi − µ) = p · δi (133)

The 6× 1 vectors ξi, µ and δi are defined next (written as 6-tuples). As a 3-tuple, let Xi = (xi, yi, zi),

ξi =
(
x2i , 2xiyi, 2xizi, y

2
i , 2yizi, z

2
i

)
, µ =

1

n

n∑
i=1

ξi, δi = ξi − µ (134)

We can also write

1

n

n∑
j=1

(
XT
j PXj

)
Xj =

 1

n

n∑
j=1

Xjξ
T
j

p =

 1

n

n∑
j=1

Xjδ
T
j

p (135)

The last equality is true because
∑n
j=1 Xj = 0 implies

∑n
j=1 Xjµ

T = 0. Define

Q = Â/ trace(ÂA), F0 =
1

n

n∑
j=1

XjX
T
j , F1 =

1

n

n∑
j=1

Xjδ
T
j , F2 =

1

n

n∑
j=1

δjδ
T
j (136)

where Q and F0 are 3× 3, F1 is 3× 6 and F2 is 6× 6; then

G(W) = 1
n

∑n
i=1

[
pTδi − 2XT

i QF1p
]2

= 1
n

∑n
i=1

[(
pTδi

)2 − 4
(
pTδi

) (
XT
i QF1p

)
+ 4

(
XT
i QF1p

)2]
= pTF2p− 4pTFT

1 QF1p + 4pTFT
1 Q

TF0QF1p

(137)

The precomputations for the input samples {Yi}ni=1 is the following and must be done so in the order
specified. These steps are independent of direction vectors W.

1. Compute A = 1
n (
∑n
i=1 Yi).

2. Compute Xi = Yi −A for all i.

3. Compute µ = 1
n

∑n
i=1(x2i , 2xiyi, 2xizi, y

2
i , 2yizi, z

2
i ), δi = (x2i , 2xiyi, 2xizi, y

2
i , 2yizi, z

2
i )− µ for all i.
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4. Compute F0 = 1
n

∑n
i=1 XiX

T
i , F1 = 1

n

∑n
i=1 Xiδ

T
i , F2 = 1

n

∑n
i=1 δiδ

T
i .

For each specified direction W, do the following steps.

1. Compute the projection matrix P = I −WWT and the skew-symmetric matrix S.

2. Compute A = PF0P , Â = SAST, ÂA, trace(ÂA).

3. Compute Q = Â/ trace(ÂA).

4. Store the upper-triangular entries of P in p.

5. Compute α = F1p and β = Qα.

6. Compute G = pTF2p− 4αTβ + 4βTF0β.

7. The corresponding center is PC = β.

8. The corresponding squared radius is r2 = 1
n

∑n
i=1 r

2
i where r2i = (PC − PXi)

T(PC − PXi). This

factors to r2 = p · µ + βTβ.

The sample application that used equation (132) directly was really slow. On an Intel
R©

Core
TM

i7-6700
CPU at 3.40 GHz, the single-threaded version for 10765 points required 129 seconds and the multithreaded
version using 8 hyperthreads required 22 seconds. The evaluation of G using the precomputed summations
is much faster. The single-threaded version required 85 milliseconds and the multithreaded version using 8
hyperthreads required 22 milliseconds.

7.6 Fitting for a Specified Direction

Although one may apply root-finding or minimization techniques to estimate the global minimum of E, as
shown previously, in practice it is possible first to obtain a good estimate for the direction W. Using this
direction, we may solve for C = PC in Equation (130) and then r2 in Equation (117).

For example, suppose that the Xi are distributed approximately on a section of a cylinder so that the least-
squares line that fits the data provides a good estimate for the direction W. This vector is a unit-length
eigenvector associated with the largest eigenvalue of the covariance matrix A =

∑n
i=1 XiX

T
i . We may use a

numerical eigensolver to obtain W, and then solve the aforementioned equations for the cylinder center and
squared radius.

The distribution can be such that the estimated direction W from the covariance matrix is not good, as is
shown in the experiments of the next section.

7.7 Pseudocode and Experiments

The simplest algorithm to implement involves the minimization of the function G in Equation (132). An
implemention is shown in Listing 14.
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Listing 14. Pseudocode for preprocessing the sample points. The output X[] is the array of sample
points translated by the average. The other outputs are mu for µ, F0 for F0, F1 for F1 and F2 for F2. The
pseudocode is algo given for evaluating the function G(W) and generating the corresponding PC and r2.

vo id Pr ep r o c e s s ( i n t n , Vector3 p o i n t s [ n ] , Vector3 X[ n ] ,
Vector3& average , Vector6& mu, Matr i x3x3& F0 , Matr i x3x6& F1 , Matr i x6x6&F2 )

{
ave rage = { 0 , 0 , 0 } ;
f o r ( i n t i = 0 ; i < n ; ++i )
{

ave rage += po i n t s [ i ] ;
}
ave rage /= n ;
f o r ( i n t i = 0 ; i < n ; ++i )
{

X[ i ] = p o i n t s [ i ] − ave rage ;
}

Vector6 z e r o = { 0 , 0 , 0 , 0 , 0 , 0 } ;
Vector6 p roduc t s [ n ] ;
MakeZero ( p roduc t s ) ;
mu = ze ro ;
f o r ( i n t i = 0 ; i < n ; ++i )
{

p roduc t s [ i ] [ 0 ] = X[ i ] [ 0 ] ∗ X[ i ] [ 0 ] ;
p r oduc t s [ i ] [ 1 ] = X[ i ] [ 0 ] ∗ X[ i ] [ 1 ] ;
p r oduc t s [ i ] [ 2 ] = X[ i ] [ 0 ] ∗ X[ i ] [ 2 ] ;
p r oduc t s [ i ] [ 3 ] = X[ i ] [ 1 ] ∗ X[ i ] [ 1 ] ;
p r oduc t s [ i ] [ 4 ] = X[ i ] [ 1 ] ∗ X[ i ] [ 2 ] ;
p r oduc t s [ i ] [ 5 ] = X[ i ] [ 2 ] ∗ X[ i ] [ 2 ] ;
mu [ 0 ] += produc t s [ i ] [ 0 ] ;
mu [ 1 ] += 2 ∗ p roduc t s [ i ] [ 1 ] ;
mu [ 2 ] += 2 ∗ p roduc t s [ i ] [ 2 ] ;
mu [ 3 ] += produc t s [ i ] [ 3 ] ;
mu [ 4 ] += 2 ∗ p roduc t s [ i ] [ 4 ] ;
mu [ 5 ] += produc t s [ i ] [ 5 ] ;

}
mu /= n ;

MakeZero (F0 ) ;
MakeZero (F1 ) ;
MakeZero (F2 ) ;
f o r ( i n t i = 0 ; i < n ; ++i )
{

Vector6 d e l t a ;
d e l t a [ 0 ] = p roduc t s [ i ] [ 0 ] − mu [ 0 ] ;
d e l t a [ 1 ] = 2 ∗ p roduc t s [ i ] [ 1 ] − mu [ 1 ] ;
d e l t a [ 2 ] = 2 ∗ p roduc t s [ i ] [ 2 ] − mu [ 2 ] ;
d e l t a [ 3 ] = p roduc t s [ i ] [ 3 ] − mu [ 3 ] ;
d e l t a [ 4 ] = 2 ∗ p roduc t s [ i ] [ 4 ] − mu [ 4 ] ;
d e l t a [ 5 ] = p roduc t s [ i ] [ 5 ] − mu [ 5 ] ;
F0 (0 , 0) += produc t s [ i ] [ 0 ] ;
F0 (0 , 1) += produc t s [ i ] [ 1 ] ;
F0 (0 , 2) += produc t s [ i ] [ 2 ] ;
F0 (1 , 1) += produc t s [ i ] [ 3 ] ;
F0 (1 , 2) += produc t s [ i ] [ 4 ] ;
F0 (2 , 2) += produc t s [ i ] [ 5 ] ;
F1 += OuterProduct (X[ i ] , d e l t a ) ;
F2 += OuterProduct ( d e l t a , d e l t a ) ;

}
F0 /= n ;
F0 (1 , 0) = F0 (0 , 1 ) ;
F0 (2 , 0) = F0 (0 , 2 ) ;
F0 (2 , 1) = F0 (1 , 2 ) ;
F1 /= n ;
F2 /= n ;

}

Rea l G( i n t n , Vector3 X[ n ] , Vector3 mu, Matr i x3x3 F0 , Matr i x3x6 F1 , Matr i x6x6 F2 , Vector3 W,
Vector3& PC, Rea l& rSq r )

{
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Matr ix3x3 P = Matr i x3x3 : : I d e n t i t y ( ) − OuterProduct (W, W) ; // P = I − W ∗ WˆT
// S = {{0 , −w2 , w1} , {w2 , 0 , −w0} , {−w1 , w0 , 0}} , i n n e r b r a c e s a r e rows
Matr ix3x3 S (0 , −W[ 2 ] , W[ 1 ] , W[ 2 ] , 0 , −W[ 0 ] , −W[ 1 ] , W[ 0 ] , 0 ) ;
Matr i x3x3 A = P ∗ F0 ∗ P ;
Matr i x3x3 hatA = −(S ∗ A ∗ S ) ;
Matr i x3x3 hatAA = hatA ∗ A;
Rea l t r a c e = Trace ( hatAA ) ;
Matr i x3x3 Q = hatA / t r a c e ;
Vector6 p = { P(0 , 0 ) , P(0 , 1 ) , P(0 , 2 ) , P(1 , 1 ) , P(1 , 2 ) , P(2 , 2) } ;
Vector3 a lpha = F1 ∗ p ;
Vector3 beta = Q ∗ a lpha ;
Rea l e r r o r = (Dot (p , F2 ∗ p ) − 4 ∗ Dot ( a lpha , beta ) + 4 ∗ Dot ( beta , F0 ∗ beta ) ) / n ;
PC = beta ;
r s q r = Dot (p , mu) + Dot ( beta , beta ) ;
r e t u r n e r r o r ;

}

The fitting is performed by searching a large number of directions W, as shown in Listing 15.

Listing 15. Fitting a cylinder to a set of points.

// The X [ ] a r e the p o i n t s to be f i t . The ou tpu t s rSqr , C , and W are the
// c y l i n d e r pa ramete r s . The f u n c t i o n r e t u r n v a l u e i s the e r r o r f u n c t i o n
// e v a l u a t e d at the c y l i n d e r pa ramete r s .
Rea l F i t C y l i n d e r ( i n t n , Vector3 p o i n t s [ n ] , Rea l& rSqr , Vector3& C , Vector3& W)
{

Vector3 X[ n ] ;
Vector3 mu;
Matr i x3x3 F0 ;
Matr i x3x6 F1 ;
Matr i x6x6 F2 ;
P r ep r o c e s s (n , po i n t s , X, average , mu, F0 , F1 , F2 ) ;

// Choose imax and jmax as d e s i r e d f o r the l e v e l o f g r a n u l a r i t y you
// want f o r samp l ing W v e c t o r s on the hemi sphe re .
Rea l m inEr ro r = i n f i n i t y ;
W = Vector3 : : Zero ( ) ;
C = Vector3 : : Zero ( ) ;
rSq r = 0 ;
f o r ( i n t j = 0 ; j <= jmax ; ++j )
{

Rea l ph i = h a l f P i ∗ j / jmax ; // i n [ 0 , p i /2 ]
Rea l c s p h i = cos ( ph i ) , s nph i = s i n ( ph i ) ;
f o r ( i n t i = 0 ; i < imax ; ++i )
{

Rea l t h e t a = twoPi ∗ i / imax ; // i n [0 ,2∗ p i )
Rea l c s t h e t a = cos ( t h e t a ) , s n t h e t a = s i n ( t h e t a ) ;
Vector3 currentW ( c s t h e t a ∗ snph i , s n t h e t a ∗ snph i , c s p h i ) ;
Vector3 cu r r en tC ;
Rea l cu r r en tRSq r ;
Rea l e r r o r = G(n , X, mu, F0 , F1 , F2 , currentW , cur rentC , cu r r en tRSq r ) ;
i f ( e r r o r < minEr ro r )
{

minEr ro r = e r r o r ;
W = currentW ;
C = cu r r en tC ;
rSq r = cu r r en tRSq r ;

}
}

}

// T r an s l a t e the c e n t e r to the o r i g i n a l c o o r d i n a t e system .
C += ave rage ;
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r e t u r n minEr ro r ;
}

The following experiments show how well the cylinder fitting works.

A regular lattice of 64 × 65 samples were chosen for a cylinder centered at the origin, with axis direction
(0, 0, 1), with radius 1, and height 4. The samples are (cos θj , sin θj , zij), where θj = 2πj/64 and zij =
−2 + 4i/64 for 0 ≤ i ≤ 64 and 0 ≤ j < 64. The fitted center, radius, and axis direction are the actual ones
(modulo numerical round-off errors). Figure 1 shows a rendering of the points (in black) and a wire frame
of the fitted cylinder (in blue).

Figure 1. Fitting of samples on a cylinder ring that is cut perpendicular to the cylinder axis.

A lattice of samples was chosen for the same cylinder but the samples are skewed to lie on a cut that is not
perpendicular to the cylinder axis. The samples are (cos θj , sin θj , zij), where θj = 2πj/64 for 0 ≤ j < 64
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and zij = −b+ cos θj + 2bi/64 for b = 1/4 and 0 ≤ i ≤ 64. The fitted center, radius, and axis direction are
the actual ones (modulo numerical round-off errors). Figure 2 shows a rendering of the points (in black) and
a wire frame of the fitted cylinder (in blue).

Figure 2. Fitting of samples on a cylinder ring that is cut skewed relative to the cylinder axis.

In this example, if you were to compute the covariance matrix of the samples and choose the cylinder axis
direction to be the eigenvector in the direction of maximum variance, that direction is skewed relative to the
original cylinder axis. The fitted parameters are (approximately) W = (0.699, 0, 0.715), PC = (0, 0, 0), and
r2 = 0.511. Figure 3 shows a rendering of the points (in black) and a wire frame of the fitted cylinder (in
blue).
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Figure 3. Fitting of samples on a cylinder ring that is cut skewed relative to the cylinder axis.
The direction W was chosen to be an eigenvector corresponding to the maximum eigenvalue of the
covariance matrix of the samples.

You can see that the fitted cylinder is not a good approximation to the points.

Figure 4 shows a point cloud generated from a DIC file (data set courtesy of Carolina Lavecchia) and the
fitted cylinder. The data set has nearly 11000 points.
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Figure 4. A view of a fitted point cloud.

Figure 5 shows a different view of the point cloud and cylinder.
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Figure 5. Another view of a fitted point cloud, looking along the top of the cyliner to get an idea
of how well the cylinder fits the data.

8 Fitting a Cone to 3D Points

The cone vertex is V, the unit-length axis direction is U and the cone angle is θ ∈ (0, π/2). The cone is
defined algebraically by those points X for which

U · X−V

|X−V|
= cos(θ) (138)

This can be written as a quadratic equation

(X−V)T(cos(θ)2I −UUT)(X−V) = 0 (139)

with the implicit constraint that U·(X−V) > 0; that is, X is on the “positive” cone. Define W = U/ cos(θ),
so |W| > 1 and

F (X; V,W) = (X−V)T(I −WWT)(X−V) = 0 (140)
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The nonlinear least-squares fitting of points {Xi}n−1i=0 computes V and W to minimize the error function

E(V,W) =

n−1∑
i=0

F (Xi; V,W)2 (141)

This can be solved using standard iterative minimizers such as the Gauss–Newton method and Levenberg–
Marquardt method. The partial derivatives of the F terms are needed for ∂E/∂V and ∂E/∂W in order to
compute the Jacobian matrix,

∂F

∂V
= 2 (∆− (W ·∆) W) ,

∂F

∂W
= −2 (W ·∆) ∆ (142)

where ∆ = X−V. Implementations are found in GteApprCone3.h.

8.1 Initial Choice for the Parameters of the Error Function

Without any application-specific knowledge about the sample points, the simplest initial choice for the center,
axis directions and axis extents is based on assuming the sample points are dense on a frustum of a cone and
then using integrals of various quantities over that frustum. The cone frustum surface is parameterized by

P(h, φ) = V + hU + h tan θ(cosφW0 + sinφW1), h ∈ [h0, h1], φ ∈ [0, 2π) (143)

where 0 ≤ h0 < h1. The set {U,W0,W1} is a right-handed orthonormal basis for R3; that is, the vectors
are unit length, mutually perpendicular, and U = W0 ×W1. We want to use the sample points Xi to
determine an initial choice for the cone axis direction U, the cone angle θ and the height bounds h0 and h1
of the cone frustum. The integrals involve ratio expressions that are defined by

ρn =

∫ h1

h0
hn−1 dh∫ h1

h0
h dh

=
1
n (hn1 − hn0 )
1
2 (h21 − h20)

(144)

Define the rotation matrix R = [UW0 W1] whose columns are the specified basis vectors and define Y(h, φ)
to be the 3 × 1 vector which in 3-tuple form is (h, h tan θ cosφ, h tan θ sinφ). The parameterization of the
surface is concisely P(h, φ) = V +RY(h, φ). Several integrals are formulated next and involve the following
integrals. For notational convenience, I will use Y with the understanding that it depends on h and φ.

The element of surface area for the cone frustum surface is

dA =
∣∣∣∂P∂h × ∂P

∂φ

∣∣∣ dh dφ
= |(U + tan θ (cosφW0 + sinφW1))× (h tan θ (− sinφW0 + cosφW1))| dh dφ

= (h tan θ) |− sinφU×W0 + cosφU×W1 + tan θW0 ×W1| dh dφ

= h tan θ
√

sin2 φ+ cos2 φ+ tan2 θ dh dφ

= h tan θ
√

1 + tan2 θ dh dφ

= h tan θ
√

1/ cos2 θ dh dφ

= (h tan θ/ cos θ) dh dφ

(145)
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and the surface area of the cone frustum is

A =

∫ h1

h0

∫ 2π

0

dA =

∫ h1

h0

∫ 2π

0

(h tan θ/ cos θ) dh dφ = π
tan θ

cos θ
(h21 − h20) (146)

The average of Y over the cone frustum surface is

Ȳ = 1
A

∫ h1

h0

∫ 2π

0
Y dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
Yh dh dφ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0


1

tan θ cosφ

tan θ sinφ

 h2 dh dφ

= ρ3


1

0

0



(147)

The average of YTY over the cone frustum surface is

YTY = 1
A

∫ h1

h0

∫ 2π

0
YTY dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
YTYh dh dφ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
(1 + tan2 θ)h3 dh dφ

= ρ4 sec2 θ

(148)

The average of YYT over the cone frustum surface is

YYT = 1
A

∫ h1

h0

∫ 2π

0
YYT dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
YYT h dh dφ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0


1 tan θ cosφ tan θ sinφ

tan θ cosφ tan2 θ cos2 φ tan2 θ sinφ cosφ

tan θ sinφ tan2 θ sinφ cosφ tan2 θ sin2 φ

 h3 dh dφ
= ρ4 Diag

(
1, 12 tan2 θ, 12 tan2 θ

)
(149)
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The average of YYTY over the cone frustum surface is

YYTY = 1
A

∫ h1

h0

∫ 2π

0
YYTY dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
YYTYh dh dφ

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0
(1 + tan2 θ)


1

tan θ cosφ

tan θ sinφ

 h4 dh dφ

= ρ5 sec2 θ


1

0

0



(150)

In the following, P is the surface parameterization with the understanding that it depends on h and φ. The
average of the points over the cone frustum surface is

C = 1
A

∫ h1

h0

∫ 2π

0
P dA

= 1
π(h2

1−h2
0)

∫ h1

h0

∫ 2π

0

(
hV + h2U + h2 tan θ (cosφW0 + sinφW1)

)
dh dφ

= V + ρ3U

(151)

Define the difference ∆ = V−C = −ρ3U, in which case P−C = ∆ +RY. Define Z = P−C and define i
be the 3× 1 vector which as a 3-tuple is (1, 0, 0). Observe that Ri = U. The average of ZZT over the cone
frustum surface is

ZZT = 1
A

∫ h1

h0

∫ 2π

0
ZZT dA

= 1
A

∫ h1

h0

∫ 2π

0

(
∆∆T + ∆YTRT +RY∆T +RYYTRT

)
dA

= ∆∆T + ∆Y
T
RT +RY∆T +RYYTRT

= (−ρ3U)(−ρ3U)T + (−ρ3U)(ρ3i)
TRT +R(ρ3i)(−ρ3U)T

+ R(ρ4 Diag
(
1, 12 tan2 θ, 12 tan2 θ

)
)RT

= (ρ4 − ρ23)UUT + 1
2ρ4 tan2 θ(W0W

T
0 + W1W

T
1 )

= RDiag
(
ρ4 − ρ23, 12ρ4 tan2 θ, 12ρ4 tan2 θ

)
RT

(152)

The matrix ZZT is the covariance matrix of the cone frustum surface points and its eigendecomposition is
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given by the right-hand side of equation (152). The average of ZZTZ over the cone frustum surface is

ZZTZ = 1
A

∫ h1

h0

∫ 2π

0
ZZTZ dA

= 1
A

∫ h1

h0

∫ 2π

0

(
(∆T∆)∆ + (2∆∆TR)Y + (YTY)∆(∆T∆)RY+

+ (2RYYTRT)∆ +RYYTY
)

= (∆T∆)∆ + (2∆∆TR)Y + YTY∆ + (∆T∆)RY + 2RYYTRT∆ +RYYTY

= (−ρ33 + 2ρ33 − ρ3ρ4 sec2 θ + ρ33 − 2ρ3ρ4 + ρ5 sec2 θ)U

= (2p3(ρ23 − ρ4) + (ρ5 − ρ3ρ4) sec2 θ)U

(153)

Equations (152) and (153) can be manipulated to obtain 3 equations in the 3 unknowns h0, h1 and tan θ.

In this sense, if we have good estimates for C, ZZT and ZZTZ, we can reconstruct the cone frustum from a
dense set of samples on or near the frustum.

8.1.1 Simple Attempt to Reconstruct Height Extremes

The cone parameterization in terms of the centroid C is

P(h, φ) = C + (h− p3)U + h tan θ(cosφW0 + sinφW1) (154)

The minimum and maximum of the projections onto U relative to C are ĥ0 = h0 − p3 and ĥ1 = h1 − p3,
respectively. Recall that p3 = ((h31 − h30)/3)/((h21 − h20)/2), so we have two equations in h0 and h1 that we

can solve for in terms of ĥ0 and ĥ1,

h0 =
ĥ20 + ĥ0ĥ1 − 2ĥ21

3(ĥ0 + ĥ1)
, h1 =

ĥ10 + ĥ1ĥ0 − 2ĥ20

3(ĥ1 + ĥ0)
(155)

Because C is the centroid, it is necessary that ĥ0 < 0 < ĥ1. Also notice that h1 − h0 = ĥ1 − ĥ0, and the
right-hand side is a robust estimate of h1 − h0.

Although this is a simple mathematical problem given infinitely many points on a cone frustum surface, in
practice it has problems. Listing 16 contains code to generate a rectangular mesh of points on a cone frustum
that leads to ĥ1 being nearly equal to −ĥ0, which causes the denominator in the h0 and h1 reconstruction
equations to be nearly zero. The reconstructed h0 and h1 are nowhere near what they should be.

Listing 16. The reconstructed h0 and h1 for a dense sample of points on the cone frustum are grossly
incorrect. The cone axis direction is estimated using equation (153) rather than as an eigenvector from
equation (152); however, both estimates are nearly identical and nearly equal to the (3, 2, 1)/

√
14.

Vector3<double> V = { 3 . 0 , 2 . 0 , 1 . 0 } ;
Vector3<double> U = { 1 . 0 , 2 . 0 , 3 . 0 } ;
Vector3<double> b a s i s [ 3 ] ;
b a s i s [ 0 ] = U;
ComputeOrthogonalComplement (1 , b a s i s ) ;
U = b a s i s [ 0 ] ;
Vector3<double> W0 = ba s i s [ 1 ] ;
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Vector3<double> W1 = ba s i s [ 2 ] ;
double h0 = 1 . 0 ;
double h1 = 2 . 0 ;
double t h e t a = GTE C PI / 4 . 0 ;
double t a n t h e t a = s td : : tan ( t h e t a ) ;

s i z e t const numH = 512 , numR = 512 ;
s t d : : v e c to r<Vector3<double>> X(numH ∗ numR ) ;
f o r ( s i z e t i h = 0 , i = 0 ; i h < numH; ++i h )
{

double h = h0 + ( h1 − h0 ) ∗ ( double ) i h / ( double ) (numH − 1 ) ;
double r = h ∗ t a n t h e t a ;
f o r ( s i z e t i r = 0 ; i r < numR ; ++i r , ++i )
{

double ph i = GTE C TWO PI ∗ ( double ) i r / ( double )numR ;
double c s p h i = s td : : cos ( ph i ) ;
double s nph i = s td : : s i n ( ph i ) ;
X [ i ] = V + h ∗ U + r ∗ ( c s p h i ∗ W0 + snph i ∗ W1) ;

}
}

Vector3<double> C{ 0 . 0 , 0 . 0 , 0 . 0 } ; // the c e n t r o i d
f o r ( s i z e t i = 0 ; i < X. s i z e ( ) ; ++i )
{

C += X[ i ] ;
}
C /= ( double )X . s i z e ( ) ;

Vector3<double> U f i t { 0 . 0 , 0 . 0 , 0 . 0 } ; // the t h i r d−o r d e r term
f o r ( s i z e t i = 0 ; i < X. s i z e ( ) ; ++i )
{

Vector3<double> d i f f = X[ i ] − C ;
U f i t += Dot ( d i f f , d i f f ) ∗ d i f f ;

}
U f i t /= ( double )X . s i z e ( ) ;
Norma l i ze ( U f i t ) ;

double H1cen = s td : : n ume r i c l im i t s<double > : :max ( ) ;
double h1hat = −h0hat ;
f o r ( s i z e t i = 0 ; i < X. s i z e ( ) ; ++i )
{

Vector3<double> d i f f = X[ i ] − C ;
double h = Dot ( U f i t , d i f f ) ;
h0hat = s td : : min (h , h0hat ) ;
h1hat = s td : : max(h , h1hat ) ;

}
double hsum = h1hat + h0hat ;
double h 0 r e c o n s t r u c t = ( h0hat ∗ ( h0hat + h1hat ) − 2 .0 ∗ h1hat ∗ h1hat ) / ( 3 . 0 ∗ hsum ) ;
double h 1 r e c o n s t r u c t = ( h1hat ∗ ( h0hat + h1hat ) − 2 .0 ∗ h0hat ∗ h0hat ) / ( 3 . 0 ∗ hsum ) ;
// h0hat = −0.50000000000238787
// h1hat = 0.50000000000458455
// hsum = −8.7140517258189930e−14
// h 0 r e c o n s t r u c t = −75871822289.547775 ( o r i g i n a l was 1 . 0 )
// h 1 r e c o n s t r u c t = −75871822288.547775 ( o r i g i n a l was 2 . 0 )

Other equations can be derived to attempt reconstruction of h0 and h1. For example, we can compute
averages of powers of the height relative to the centroid,

1

A

∫ h1

h0

∫ 2π

0

(U · (P−C))
2
dA =

1

π(h21 − h20)

∫ h1

h0

∫ 2π

0

(h− p3)2h dh dφ = p4 − p23 (156)

Given a set of sample points, the equation to reconstruct the height extremes is

p4 − p23 =
1

n

n∑
i=1

(U · (Xi −C))
2

= b (157)
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where the last equality defines b. We know the estimate h1−h0 = ĥ1− ĥ0 = a where the last equality defines
a. We need to solve h1 − h0 = a and p4 − p23 = b. The solution is

h0 =
+(36ab− 3a3)±

√
3 a2
√
a2 − 12b

6(a2 − 12b)
, h1 =

−(36ab− 3a3)±
√

3 a2
√
a2 − 12b

6(a2 − 12b)
(158)

In Listing 16, after reconstruction of h0hat and h1hat, add the code

double a = h1hat − h0hat ; // 1.0000000000069724
double b = 0 . 0 ;
f o r ( s i z e t i = 0 ; i < X. s i z e ( ) ; ++i )
{

Vector3<double> d i f f = X[ i ] − C ;
double h = Dot ( U f i t , d i f f ) ;
b += h ∗ h ;

}
b /= ( double )X . s i z e ( ) ; // 0.083659491193733351
double d i s c r = a ∗ a − 12 .0 ∗ b ; // −0.0039138943108554258

The discriminant a2 − 12b2 is negative, so there are no real-valued solutions for h0 and h1.

Attempts to estimate h0 and h1 from the average integral of (U · (P−C))3 also failed when using the point
samples to estimate the integrals and then solve the resulting equations.

8.1.2 Attempt to Reconstruct the Cone Axis Direction

The eigendecomposition in equation (152) provides a symbolic expression involving the cone axis direction U.
In a numerical implementation, we need to identify which eigenvector output by the eigensolver corresponds

to U. The convariance matrix of the point samples is used to estimate ZZT. We cannot expect two distinct
eigenvalues λ1 = p4−p23 and λ2 = (p4 tan2 θ)/4, the first with multiplicity 1 and the second with multiplicity
2. For if we obtained such a result numerically, selection of U is trivial. Even theoretically we could have a
problem when there is a single eigenvalue of multiplicity 3.

If the point samples are nearly on a cone frustum, let the numerically computed eigenvalues be sorted as
λ1 ≤ λ2 ≤ λ3. We could compute λ2 − λ1 and λ3 − λ2 and claim that the minimum difference is due to
numerical rounding errors. The conclusion is that those two eigenvalues are theoretically a single eigenvalue.
The other eigenvalue is the one associated with U. Some experiments showed that this is not a reliable way
to select U.

Instead we can use equation (153) to select U unambiguously. The integral ZZTZ is estimated by a summa-
tion involving the point samples as shown in Listing 16. The normalization of the summation is the estimate
for U, named Ufit in the listing.

8.1.3 Attempt to Reconstruct the Cone Vertex

As mentioned previously, reconstructing h0 and h1 would allow us to compute p3 and then V = C − p3U,
but the reconstruction attempts can fail numerically. A more reliable algorithm for estimating V is shown
here. The goal is to estimate p3 directly rather than estimating h0 and h1 and then computing p3 from
them.

In the following, U is the estimate of the cone axis direction obtained from equation (153). We want to
estimate a positive t for which V = C− tU. At the same time we need to estimate s = cos2 θ for the cone
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angle. The algorithm will use the discrete least-squares error function for a specified U. Define ∆i = Xi−C,
ai = U ·∆i and bi = ∆i ·∆i. Define

Fi = (Xi −V)
T
(
sI −UUT

)
(Xi −V) = s

(
t2 + 2ait+ bi

)
− (t+ ai)

2 (159)

The least-squares error function is E = (
∑n
i=1 F

2
i )/n. The derivatives of the Fi terms are

∂Fi
∂s

= t2 + 2ait+ bi,
∂Fi
∂t

= 2(s− 1)(t+ ai) (160)

Some algebra will show that ∂E/∂t = 0 and ∂E/∂s = 0 lead to

sp3(t)− q3(t) = 0, sp4(t)− q4(t) = 0 (161)

where pd(t) and qd(t) are polynomials of degree d. Specifically,

p3(t) = t3 + e0t
2 + e1t+ e2

q3(t) = t3 + e0t
2 + e3t+ e4

p4(t) = t4 + f0t
3 + f1t

2 + f2t+ f3

q4(t) = t4 + f0t
3 + f4t

2 + f5t+ f6

(162)

where

e0 = 1
n

∑n
i=1 3ai f0 = 1

n

∑n
i=1 4ai

e1 = 1
n

∑n
i=1(2a2i + bi) f1 = 1

n

∑n
i=1(4a2i + 2bi)

e2 = 1
n

∑n
i=1 aibi f2 = 1

n

∑n
i=1 4aibi

e3 = 1
n

∑n
i=1 3a2i f3 = 1

n

∑n
i=1 b

2
i

e4 = 1
n

∑n
i=1 a

3
i f4 = 1

n

∑n
i=1(5a2i + bi)

f5 = 1
n

∑n
i=1(2a3i + 2aibi)

f6 = 1
n

∑n
i=1 a

2
i bi

(163)

Define crs = 1
n

∑n
i=1 a

r
i b
s
i . We can solve one st-equation for s = q4(t)/p4(t), substitute into the other

st-equation and then multiply by p4(t) to obtain

0 = p3(t)q4(t)− p4(t)q3(t) = g4t
4 + g3t

3 + g2t
2 + g1t+ g0 (164)

where

g4 = c30 − c11 + c10(c01 − c20)

g3 = c21 − c02 + c01(c01 + c20) + 2(c10(c30 − c11)− c220)

g2 = 3(c11(c01 − c20) + c10(c21 − c02))

g1 = c01c21 − 3c02c20 + 2(c20c21 − c11(c30 − c11))

g0 = c11c21 − c02c30

(165)

The least-squares error function is smooth and nonnegative, so there must be at least one (s, t) for which
∇E(s, t) = (0, 0). In theory, this means g(t) = 0 must have at least one real-valued root. Naturally, the
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quartic root solver must guard against floating-point round-off errors to guarantee this. The GTEngine
quartic root solver can be executed with rational arithmetic to correctly classify the roots, after which
rounding errors will not change the classification. For each root t ≥ 0, compute s = q3(t)/p3(t). If s ∈ (0, 1),
we have a valid angle because s = cos2 θ. Evaluate E(s, t). Of all such valid pairs (s, t), choose the one
whose E-value is minimum. This pair is used to initialize V and cos θ.

Using floating-point arithmetic, it is unlikely but possible that there is no pair (s, t) generated by the
algorithm of the previous paragraph. An implementation must guard against this. Although most likely bad
estimates, choose the initial V to be the average C and chose the angle arbitrarily to be π/4 which is the
midpoint of the domain of the angles (0, π/2).

Listing 16 can be modified by replacing all the code after the line Normalize(Ufit) with that shown in Listing
17. The new listing shows an implementation for the initial guesses for V and cos2 θ.

Listing 17. Code for the initial guesses for the cone vertex and cone angle. The numbers in the comments
are those produced by the example in Listing 16.

double c10 = 0 . 0 , c20 = 0 . 0 , c30 = 0 . 0 , c01 = 0 . 0 , c02 = 0 . 0 , c11 = 0 . 0 , c21 = 0 . 0 ;
f o r ( s i z e t i = 0 ; i < X. s i z e ( ) ; ++i )
{

Vector3<double> d i f f = X[ i ] − C ;
double a i = Dot ( U f i t , d i f f ) ;
double b i = Dot ( d i f f , d i f f ) ;
c10 += a i ;
c20 += a i ∗ a i ;
c30 += a i ∗ a i ∗ a i ;
c01 += b i ;
c02 += b i ∗ b i ;
c11 += a i ∗ b i ;
c21 += a i ∗ a i ∗ b i ;

}
c10 /= ( double )X . s i z e ( ) ;
c20 /= ( double )X . s i z e ( ) ;
c30 /= ( double )X . s i z e ( ) ;
c01 /= ( double )X . s i z e ( ) ;
c02 /= ( double )X . s i z e ( ) ;
c11 /= ( double )X . s i z e ( ) ;
c21 /= ( double )X . s i z e ( ) ;

// The c o e f f i c i e n t s f o r p o l y nom i a l s p3 ( t ) and q3 ( t ) .
double e0 = 3 .0 ∗ c10 ;
double e1 = 2 .0 ∗ c20 + c01 ;
double e2 = c11 ;
double e3 = 3 .0 ∗ c20 ;
double e4 = c30 ;

// The c o e f f i c i e n t s f o r p o l y nom i a l s p4 ( t ) and q4 ( t ) .
double f 0 = 4 .0 ∗ c10 ;
double f 1 = 4 .0 ∗ c20 + 2 .0 ∗ c01 ;
double f 2 = 4 .0 ∗ c11 ;
double f 3 = c02 ;
double f 4 = 5 .0 ∗ c20 + c01 ;
double f 5 = 2 .0 ∗ c30 + 2 .0 ∗ c11 ;
double f 6 = c21 ;

// The c o e f f i c i e n t s f o r the q u a r t i c po l ynom ia l g ( t ) .
double g0 = c11 ∗ c21 − c02 ∗ c30 ; // 0.053566286603418618
double g1 = c01 ∗ c21 − 3 .0 ∗ c02 ∗ c20 + 2 .0 ∗ ( c20 ∗ c21 − c11 ∗ ( c30 − c11 ) ) ; // −0.98354780514088114
double g2 = 3 .0 ∗ ( c11 ∗ ( c01 − c20 ) + c10 ∗ ( c21 − c02 ) ) ; // 1.7570948908739785
double g3 = c21 − c02 + c01 ∗ ( c01 + c20 ) + 2 .0 ∗ ( c10 ∗ ( c30 − c11 ) − c20 ∗ c20 ) ; // −0.37366801803251715
double g4 = c30 − c11 + c10 ∗ ( c01 − c20 ) ; // −0.25097847358125042

// Compute the r o o t s o f g ( t ) = 0 .
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s t d : : map<double , i n t> rmMap ;
RootsPo lynomia l<double > : : S o l v eQua r t i c ( g0 , g1 , g2 , g3 , g4 , rmMap ) ;
// r oo t [ 0 ] = −3.6829478517723415
// r oo t [ 1 ] = 0.061025506205900915
// r oo t [ 2 ] = 0.63307745500821921
// r oo t [ 3 ] = 1.4999999999961315

s t d : : v e c to r<s t d : : a r r ay<double , 3>> i n f o ;
double s , t ;
f o r ( auto const& element : rmMap)
{

t = e lement . f i r s t ;
i f ( t > 0 . 0 )
{

s = ( e4 + t ∗ ( e3 + t ∗ ( e0 + t ) ) ) / ( e2 + t ∗ ( e1 + t ∗ ( e0 + t ) ) ) ;
i f ( 0 . 0 < s && s < 1 . 0 )
{

double e r r o r = 0 . 0 ;
f o r ( s i z e t i = 0 ; i < X. s i z e ( ) ; ++i )
{

Vector3<double> d i f f = X[ i ] − C ;
double a i = Dot ( U f i t , d i f f ) ;
double b i = Dot ( d i f f , d i f f ) ;
double t p a i = t + a i ;
double F i = s ∗ ( b i + t ∗ ( 2 . 0 ∗ a i + t ) ) − t p a i ∗ t p a i ;
e r r o r += F i ∗ F i ;

}
e r r o r /= ( double )X . s i z e ( ) ;
s t d : : a r r ay<double , 3> i t em = { s , t , e r r o r } ;
i n f o . push back ( i tem ) ;

}
}

}

double minEr ro r = s td : : n ume r i c l im i t s<double > : :max ( ) ;
s t d : : a r r ay<double , 3> minItem = { 0 . 0 , 0 . 0 , m inEr ro r } ;
f o r ( auto const& item : i n f o )
{

i f ( i tem [ 2 ] < minEr ro r )
{

minItem = item ;
}

}

Vector3<double> V f i t ;
double co sAng l eSq rF i t ;
i f ( minItem [ 2 ] < s t d : : n ume r i c l im i t s<double > : :max ( ) )
{

// minItem = { minS , minT , minEr ro r }
V f i t = C − minItem [ 1 ] ∗ U f i t ;
c o sAng l eSq rF i t = minItem [ 0 ] ;

// We do not need t h i s f o r the min im ize r , but l e t ’ s r e c o n s t r u c t
// the h e i g h t s to s e e how c l o s e we get to the o r i g i n a l ones
// ( h0 = 1 , h1 = 2 ) . Knowing the e s t ima t e h1 − h0 = 1 , s o l v e
// minT = p3 = ( ( h1ˆ3−h0 ˆ3 )/3 )/ ( ( h1ˆ2−h0 ˆ2)/2)
// f o r h0 and h1 .
double h0 = (6 . 0 + s td : : s q r t ( 276 ) ) / 2 4 . 0 ; // 0.94221865524317294
double h1 = 1 .0 + h0 ; // 1.9422186552431731

// The o r i g i n a l cone has p3 = 14/9 = 1.555555 and the m in im i z i ng
// t−v a l u e i s 1 .4999999999961315 .

}
e l s e
{

V f i t = C ;
co sAng l eSq rF i t = s q r t ( 0 . 5 ) ; // a n g l e F i t i s p i /4

}
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9 Fitting a Paraboloid to 3D Points of the Form (x, y, f(x, y))

Given a set of samples {(xi, yi, zi)}mi=1 and assuming that the true values lie on a paraboloid

z = f(x, y) = p1x
2 + p2xy + p3y

2 + p4x+ p5y + p6 = P ·Q(x, y) (166)

where P = (p1, p2, p3, p4, p5, p6) and Q(x, y) = (x2, xy, y2, x, y, 1), select P to minimize the sum of squared
errors

E(P) =

m∑
i=1

(P ·Qi − zi)2 (167)

where Qi = Q(xi, yi). The minimum occurs when the gradient of E is the zero vector,

∇E = 2

m∑
i=1

(P ·Qi − zi)Qi = 0 (168)

Some algebra converts this to a system of 6 equations in 6 unknowns:(
m∑
i=1

QiQ
T
i

)
P =

m∑
i=1

ziQi (169)

The product QiQ
T
i is a product of the 6× 1 matrix Qi with the 1× 6 matrix QT

i , the result being a 6× 6
matrix.

Define the 6× 6 symmetric matrix A =
∑m
i=1 QiQ

T
i and the 6× 1 vector B =

∑m
i=1 ziQi. The choice for P

is the solution to the linear system of equations AP = B. The entries of A and B indicate summations over
the appropriate product of variables. For example, s(x3y) =

∑m
i=1 x

3
i yi:

s(x4) s(x3y) s(x2y2) s(x3) s(x2y) s(x2)

s(x3y) s(x2y2) s(xy3) s(x2y) s(xy2) s(xy)

s(x2y2) s(xy3) s(y4) s(xy2) s(y3) s(y2)

s(x3) s(x2y) s(xy2) s(x2) s(xy) s(x)

s(x2y) s(xy2) s(y3) s(xy) s(y2) s(y)

s(x2) s(xy) s(y2) s(x) s(y) s(1)





p1

p2

p3

p4

p5

p6


=



s(zx2)

s(zxy)

s(zy2)

s(zx)

s(zy)

s(z)


(170)

An implementation is GteApprParaboloid3.h.
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