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1 Definitions

A sphere with center C and radius r > 0 is defined by the set of points X satisfying |X−C| = r. The solid
sphere is the sphere plus the region it bounds, specified as |X−C| ≤ r.

An infinite single-sided cone with vertex V, axis ray with origin at V and unit-length direction A, and cone
angle θ ∈ (0, π/2) is defined by the set of points X such that the vector X −V forms an angle θ with A.
The algebraic condition is A · (X−V) = |X−V| cos θ. The infinite solid cone is the cone plus the region it
bounds, specified as A · (X−V) ≥ |X−V| cos θ. Figure 1 shows an infinite solid cone.

Figure 1. A 2D view of a single-sided, infinite, solid code. The boundary of the cone is drawn with black
lines, but the top boundary does not have a black line, which indicates the cone extends to infinity. The
point X is inside the solid cone and the point Y is outside the solid cone.

Because of the constraint on θ, both cos θ > 0 and sin θ > 0.

A parametric representation of the infinite cone is

X(h, φ) = V + hA + (h tan θ)(cosφW0 + sinφW1) (1)

where {W0,W1,A} is a right-handed orthonormal set; that is, the vectors of the set are unit length, mutually
perpendicular and A = W0 ×W1. The parameters are constrained by h ∈ [0,+∞) and φ ∈ [0, 2π). The
variable h is referred to as height of the cone. A parametric representation of the infinite solid cone is

X(h, φ, ρ) = V + hA + ρ(cosφW0 + sinφW1) (2)

where the h and φ constraints are the same as for the infinite cone and where ρ ∈ [0, h tan θ].

The infinite cone can be truncated with one or two planes perpendicular to the cone axis. To distinguish
between them, I name the objects as shown in Table 1.
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Table 1. Various types of cones.

cone name height constraints

infinite cone h ∈ [0,+∞)

infinite truncated cone h ∈ [hmin,+∞) for finite hmin > 0

finite cone h ∈ [0, hmax] for finite hmax > 0

cone frustum h ∈ [hmin, hmax] for finite hmin and hmax with 0 < hmin < hmax

The remainder of the document describes the test-intersection queries between a sphere and the four types of
cones. The problem of determining whether a sphere intersects a cone is equivalent to using Minkowski sums,
where the sphere is shrunk to its center point C by its radius r and the cone is expanded to a sphere-swept
volume. This volume is formed by placing a spheres of radius r with centers at the points of the cone, an
infinite union of volumes so to speak. The test-intersection query becomes a point-in-sphere-swept-volume
test.

2 Intersection of a Sphere with an Infinite Cone

The sphere-swept volume for the infinite cone lives in a supercone defined by

A · (X−U) ≥ |X−U| cos θ (3)

where U = V − (r/ sin θ)A. If the sphere center is outside the supercone, then the sphere and infinite
solid cone do not intersect. When the center is inside the supercone, additional tests must be applied to
determine intersection. To avoid the square root calculation on the right-hand side of equation (3), the test
is equivalent to the two tests A · (X−U) ≥ 0 and (A · (X−U))2 ≥ |X−U|2 cos2 θ.

Figure 2 shows various regions of interest in a cross section of the cone. The cross section lives in a plane
containing the sphere center C, the cone vertex V and the cone axis direction A.
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Figure 2. The absence of a black boundary line at the top of each of the objects indicates that there is no
boundary and the object interiors extend to infinity. Left: The infinite truncated solid cone. Right: The
sphere-swept infinite truncated solid cone. Middle: A partitioning of the sphere-swept infinite truncated
solid cone. The sphere-swept volume is formed by the orange, red, blue and violet regions. The yellow and
green regions are outside the sphere-swept volume. The supercone is the union of all the colored regions.

The points are M = V− (r sin θ)A and E = V− rA. The plane through M and perpendicular to the cone
axis contains the circle of tangency between the supercone and the vertex sphere.

The conditions for when the sphere will or will not intersect the infinite solid cone are as follows. The tests
are executed in the order specified.

1. C is outside the supercone. The center is in the white region of Figure 2. The outside test is A · (C−
U) ≥ |C−U| cos θ.

2. C is outside the sphere-swept infinite cone when it is below the plane through E and perpendicular to
the cone axis. The center is in the green region of Figure 2. The outside test is A · (C−E) < 0, which
is equivalent to A · (C−V) < −r.

3. C is inside the sphere-swept volume when it is above or on the plane through M and perpendicular to
the cone axis. The center is in the red or orange regions of Figure 2. The inside test is A ·(C−M) ≥ 0,
which is equivalent to A · (C−V) ≥ −r sin θ.

4. At this time we know that C is in the blue or yellow regions of Figure 2. The inside test is |C−M|2 ≤ r2.

Listing 1 contains pseudocode for the test-intersection query using the alternate algorithm.

Listing 1. Pseudocode for the test-intersection query between a sphere and an infinite cone using the
alternate algorithm. The function returns true if and only if there is an intersection.

boo l S p h e r e I n t e r s e c t s I n f i n i t e C o n e ( Sphere sphere , Cone cone )
{

Vector3 U = cone . v e r t e x = ( s phe r e . r a d i u s * cone . s i n R e c i p r o c a l ) * cone . a x i s ;
Vector3 CmU = sphe r e . c e n t e r = U;
Rea l AdCmU = Dot ( cone . a x i s , CmU) ;
i f (AdCmU > 0)
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{
Rea l sqrLengthCmU = Dot (CmU, CmU) ;
i f (AdCmU * AdCmU >= sqrLengthCmU * cone . cosAng l eSqr )
{

// The c e n t e r i s i n s i d e the supe r cone .
Vector3 CmV = sphe r e . c e n t e r = cone . v e r t e x ;
Rea l AdCmV = Dot ( cone . a x i s , CmV) ;
i f (AdCmV < =s phe r e . r a d i u s )
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( g reen r e g i o n )
r e t u r n f a l s e ;

}

Rea l r S i nAng l e = sphe r e . r a d i u s * cone . s i nAng l e ;
i f (AdCmV >= =r S i nAng l e )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( red or orange r e g i o n ) .
r e t u r n t rue ;

}

Rea l sqrLengthCmV = Dot (CmV, CmV) ;
i f ( sqrLengthCmV <= sphe r e . r a d i u s S q r )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( b l u e r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( y e l l ow r e g i o n ) .
r e t u r n f a l s e ;

}
}

}

// The c e n t e r i s o u t s i d e the supe r cone ( wh i t e r e g i o n ) .
r e t u r n f a l s e ;

}

3 Intersection of a Sphere with an Infinite Truncated Cone

Figure 3 shows regions of interest in a cross section of the cone. The cross section lives in a plane containing
the sphere center C, the cone vertex V and the cone axis direction A.
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Figure 3. The absence of a black boundary line at the top of each of the objects indicates that there is no
boundary and the object interiors extend to infinity. Left: The infinite truncated solid cone. Right: The
sphere-swept infinite truncated solid cone. Middle: A partitioning of the sphere-swept infinite truncated
solid cone. The sphere-swept volume is formed by the orange, red, blue and violet regions. The yellow and
green regions are outside the sphere-swept volume.

The points are Q = V + hminA, E = Q − rA and M = Q − (r sin θ)A. The point K is the center of one
of the spheres placed along the circle of cone points on the truncation plane at hmin. The union of these
spheres has a circle of points tangent to the sphere-swept volume, where the black line separating the red
and blue regions intersects that volume. The blue regions are defined by the spheres at the K points.

A query for the sphere center C when located in the blue or yellow regions will process the point K closest
to C. Define ∆ = C−Q. The unit-length vector from Q in the direction of K is the normalized projection
of ∆ onto a plane perpendicular to the cone axis, call this direction

A⊥ =
∆− (A ·∆)A

|∆− (A ·∆)A|
=

∆− (A ·∆)A

|A×∆|
(4)

It follows that
K = Q + (hmin tan θ)A⊥, C = Q + (A ·∆)A + |A×∆|A⊥ (5)

Figure 4 shows the geometric configuration described here.
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Figure 4. The geometric configuration showing sphere center C and the closest point K on the tangent
circle.

The conditions for when the sphere will or will not intersect the infinite truncated solid cone are as follows.
The tests are executed in the order specified.

1. C is outside the supercone. The center is in the white region of Figure 3. The outside test is A · (C−
U) ≥ |C−U| cos θ.

2. C is outside the sphere-swept volume when it is below the plane through E and perpendicular to the
cone axis. The center is in the green region of Figure 3. The outside test is A · (C−E) < 0, which is
equivalent to A · (C−V) < −r.

3. C is inside the sphere-swept volume when it is above or on the plane through M and perpendicular to
the cone axis. The center is in the red or orange regions of Figure 3. The inside test is A ·(C−M) ≥ 0,
which is equivalent to A · (C−V) ≥ −r sin θ.

4. C is inside the sphere-swept volume if it is above the E-plane, below the M-plane and a distance d
from the cone axis with d = |A ×∆| ≤ hmin tan θ. The center is in the violet region of Figure 3.
Because we have already executed the tests in items (1), (2) and (3), the inside test requires only the
distance comparison.

5. The final test is whether C is in a yellow or a blue region of Figure 3. This requires a simple distance
comparison between the sphere radius and the distance from C to K. The test

|C−K|2 = (A ·∆)2 + (|A×∆| − hmin tan θ)
2 ≤ r2

is true if and only if C is inside the sphere centered at K, in the blue region. When the test is false,
C is in the yellow region and outside the sphere-swept volume.

Listing 2 contains pseudocode for the test-intersection query.

Listing 2. Pseudocode for the test-intersection query between a sphere and an infinite truncated cone.
The function returns true if and only if there is an intersection.
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boo l S p h e r e I n t e r s e c t s I n f i n i t eT r u n c a t e dC o n e ( Sphere sphere , Cone cone )
{

Vector3 U = cone . v e r t e x = ( s phe r e . r a d i u s * cone . s i n R e c i p r o c a l ) * cone . a x i s ;
Vector3 CmU = sphe r e . c e n t e r = U;
Rea l AdCmU = Dot ( cone . a x i s , CmU) ;
i f (AdCmU > 0)
{

Rea l sqrLengthCmU = Dot (CmU, CmU) ;
i f (AdCmU * AdCmU >= sqrLengthCmU * cone . cosAng l eSqr )
{

// The c e n t e r i s i n s i d e the supe r cone .
Vector3 CmV = sphe r e . c e n t e r = cone . v e r t e x ;
Rea l AdCmV = Dot ( cone . a x i s , CmV) ;
i f (AdCmV < cone . minHeight = s phe r e . r a d i u s )
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( g reen r e g i o n ) .
r e t u r n f a l s e ;

}

Rea l r S i nAng l e = sphe r e . r a d i u s * cone . s i nAng l e ;
i f (AdCmV >= =r S i nAng l e )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( red or orange r e g i o n ) .
r e t u r n t rue ;

}

Vector3 D = CmV = cone . minHeight * cone . a x i s ; // = C = Q = C = V = hmin * A
Rea l lengthAxD = Length ( Cros s ( cone . a x i s , D) ) ;
Rea l hminTanAngle = cone . minHeight * cone . tanAng le ;
i f ( lengthAxD <= hminTanAngle )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( v i o l e t r e g i o n ) .
r e t u r n t rue ;

}

Rea l AdD = AdCmV = cone . minHeight ; // = Dot (A, C = Q) = Dot (A, C = V) = hmin
Rea l d i f f = lengthAxD = hminTanAngle ;
Rea l sqrLengthCmK = AdD * AdD + d i f f * d i f f ;
i f ( sqrLengthCmK <= sphe r e . r a d i u s S q r )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( b l u e r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( y e l l ow r e g i o n ) .
r e t u r n f a l s e ;

}
}

}

// The c e n t e r i s o u t s i d e the supe r cone ( wh i t e r e g i o n ) .
r e t u r n f a l s e ;

}

4 Intersection of a Sphere with a Finite Cone

Figure 5 shows regions of interest in a cross section of the cone. The cross section lives in a plane containing
the sphere center C, the cone vertex V and the cone axis direction A.
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Figure 5. Left: The finite solid cone. Right: The sphere-swept finite solid cone. Middle: A partitioning of
the sphere-swept finite solid cone. The sphere-swept volume is formed by the orange, red, blue and violet
regions. The yellow and green regions are outside the sphere-swept volume.

The points are E = V − rA, M = V − (r sin θ)A, Q = V + hmaxA, E = Q + rA and M = Q− (r sin θ)A.
The point K is the center of one of the spheres placed along the circle of cone points on the truncated plane
at hmax. The union of these spheres has a circle of points tangent to the sphere-swept volume, where the
black line separating the red and blue regions intersects that volume. The blue regions are defined by the
spheres at the K points.

A query for the sphere center C when located in the blue or yellow regions above the hmax plane will process
the point K closest to C. Define ∆ = C −Q. The unit-length vector from Q in the direction of K is the
normalized projection of overline∆ onto a plane perpendicular to the cone axis, call this direction

A⊥ =
∆− (A ·∆)A

|∆− (A ·∆)A|
=

∆− (A ·∆)A

|A×∆|
(6)

It follows that
K = Q + (hmax tan θ)A⊥, C = Q + (A ·∆)A + |A×∆|A⊥ (7)

The geometric configuration is similar to the one shown in Figure 4. The conditions mentioned next also
use ∆ = C−Q.

The conditions for when the sphere will or will not intersect the finite solid cone are as follows. The tests
are executed in the order specified.

1. C is outside the supercone. The center is in the white region of Figure 5 but only that portion
exterior to the cone boundary; it does not include the white region above the truncation but inside the
supercone. The outside test is A · (C−U) ≥ |C−U| cos θ.

2. C is outside the sphere-swept volume when it is below the plane through E and perpendicular to the
cone axis. The center is in the green region of Figure 5. The outside test is A · (C−E) < 0, which is
equivalent to A · (C−V) < −r.
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3. C is outside the sphere-swept volume when it is above the plane through E and perpendicular to the
cone axis. The center is in the white region of Figure 5 that is in the supercone. The outside test is
A · (C−E) > 0, which is equivalent to A(̇C−V) > hmax + r.

4. C is inside the sphere-swept volume when it is between the planes through M and M and perpendicular
to the cone axis. The center is in the red or orange regions of Figure 5. The inside tests are A·(C−M) ≥
0 and A · (C−M) ≤ 0, which are equivalent to −r sin θ ≤ A · (C−V) ≤ hmax − r sin θ.

5. C is inside the sphere-swept volume if it is above the E-plane and below the M-plane. The center is
in the blue or yellow regions of Figure 5. The test for containment is |∆|2 ≤ r2.

6. C is inside the sphere-swept volume if it is above the E-plane, below the M-plane and a distance d
from the cone axis with d = |A×∆| ≤ hmax tan θ. The center is in the violet region of Figure 5.

7. The final test is whether C is in a yellow or a blue region above the M-plane of Figure 5. This requires
a simple distance comparison between the sphere radius and the distance from C to K. The test

|C−K|2 = (A ·∆)2 +
(
|A×∆| − hmax tan θ

)2 ≤ r2
is true if and only if C is inside the sphere centered at K, in the blue region. When the test is false,
C is in the yellow region and outside the sphere-swept volume.

Listing 3 contains pseudocode for the test-intersection query.

Listing 3. Pseudocode for the test-intersection query between a sphere and a finite cone. The function
returns true iff there is an intersection.

boo l S p h e r e I n t e r s e c t s F i n i t e C o n e ( Sphere sphere , Cone cone )
{

Vector3 U = cone . v e r t e x = ( s phe r e . r a d i u s * cone . s i n R e c i p r o c a l ) * cone . a x i s ;
Vector3 CmU = sphe r e . c e n t e r = U;
Rea l AdCmU = Dot ( cone . a x i s , CmU) ;
i f (AdCmU > 0)
{

Rea l sqrLengthCmU = Dot (CmU, CmU) ;
i f (AdCmU * AdCmU >= sqrLengthCmU * cone . cosAng l eSqr )
{

// The c e n t e r i s i n s i d e the supe r cone .
Vector3 CmV = sphe r e . c e n t e r = cone . v e r t e x ;
Rea l AdCmV = Dot ( cone . a x i s , CmV) ;
i f (AdCmV < =s phe r e . r a d i u s )
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( g reen r e g i o n ) .
r e t u r n f a l s e ;

}

i f (AdCmV > cone . maxHeight + sphe r e . r a d i u s )
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( wh i t e r e g i o n ) .
r e t u r n f a l s e ;

}

Rea l r S i nAng l e = sphe r e . r a d i u s * cone . s i nAng l e ;
i f (AdCmV >= =r S i nAng l e )
{

i f (AdCmV <= cone . maxHeight = r S i nAng l e )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( red or orange r e g i o n ) .
r e t u r n t rue ;

}
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e l s e
{

Vector3 barD = CmV = cone . maxHeight * cone . a x i s ; // = C = barQ = C = V = hmax * A
Rea l lengthAxBarD = Length ( Cros s ( cone . a x i s , barD ) ) ;
Rea l hmaxTanAngle = cone . maxHeight * cone . tanAng le ;
i f ( lengthAxBarD <= hmaxTanAngle )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( top v i o l e t r e g i o n ) .
r e t u r n t rue ;

}

Rea l AdBarD = AdCmV = cone . maxHeight ; // = Dot (A, C = barQ ) = Dot (A, C = V) = hmax
Rea l d i f f = lengthAxBarD = hmaxTanAngle ;
Rea l sqrLengthCmBarK = AdBarD * AdBarD + d i f f * d i f f ;
i f ( sqrLengthCmBarK <= sphe r e . r a d i u s S q r )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( top b l u e r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( top y e l l ow r e g i o n ) .
r e t u r n f a l s e ;

}
}

}
e l s e
{

Rea l sqrLengthCmV = Dot (CmV, CmV) ;
i f ( sqrLengthCmV <= sphe r e . r a d i u s S q r )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( bottom b lu e r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( bottom ye l l ow r e g i o n ) .
r e t u r n f a l s e ;

}
}

}
}

// The sphe r e c e n t e r i s o u t s i d e the supe r cone ( wh i t e r e g i o n ) .
r e t u r n f a l s e ;

}

5 Intersection of a Sphere with a Cone Frustum

Figure 6 shows regions of interest in a cross section of the cone. The cross section lives in a plane containing
the sphere center C, the cone vertex V and the cone axis direction A.
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Figure 6. Left: The solid cone frustum. Right: The sphere-swept solid cone frustum. Middle: A partitioning
of the sphere-swept solid cone frustum. The sphere-swept volume is formed by the orange, red, blue and
violet regions. The yellow and green regions are outside the sphere-swept volume. The points are the same
as those defined in Figures 3 and 5.

The conditions for when the sphere will or will not intersect the cone frustum are a combination of some of
the infinite truncated cone tests and some of the finite cone tests. Listing 4 contains pseudocode for testing
whether a sphere intersects a cone frustum.

Listing 4. Pseudocode for the test-intersection query between a sphere and a cone frustum. The function
returns true iff there is an intersection.

boo l Sphe r e I n t e r s e c t sConeF ru s tum ( Sphere sphere , Cone cone )
{

Vector3 U = cone . v e r t e x = ( s phe r e . r a d i u s * cone . s i n R e c i p r o c a l ) * cone . a x i s ;
Vector3 CmU = sphe r e . c e n t e r = U;
Rea l AdCmU = Dot ( cone . a x i s , CmU) ;
i f (AdCmU > 0)
{

Rea l sqrLengthCmU = Dot (CmU, CmU) ;
i f (AdCmU * AdCmU >= sqrLengthCmU * cone . cosAng l eSqr )
{

// The c e n t e r i s i n s i d e the supe r cone .
Vector3 CmV = sphe r e . c e n t e r = cone . v e r t e x ;
Rea l AdCmV = Dot ( cone . a x i s , CmV) ;
i f (AdCmV < cone . minHeight = s phe r e . r a d i u s )
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( g reen r e g i o n ) .
r e t u r n f a l s e ;

}

i f (AdCmV > cone . maxHeight + sphe r e . r a d i u s )
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( wh i t e r e g i o n ) .
r e t u r n f a l s e ;

}

Rea l r S i nAng l e = sphe r e . r a d i u s * cone . s i nAng l e ;
i f (AdCmV >= cone . minHeight = r S i nAng l e )
{

i f (AdCmV <= cone . maxHeight = r S i nAng l e )
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{
// The c e n t e r i s i n s i d e the sphere=swept volume ( red or orange r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

Vector3 barD = CmV = cone . maxHeight * cone . a x i s ; // = C = barQ = C = V = hmax * A
Rea l lengthAxBarD = Length ( Cros s ( cone . a x i s , barD ) ) ;
Rea l hmaxTanAngle = cone . maxHeight * cone . tanAng le ;
i f ( lengthAxBarD <= hmaxTanAngle )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( top v i o l e t r e g i o n ) .
r e t u r n t rue ;

}

Rea l AdBarD = AdCmV = cone . maxHeight ; // = Dot (A, C = barQ ) = Dot (A, C = V) = hmax
Rea l d i f f = lengthAxBarD = hmaxTanAngle ;
Rea l sqrLengthCmBarK = AdBarD * AdBarD + d i f f * d i f f ;
i f ( sqrLengthCmBarK <= sphe r e . r a d i u s S q r )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( top b l u e r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( top y e l l ow r e g i o n ) .
r e t u r n f a l s e ;

}
}

}
e l s e
{

Vector3 D = CmV = cone . minHeight * cone . a x i s ; // = C = Q = C = V = hmin * A
Rea l lengthAxD = Length ( Cros s ( cone . a x i s , D) ) ;
Rea l hminTanAngle = cone . minHeight * cone . tanAng le ;
i f ( lengthAxD <= hminTanAngle )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( v i o l e t r e g i o n ) .
r e t u r n t rue ;

}

Rea l AdD = AdCmV = cone . minHeight ; // = Dot (A, C = Q) = Dot (A, C = V) = hmin
Rea l d i f f = lengthAxD = hminTanAngle ;
Rea l sqrLengthCmK = AdD * AdD + d i f f * d i f f ;
i f ( sqrLengthCmK <= sphe r e . r a d i u s S q r )
{

// The c e n t e r i s i n s i d e the sphere=swept volume ( b l u e r e g i o n ) .
r e t u r n t rue ;

}
e l s e
{

// The c e n t e r i s o u t s i d e the sphere=swept volume ( y e l l ow r e g i o n ) .
r e t u r n f a l s e ;

}
}

}
}

// The c e n t e r i s o u t s i d e the supe r cone ( wh i t e r e g i o n ) .
r e t u r n f a l s e ;

}

6 Implementation

An implementation of the algorithm in GTE is IntrSphere3Cone3.h. There is also a sample application
whose path is GeometricTools/GTE/Samples/Intersection/IntersectSphereCone.
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https://www.geometrictools.com/GTE/Mathematics/IntrSphere3Cone3.h
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