
Intersection of a Line and a Cone

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: October 17, 2000
Last Modified: September 11, 2020

Contents

1 Introduction 3

1.1 Definition of Cones . 3

1.2 Practical Matters for Representing Infinity . 4

1.3 Definition of a Line, Ray and Segment . 5

2 Intersection with a Line 5

2.1 Case c2 6= 0 . 5

2.2 Case c2 = 0 and c1 6= 0 . 6

2.3 Case c2 = 0 and c1 = 0 . 7

3 Clamping to the Cone Height Range 7

4 Pseudocode for Error-Free Real-Valued Arithmetic 8

4.1 Intersection of Intervals . 8

4.2 Line-Cone Query . 9

5 Intersection with a Ray 15

6 Intersection with a Segment 16

7 Rational and Symbolic Arithmetic to Avoid Square Roots 18

7.1 Symbolic Arithmetic for the Square Root of the Discriminant 20

7.2 Symbolic Arithmetic for the Length of the Cone Axis Direction 20

1

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

8 Pseudocode for Rational and Symbolic Arithmetic 20

2

1 Introduction

This document describes an algorithm for computing the set of intersection between a cone and a line,
ray or segment. The algorithm is theoretically correct when using real-valued arithmetic. When computing
using floating-point arithmetic, rounding errors can cause misclassifications of signs of important expressions,
leading to failure of the implementation to produce correct results.

With the exception of the approximation error in computing the cosine of a user-specified cone angle, it
is possible to obtain the theoretically correct result by using arbitrary precision arithmetic in conjunction
with symbolic arithmetic that handles the square root operations to avoid the rounding errors inherent in
computing those roots. An implementation of the algorithm is also described in this document. The set of
intersection is either empty, a point, a segment, a ray or a line. When a point, segment or ray, the output
of the line-cone intersection is stored using rational numbers and a symbolic representation of a square root.
The output can then be converted to floating-point using as many bits of precision as desired.

1.1 Definition of Cones

A infinite single-sided solid cone has a vertex V, an axis ray whose origin is V and unit-length direction is
D, and an acute cone angle θ ∈ (0, π/2). A point X is inside the cone when the angle between D and X−V
is in [0, θ]. Algebraically, the containment is defined by

D · (X−V)

|X−V|
≥ cos(θ) (1)

when X 6= V. Equivalently, the containment is defined by

D · (X−V) ≥ |X−V| cos(θ) (2)

which includes the case X = V. Finally, we can avoid computing square roots in the implementation by
squaring the dot-product equation to obtain a quadratic equation and requiring that only points above the
supporting plane of the single-sided cone be considered. The definition is

Q(X) = (D · (X−V))
2 − γ2|X−V|2 = (X−V)TM(X−V) ≥ 0, D · (X−V) ≥ 0 (3)

where γ = cos θ, M = DDT − γ2I is a symmetric 3 × 3 matrix and I the 3 × 3 identity matrix. Figure 1
shows a 2D cone, which is sufficient to illustrate the quantites in 3D.

Figure 1. A 2D view of a single-sided cone. X is inside the cone and Y is outside the cone.

3

Because of the constraint on θ, both cos(θ) > 0 and sin(θ) > 0.

The height of a point X relative to the cone is the length of the projection of X−V onto the D-axis, namely,
h = D · (X−V). The infinite cone can be truncated, either with a minimum height or a maximum height
or both. The names and height constraints are as follows. For concise naming, I have dropped the term
single-sided. Generally, the heights h satisfy h ∈ [hmin, hmax] with 0 ≤ hmin < hmax ≤ +∞.

� Infinite cone: hmin = 0, hmax = +∞.

� Infinite truncated cone: hmin > 0, hmax = +∞.

� Finite truncated cone: hmin = 0, hmax < +∞.

� Frustum of a cone (or cone frustum): hmin > 0, hmax < +∞.

In the discussions here, I use the term cone to refer to any one of the four classifications, making it clear the
specific details of the algorithms for each classification.

1.2 Practical Matters for Representing Infinity

A practical matter when defining a cone data structure is how to represent an infinite maximum height,
hmax = +∞. With floating-point computations, it is reasonable to choose std::numeric limits<Real>::infinity()

for Real set to float or double. This representation is the special IEEE floating-point pattern used to represent
infinity. If Real will be an arbitrary precision type that does not have a representation for infinity. The next
choice could be to use the largest finite floating-point number, std::numeric limits<Real>::max(). An arbitrary
precision type will have code to convert this to a rational representation. However, the semantics for infinity
are no longer clear, because the rational representation of the largest finite floating-point number has nothing
to do with infinity. For example, if an algorithm required squaring the maximum height, the IEEE infinity
squared still produces infinity. Squaring the largest finite floating-point number represented as a rational
number will lead to another rational number, and now comparison semantics no longer work correctly.

In the Cone class of GTE, I chose the setting of minimum and maximum height to hide the representation.
An infinite height is represented by setting internally the (hidden) class member for maximum height to −1.
Internal query code can then test whether a cone is finite or infinite by examining this class member.

If an algorithm requires the concept of infinity, positive or negative, in comparisons, it is generally possible to
do so without using the IEEE infinity representations and without requiring an arbitrary precision arithmetic
libray to have infinity representations. Instead, we can use a 2-point compactification of the real numbers.
Let x ∈ (−∞,+∞) be any real number. Define y = x/(1 + |x|) ∈ (−1, 1). The function is a bijection and
has inverse x = y/(1 − |y|). The compactification occurs when we choose +1 to represent +∞ and choose
−1 to represent −∞. In this sense, y = x/(1 + |x|) maps [−∞,+∞] to [−1, 1]. If we want to know whether
x0 < x1 even when either number is an infinity, we can compute yi = xi/(1 + |xi|) and instead compare
y0 < y1. The y-values are always finite. In fact, the bijection maps rational numbers to rational numbers, so
the y-comparisons are error free when using arbitrary precision arithmetic. The idea also applies to symbolic
arithmetic involving numbers of the form z = x + y

√
d, where x, y and d are rational numbers and d > 0;

this is the underlying framework for dealing with lengths of vectors symbolically.

4

1.3 Definition of a Line, Ray and Segment

A line is parameterized by X(t) = P + tU, where P is a point on the line (the line origin), U is typically
a unit-length direction vector for the line, and t is a real number. A ray has the subset of the line with
restriction t ≥ 0. A segment is a subset of the line with restriction t ∈ [0, tmax], so the endpoints are P and
P + tmaxU. However, the endpoints are typically specified, say, E0 and E1, with X(t) = (1− t)E0 + tE1 for
t ∈ [0, 1].

The line-cone find-intersection query described here does not require U to be unit length. Sections 2, 3 and
4. These sections assume real-valued arithmetic, which is error-free in the theoretical sense.

In Section 8, the restriction that D be unit length is dropped, but we will then need to use a combination
of rational and symbolic arithmetic to compute exact results.

2 Intersection with a Line

Let us find the points of intersection with the cone boundary Q(X) = 0, where Q is defined by Equation
(3). Substitute the line equation X(t) = P + tU into the quadratic polynomial of equation (1) to obtain
c2t

2 + 2c1t+ c0 = 0, where ∆ = P−V. The vector U is not required to be unit length. The coefficients are

c2 = UTMU = (D ·U)2 − γ2(U ·U)

c1 = UTM∆ = (D ·U)(D ·∆)− γ2(U ·∆)

c0 = ∆TM∆ = (D ·∆)2 − γ2(∆ ·∆)

(4)

It is convenient to reduce algorithm branching cases by choosing the line direction U so that D ·U ≥ 0. In
practice, the user-specified line direction can be negated to ensure the nonnegative dot product. The t-values
at the intersection points are computed, but when reporting this information to the caller, the t-values must
be negated to undo the sign change in the line direction.

The bounds hmin ≤ D · (X(t)−V) ≤ hmax become

hmin ≤ t(D ·U) + (D ·∆) ≤ hmax (5)

We must compute the roots of a quadratic polynomial (possibly degenerate) subject to linear inequality
constraints on t. The roots may be computed as if we have an infinite cone. For the infinite truncated cone,
the finite cone and the cone frustum, the clamping to finite h-bounds can be applied as a postprocessing
step.

2.1 Case c2 6= 0

Suppose that c2 6= 0. The formal roots are t = (−c1 ±
√
δ)/c2, where δ = c21 − c0c2.

If δ < 0, the quadratic polynomial has no real-valued roots, in which case the line does not intersect the
double-sided cone, which means it does not intersect cones of any of the 4 classifications.

5

If δ = 0, the polynomial has a repeated real-value root t = −c1/c2. This occurs in two different geometric
configurations. One configuration is when the line is tangent to the double-sided cone at a single point. The
other is when the line contains the cone vertex V, in which case V = P + (−c1/c2)U.

If δ > 0, the polynomial has two distinct real-valued roots, in which case the line intersects the double-sided
cone at two points. Figure 2 illustrates the various cases.

Figure 2. Geometric configurations when c2 6= 0. We care only about the intersections with the positive
cone; that is, where D · (X −V) ≥ 0. (a) δ > 0 and both points are on the positive cone. (b) δ > 0 and
both points are on the negative cone. (c) δ > 0, one point is on the positive cone and one point is on the
negative cone. (d) δ = 0, c2 < 0 (U is outside the cone), and the line contains the vertex. (e) δ = 0, c2 > 0
(U is inside the cone), and the line contains the vertex. (f) δ = 0 and the line is tangent to the cone.

In Figure 2, the intersection types with the double-sided cone are as follows: (a) and (b), segments; (c) ray;
(d) and (f) point; (e) line. The intersection types with the positive cone are: (a) segment; (b) none; (c) and
(e) ray; (d) and (f) point.

2.2 Case c2 = 0 and c1 6= 0

If c2 = 0, the vector U is a direction vector on the cone boundary because |D ·U| = cos(θ). If c1 6= 0, the
polynomial is in fact linear and has a single root t = −c0/(2c1). The line and double-sided cone have a single
point of intersection. As before, we report the point as an intersection only when it is on the positive cone.
If it is, we must choose the correct t-interval of intersection. Figure 3 illustrates a couple of configurations.

6

Figure 3. Geometric configurations when c2 = 0 and c1 6= 0. We care only about the intersections with the
positive cone; that is, where D · (X−V) ≥ 0. (a) The line intersects the positive cone in a single point. (b)
The line intersects the negative cone in a single point.

2.3 Case c2 = 0 and c1 = 0

The condition c2 = 0 implies the line direction U is on the cone surface. The condition c1 = 0 is necessary
for the line to contain the cone vertex V. Together these conditions and the quadratic equation imply c0 = 0,
in which case the line lies on the cone surface. If c0 6= 0, the line does not intersect the cone. Figure 4
illustrates the case c0 = c1 = c2 = 0.

Figure 4. When c0 = c1 = c2 = 0, the line lives on the cone surface and contains the cone vertex.

3 Clamping to the Cone Height Range

Generally, we defined various cone types and their corresponding height ranges [hmin, hmax]. The relationship
between height h and line parameter t is in equation (5). We chose the line direction so that D ·U ≥ 0.

For each intersection point of the line and cone, say, occurring at parameter t, we can compute h = t(D ·
U) + (D ·∆). When D ·U > 0, given a height h we can solve for

t = (h−D ·∆)/(D ·U) (6)

The h-values and t-values increase jointly or decrease jointly. For two intersection points, t0 < t1 implies
h0 < h1. When D ·U = 0, the line is perpendicular to the cone axis and the heights are the same value
D ·∆ for all line points.

The idea is to compute the h-interval [h0, h1] for the intersection set and intersect it with the h-interval

7

[hmin, hmax] for the cone. If the set is nonempty, the corresponding t-values are computed using equation (6)
and the linear component quantities are computed from them.

4 Pseudocode for Error-Free Real-Valued Arithmetic

The algorithm requires find-intersection queries for intervals, where the intervals are finite or semiinfinite.
These queries are discussed first.

4.1 Intersection of Intervals

The find-intersection query requires computing the intersection of finite intervals [u0, u1] and [v0, v1], where
u0 ≤ u1 and v0 ≤ v1. An interval can be degenerate in that its endpoints are the same number. Listing 1
contains pseudocode for computing the intersection.

Listing 1. Pseudocode for the find-intersection query of two finite intervals. The function returns an
integer value that is the number of valid elements of overlap[]. It is 0 (no intersection), 1 (intervals touch
only at an endpoint) or 2 (intervals overlap in an interval).

i n t F i n d I n t e r s e c t i o n (Rea l u0 , Rea l u1 , Rea l v0 , Rea l v1 , Rea l o v e r l a p [2])
{

i n t numValid ;
i f (u1 < v0 | | v1 < u0)
{

numValid = 0 ;
}
e l s e i f (v0 < u1)
{

i f (u0 < v1)
{

o v e r l a p [0] = (u0 < v0 ? v0 : u0) ;
o v e r l a p [1] = (u1 > v1 ? v1 : u1) ;
i f (o v e r l a p [0] < o v e r l a p [1])
{

numValid = 2 ;
}
e l s e
{

numValid = 1 ;
}

}
e l s e // u0 == v1
{

o v e r l a p [0] = u0 ;
o v e r l a p [1] = u0 ;
numValid = 1 ;

}
}
e l s e // u1 == v0
{

o v e r l a p [0] = v0 ;
o v e r l a p [1] = v0 ;
numValid = 1 ;

}
r e t u r n numValid ;

}

8

A semiinfinite interval is of the form [v,+∞) or (−∞, v]. The first interval contains real numbers t for
which t ≥ v. The second interval contains real numbers t for which t ≤ v. If the type Real of Listing 1
has a representation for infinities, that code applies as well when either input is a semiinfinite interval. We
are not assuming such a representation, but additional functions can be implemented with the correct logic
for semiinfinite intervals. For the line-cone intersection query, we need only deal with semiinfinite intervals
[v,+∞), so only the query for such an interval is discussed.

Suppose that the first input is the finite interval [u0, u1] and the second interval is [v0,+∞], where v1 = +∞
and the closed bracket is suggestive that +∞ is an element of that set. In Listing 1, the tests v[1] < u[0] and
u[1] > v[1] are always false and the test u[0] < v[1] is always true. The code can be rewritten using these facts,
and the input v-interval is passed as the endpoint v0. Listing 2 shows pseudocode for the find-intersection
query.

Listing 2. Pseudocode for the find-intersection query of a finite interval [u0, u1] and a semiinfinite interval
[v,+∞). The function returns an integer value that is the number of valid elements of overlap[]. It is 0 (no
intersection), 1 (intervals touch only at an endpoint) or 2 (intervals overlap in an interval).

i n t F i n d I n t e r s e c t i o n (Rea l u0 , Rea l u1 , Rea l v , Rea l o v e r l a p [2])
{

i n t numValid ;
i f (u1 > v)
{

numValid = 2 ;
o v e r l a p [0] = max(u0 , v) ;
o v e r l a p [1] = u1 ;

}
e l s e i f (u1 == v)
{

numValid = 1 ;
o v e r l a p [0] = v ;

}
e l s e // u1 < v
{

numValid = 0 ;
}
r e t u r n numValid ;

}

The final find-intersection query involves two semiinfinite intervals [u,+∞) and [v,+∞). This query is
required when computing the intersection of a ray and a cone with infinite height. It is a simple query that
produces the interval [max{u, v},+∞).

4.2 Line-Cone Query

The pseudocode for the line-cone find-intersection query must compute the subset of the line that is contained
inside the positive cone. The possible types of subsets are characterized next. The query function returns
one of these types. It also returns a 2-tuple Real t[2] that stores the line parameters defining the intersection.
The number of valid elements (0, 1 or 2) depends on the type. A corresponding 2-tuple of points is returned,
Vector3 P[2]. The type list is

� NONE: There is no intersection. The elements of t[] and P[] are invalid.

9

� POINT: The intersection consists of a single point. The values t[0] and P[0] are valid, the other pair
invalid.

� SEGMENT: The intersection is a segment. All values t[] and P[] are valid. The difference of the two
points is necessarily parallel to U.

� RAY POSITIVE: The intersection is a ray P + tU with t ∈ [t0,+∞). The value t[0] stores t0 and the
value P[0] stores P + t0U.

� RAY NEGATIVE: The intersection is a ray P + tU with t ∈ (−∞, t1]. The value t[1] stores t1 and the
value P[1] stores P + t1U.

Listing 3 contains pseudocode for the find-intersection query between a line and a cone.

Listing 3. Pseudocode for the line-cone find-intersection query.

s t r u c t L ine3
{

Vector3 P ; // o r i g i n
Vector3 U; // d i r e c t i o n , not r e q u i r e d to be u n i t l e n g t h

} ;

s t r u c t Cone3
{

Vector3 V ; // v e r t e x
Vector3 D; // a x i s d i r e c t i o n , r e q u i r e d to be u n i t l e n g t h
Rea l cosAng l eSqr ; // the squa r e o f cos (ang l e) f o r the cone ang l e

// The h e i g h t range o f the cone . The minimum he i g h t i s hmin >= 0 .
// The maximum he i g h t i s hmax > hmin f o r a f i n i t e cone but =1 f o r an
// i n f i n i t e cone . The Boolean v a l u e i n d i c a t e s whether o r not the
// hmax i s v a l i d (t r u e f o r a f i n i t e cone , f a l s e f o r an i n f i n i t e cone) .
Rea l hmin , hmax ;
boo l i s F i n i t e ;

} ;

// The r e t u r n e d ’ i n t ’ i s one o f NONE, POINT , SEGMENT, RAY POSITIVE or RAY NEGATIVE .
// The r e t u r n e d t [] and P [] v a l u e s a r e as d e s c r i b e d p r e v i o u s l y .
i n t F i n d I n t e r s e c t i o n (L ine3 l i n e , Cone3 cone , Rea l t [2] , Vector3 P [2])
{

i n t i n t e r s e c t i o nT y p e = DoQuery (l i n e . P , l i n e .U, cone , t) ;
ComputePoints (i n t e r s e c t i o nTyp e , l i n e . P , l i n e .U, t , P) ;
r e t u r n i n t e r s e c t i o nT y p e ;

}

vo id ComputePoints (i n t i n t e r s e c t i o nTyp e , Vector3 o r i g i n , Vector3 d i r e c t i o n , Rea l t [2] , Vector3 P [2])
{

sw i tch (i n t e r s e c t i o nT y p e)
{

case NONE:
P [0] = i n v a l i d p o i n t ;
P [1] = i n v a l i d p o i n t ;
break ;

case POINT :
P [0] = o r i g i n + t [0] * d i r e c t i o n ;
P [1] = i n v a l i d p o i n t ;
break ;

case SEGMENT:
P [0] = o r i g i n + t [0] * d i r e c t i o n ;
P [1] = o r i g i n + t [1] * d i r e c t i o n ;
break ;

case RAY POSITIVE :
P [0] = o r i g i n + t [0] * d i r e c t i o n ;
P [1] = i n v a l i d p o i n t ;
break ;

10

case RAY NEGATIVE :
P [0] = i n v a l i d p o i n t ;
P [1] = o r i g i n + t [1] * d i r e c t i o n ;
break ;

}
}

i n t DoQuery (Vector3 P , Vector3 U, Cone3 cone , Rea l t [2])
{

// Arrange f o r an acute ang l e between the cone d i r e c t i o n and l i n e d i r e c t i o n .
// This s i m p l i f i e s the l o g i c l a t e r i n the code , and i t s uppo r t s a d d i t i o n a l
// q u e r i e s i n v o l v i n g r a y s or segments i n s t e a d o f l i n e s .
i n t i n t e r s e c t i o nT y p e ;
Rea l DdU = Dot (cone .D, U) ;
i f (DdU >= 0)
{

i n t e r s e c t i o nT y p e = DoQuerySpec ia l (P , U, cone , t) ;
}
e l s e
{

i n t e r s e c t i o nT y p e = DoQuerySpec ia l (P , =U, cone , t) ;
t [0] = =t [0] ;
t [1] = =t [1] ;
swap (t [0] , t [1]) ;
i f (i n t e r s e c t i o nT y p e == RAY POSITIVE)
{

i n t e r s e c t i o nT y p e = RAY NEGATIVE ;
}

}
r e t u r n i n t e r s e c t i o nT y p e ;

}

i n t DoQuerySpec ia l (Vector3 P , Vector3 U, Cone3 cone , Rea l t [2])
{

// Compute the q u ad r a t i c c o e f f i c i e n t s .
Vector3 PmV = P = cone .V ;
Rea l DdU = Dot (cone .D, U) ;
Rea l UdU = Dot (U, U) ;
Rea l DdPmV = Dot (cone .D, PmV) ;
Rea l UdPmV = Dot (U, PmV) ;
Rea l PmVdPmV = Dot (PmV, PmV) ;
Rea l c2 = DdU * DdU = cone . cosThetaSqr * UdU ;
Rea l c1 = DdU * DdPmV = cone . cosThetaSqr * UdPmV;
Rea l c0 = DdPmV * DdPmV = cone . cosThetaSqr * PmVdPmV;

i f (c2 != 0)
{

Rea l d i s c r = c1 * c1 = c0 * c2 ;
i f (d i s c r < 0)
{

r e t u r n CaseC2NotZeroDiscrNeg (t) ;
}
e l s e i f (d i s c r > 0)
{

r e t u r n CaseC2NotZeroDiscrPos (c1 , c2 , d i s c r , DdU, DdPmV, cone , t) ;
}
e l s e
{

r e t u r n CaseC2NotZeroDiscrZero (c1 , c2 , UdU, UdPmV, DdU, DdPmV, cone , t) ;
}

}
e l s e i f (c1 != 0)
{

r e t u r n CaseC2ZeroC1NotZero (c0 , c1 , DdU, DdPmV, cone , t) ;
}
e l s e
{

r e t u r n CaseC2ZeroC1Zero (c0 , UdU, UdPmV, DdU, DdPmV, cone , t) ;
}

}

i n t CaseC2NotZeroDiscrNeg (Rea l t [2])

11

{
// Block 0. The qu ad r a t i c po l ynom ia l has no r e a l=va l u ed r o o t s . The l i n e does not i n t e r s e c t the
// double=s i d e d cone .
r e t u r n SetEmpty (t) ;

}

i n t CaseC2NotZeroDiscrPos (Rea l c1 , Rea l c2 , Rea l d i s c r , Rea l DdU, Rea l DdPmV, Cone3 cone , Rea l t [2])
{

// The qu ad r a t i c has two d i s t i n c t r e a l=va l u ed roo t s , t0 and t1 wi th t0 < t1 . A l so compute the s i g n ed
// h e i g h t s at the i n t e r s e c t i o n po i n t s , h0 and h1 wi th h0 <= h1 . The o r d e r i n g i s gua ran teed because we
// have a r r anged f o r the i n pu t l i n e to s a t i s f y DdU >= 0 .
Rea l x = =c1 / c2 ;
Rea l y = (c2 > 0 ? 1 / c2 : =1 / c2) ;
Rea l t0 = x = y * s q r t (d i s c r) , t1 = x + y * s q r t (d i s c r) ;
Rea l h0 = t0 * DdU + DdPmV, h1 = t1 * DdU + DdPmV;

i f (h0 >= 0)
{

// Block 1, Figure 2(a). The l i n e i n t e r s e c t s the p o s i t i v e cone i n two p o i n t s .
r e t u r n SetSegmentClamp (t0 , t1 , h0 , h1 , DdU, DdPmV, cone , t) ;

}
e l s e i f (h1 <= 0)
{

// Block 2, Figure 2(b). The l i n e i n t e r s e c t s the n e g a t i v e cone i n two p o i n t s .
r e t u r n SetEmpty (t) ;

}
e l s e // h0 < 0 < h1
{

// Block 3, Figure 2(c). The l i n e i n t e r s e c t s the p o s i t i v e cone i n a s i n g l e p o i n t and the
// n e g a t i v e cone i n a s i n g l e p o i n t .
r e t u r n SetRayClamp (h1 , DdU, DdPmV, cone , t) ;

}
}

i n t CaseC2NotZeroDiscrZero (Rea l c1 , Rea l c2 , Rea l UdU, Rea l UdPmV, Rea l DdU, Rea l DdPmV, Cone3 cone ,
Rea l t [2])

{
Rea l t = =c1 / c2 ;
i f (t * UdU + UdPmV == 0)
{

// To get here , i t must be tha t V = P + (=c1/c2) * U, where U i s not n e c e s s a r i l y a un i t=l e n g t h
// v e c t o r . The l i n e i n t e r s e c t s the cone v e r t e x .
i f (c2 < 0)
{

// Block 4, Figure 2(d). The l i n e i s o u t s i d e the double=s i d e d cone and i n t e r s e c t s i t on l y at V .
Rea l h = 0 ;
r e t u r n SetPointClamp (t , h , cone , t) ;

}
e l s e
{

// Block 5, Figure 2(e). The l i n e i s i n s i d e the double=s i d e d cone , so the i n t e r s e c t i o n i s a r ay
// wi th o r i g i n V .
Rea l h = 0 ;
r e t u r n SetRayClamp (h , DdU, DdPmV, cone , t) ;

}
}
e l s e
{

// The l i n e i s t angen t to the cone at a po i n t d i f f e r e n t from the v e r t e x .
Rea l h = t * DdU + DdPmV;
i f (h >= 0)
{

// Block 6, Figure 2(f). The l i n e i s t angent to the p o s i t i v e cone .
r e t u r n SetPointClamp (t , h , cone , t) ;

}
e l s e
{

// Block 7. The l i n e i s t angent to the n e g a t i v e cone .
r e t u r n SetEmpty (t) ;

}
}

}

12

i n t CaseC2ZeroC1NotZero (Rea l c0 , Rea l c1 , Rea l DdU, Rea l DdPmV, Cone3 cone , Rea l t [2])
{

// U i s a d i r e c t i o n v e c t o r on the cone boundary . Compute the t=v a l u e f o r the i n t e r s e c t i o n po i n t
// and compute the c o r r e s p ond i n g h e i g h t h to de t e rm ine whether t ha t p o i n t i s on the p o s i t i v e cone
// or n e g a t i v e cone .
Rea l t = =c0 / (2 * c1) ;
Rea l h = t * DdU + DdPmV;
i f (h > 0)
{

// Block 8, Figure 3(a). The l i n e i n t e r s e c t s the p o s i t i v e cone and the ray o f i n t e r s e c t i o n i s
// i n t e r i o r to the p o s i t i v e cone . The i n t e r s e c t i o n i s a r ay or segment .
r e t u r n SetRayClamp (h , DdU, DdPmV, cone , t) ;

}
e l s e
{

// Block 9, Figure 3(b). The l i n e i n t e r s e c t s the n e g a t i v e cone and the ray o f i n t e r s e c t i o n i s
// i n t e r i o r to the n e g a t i v e cone .
r e t u r n SetEmpty (t) ;

}
}

i n t CaseC2ZeroC1Zero (Rea l c0 , Rea l UdU, Rea l UdPmV, Rea l DdU, Rea l DdPmV, Cone3 cone , Rea l t [2])
{

i f (c0 != 0)
{

// Block 10. The l i n e does not i n t e r s e c t the double=s i d e d cone .
r e t u r n SetEmpty (t) ;

}
e l s e
{

// Block 11, Figure 4. The l i n e i s on the cone boundary . The i n t e r s e c t i o n wi th the p o s i t i v e cone
// i s a ray tha t c o n t a i n s the cone v e r t e x . The i n t e r s e c t i o n i s e i t h e r a ray or segment .
Rea l t = =UdPmV / UdU ;
Rea l h = t * DdU + DdPmV;
r e t u r n SetRayClamp (h , DdU, DdPmV, cone , t) ;

}
}

i n t SetEmpty (Rea l t [2])
{

t [0] = i n v a l i d r e a l ;
t [1] = i n v a l i d r e a l ;
r e t u r n NONE;

}

i n t Se tPo in t (Rea l t0 , Rea l t [2])
{

t [0] = t0 ;
t [1] = i n v a l i d r e a l ;
r e t u r n POINT ;

}

i n t SetSegment (Rea l t0 , Rea l t1 , Rea l t [2])
{

t [0] = t0 ;
t [1] = t1 ;
r e t u r n SEGMENT;

}

i n t Se tRa yPo s i t i v e (Rea l t0 , Rea l t [2])
{

t [0] = t0 ;
t [1] = i n v a l i d r e a l ;
r e t u r n RAY POSITIVE ;

}

i n t SetRayNegat i ve (Rea l t1 , Rea l t [2])
{

t [0] = i n v a l i d r e a l ;
t [1] = t1 ;
r e t u r n RAY NEGATIVE ;

13

}

i n t SetPointClamp (Rea l t0 , Rea l h0 , Cone3 cone , Rea l t [2])
{

i f (cone . He ight InRange (h0))
{

// P0.
r e t u r n Se tPo in t (t0 , t) ;

}
e l s e
{

// P1.
r e t u r n SetEmpty (t) ;

}
}

vo id SetSegmentClamp (Rea l t0 , Rea l t1 , Rea l h0 , Rea l h1 , Rea l DdU, Rea l DdPmV, Cone3 cone , Rea l t [2])
{

i f (h1 > h0)
{

i n t numValid ;
Rea l o v e r l a p [2] ;
i f (cone . i s F i n i t e)
{

numValid = F i n d I n t e r s e c t i o n (h0 , h1 , cone . hmin , cone . hmax , o v e r l a p) ;
}
e l s e
{

numValid = F i n d I n t e r s e c t i o n (h0 , h1 , cone . hmin , o v e r l a p) ;
}

i f (numValid == 2)
{

// S0.
Rea l t0 = (o v e r l a p [0] = DdPmV) / DdU, t1 = (o v e r l a p [1] = DdPmV) / DdU;
r e t u r n SetSegment (t0 , t1 , t) ;

}
e l s e i f (numValid == 1)
{

// S1.
Rea l t0 = (o v e r l a p [0] = DdPmV) / DdU;
r e t u r n Se tPo in t (t0 , t) ;

}
e l s e // numValid == 0
{

// S2.
r e t u r n SetEmpty (t) ;

}
}
e l s e // h1 == h0
{

i f (cone . He ight InRange (h0))
{

// S3. DdU > 0 and the l i n e i s not p e r p e n d i c u l a r to the cone a x i s .
r e t u r n SetSegment (t0 , t1 , t) ;

}
e l s e
{

// S4. DdU == 0 and the l i n e i s p e r p e n d i c u l a r to the cone a x i s .
r e t u r n SetEmpty (t) ;

}
}

}

vo id SetRayClamp (Rea l h , Rea l DdU, Rea l DdPmV, Cone3 cone , Rea l t [2])
{

i f (cone . i s F i n i t e)
{

Rea l o v e r l a p [2] ;
i n t numValid = F i n d I n t e r s e c t i o n (cone . hmin , cone . hmax , h , o v e r l a p) ;
i f (numValid == 2)
{

14

// R0.
r e t u r n SetSegment ((o v e r l a p [0] = DdPmV) / DdU, (o v e r l a p [1] = DdPmV) / DdU, t) ;

}
e l s e i f (numValid == 1)
{

// R1.
r e t u r n Se tPo in t ((o v e r l a p [0] = DdPmV) / DdU, t) ;

}
e l s e // numValid == 0
{

// R2.
r e t u r n SetEmpty (t) ;

}
}
e l s e
{

// R3.
r e t u r n Se tRa yPo s i t i v e ((max(cone . hmin , h) = DdPmV) / DdU, t) ;

}
}

The code blocks for the find-intersection query are marked with red comments and specify a block number
and, if relevant, the figure reference that illustrates the intersection. The Set*Clamp functions also have red
comments that label their code blocks. These are actually included in the GTE code and have unit tests
associated with each possible combination of block and clamp. The possible combinations are listed next,
where B is the block number, S is segment-clamp, R is ray-clamp, P is point-clamp, F is finite cone and
I is infinite cone: B0, B1S0F, B1S1F, B1S2F, B1S0I, B1S1I, B1S2I, B1S3, B1S4, B2, B3R0, B3R1, B3R2,
B3R3, B4P0, B4P1, B5R0, B5R3, B6P0, B6P1, B7, B8R0, B8R3, B9, B10, B11R0 and B11R3. It is not
theoretically possible for a geometric configuration to lead to B5R1, B5R2, B8R1, B8R2, B11R1 or B11R2.

5 Intersection with a Ray

When the line does not intersect the cone, neither does the ray. When the line intersects the cone (finite
or infinite), let the t-interval of intersection be [t0, t1] with t0 ≤ t1 ≤ +∞. The ray includes an additional
constraint, that [t0, t1] overlap with the ray’s t-interval [0,+∞). The final candidate interval for the ray-
cone intersection is [t0, t1] ∩ [0,+∞), which can be semiinfinite, finite, or empty. An implementation must
determine which of these is the case and report the appropriate intersection points.

Listing 4 contains pseudocode for the find-intersection query between a ray and a cone. It shares several of
the functions already mentioned in the line-cone find-intersection query.

Listing 4. Pseudocode for the ray-cone find-intersection query. The ray has origin ray.P and direction
ray.U, where the direction is not required to be unit length.

// The r e t u r n e d ’ i n t ’ i s one o f NONE, POINT , SEGMENT, RAY POSITIVE or RAY NEGATIVE .
// The r e t u r n e d t [] and P [] v a l u e s a r e as d e s c r i b e d p r e v i o u s l y .
i n t F i n d I n t e r s e c t i o n (Ray3 ray , Cone3 cone , Rea l t [2] , Vector3 P [2])
{

// Execute the l i n e=cone query .
i n t i n t e r s e c t i o nT y p e = DoQuery (r ay .P , r ay .U, cone , t) ;

// Clamp the l i n e=cone t= i n t e r v a l o f i n t e r s e c t i o n to the ray t= i n t e r v a l [0 ,+ i n f i n i t y) .
sw i tch (i n t e r s e c t i o nT y p e)
{

case NONE:

15

break ;
case POINT :

i f (t [0] < 0)
{

// Block 12.
SetEmpty (t) ;

}
// e l s e Block 13.
break ;

case SEGMENT:
i f (t [1] > 0)
{

// Block 14.
SetSegment (max(t [0] , 0) , t [1] , t) ;

}
e l s e i f (t [1] < 0)
{

// Block 15.
SetEmpty (t) ;

}
e l s e // t [1] == 0
{

// Block 16.
Se tPo in t (0 , t) ;

}
break ;

case RAY POSITIVE :
// Block 17.
Se tRa yPo s i t i v e (max(t [0] , 0) , t) ;
break ;

case RAY NEGATIVE :
i f (t [1] > 0)
{

// Block 18.
SetSegment (0 , t [1] , t) ;

}
e l s e i f (t [1] < 0)
{

// Block 19.
SetEmpty (t) ;

}
e l s e // t [1] == 0
{

// Block 20.
Se tPo in t (0 , t) ;

}
break ;

}

ComputePoints (i n t e r s e c t i o nTyp e , r ay .P , r ay .U, t , P) ;
r e t u r n i n t e r s e c t i o nT y p e ;

}

The code blocks for the find-intersection query are marked with red comments and specify a block number.
These are actually included in the GTE code and have unit tests associated with each block.

6 Intersection with a Segment

When the line does not intersect the cone, neither does the segment. When the line intersects the cone (finite
or infinite), let the t-interval of intersection be [t0, t1] with t0 ≤ t1. The segment includes an additional
constraint, that [t0, t1] overlap with the segment’s t-interval [t2, t3]. The final candidate interval for the
segment-cone intersection is [t0, t1]∩[t2, t3], which can be finite or empty. An implementation must determine
which of these is the case and report the appropriate intersection points.

16

Listing 5 contains pseudocode for the find-intersection query between a ray and a cone. It shares several of
the functions already mentioned in the line-cone find-intersection query.

Listing 5. Pseudocode for the segment-cone find-intersection query. The segment has endpoints seg-

ment.p[0] and segment.p[1]. The first endpoint is used as the line origin. The difference of endpoints is used
as the line direction, which is not necessarily unit length.

// The r e t u r n e d ’ i n t ’ i s one o f NONE, POINT , SEGMENT, RAY POSITIVE or RAY NEGATIVE .
// The r e t u r n e d t [] and P [] v a l u e s a r e as d e s c r i b e d p r e v i o u s l y .
i n t F i n d I n t e r s e c t i o n (Segment3 segment , Cone3 cone , Rea l t [2] , Vector3 P [2])
{

// Execute the l i n e=cone query .
Vector3 U = segment . p [1] = segment . p [0] ;
i n t i n t e r s e c t i o nT y p e = DoQuery (segment . p [0] , U, cone , t) ;

// Clamp the l i n e=cone t= i n t e r v a l o f i n t e r s e c t i o n to the segment t= i n t e r v a l [0 , 1] .
sw i tch (i n t e r s e c t i o nT y p e)
{

case NONE:
break ;

case POINT :
i f (t [0] < 0 | | t [0] > 1)
{

// Block 21.
SetEmpty (t) ;

}
// e l s e Block 22.
break ;

case SEGMENT:
i f (t [1] < 0 | | t [0] > 1)
{

// Block 23.
SetEmpty (t) ;

}
e l s e
{

Rea l t0 = max (0 , t [0]) , t1 = min (1 , t [1]) ;
i f (t0 < t1)
{

// Block 24.
SetSegment (t0 , t1 , t) ;

}
e l s e
{

// Block 25.
Se tPo in t (t0 , t) ;

}
}
break ;

case RAY POSITIVE :
i f (1 < t [0])
{

// Block 26.
SetEmpty (t) ;

}
e l s e i f (1 > t [0])
{

// Block 27.
SetSegment (max (0 , t [0]) , 1 , t) ;

}
e l s e
{

// Block 28.
Se tPo in t (1 , t) ;

}
break ;

case RAY NEGATIVE :
i f (0 > t [1])

17

{
// Block 29.
SetEmpty (t) ;

}
e l s e i f (0 < t [1])
{

// Block 30.
SetSegment (0 , min (1 , t [1]) , t) ;

}
e l s e
{

// Block 31.
Se tPo in t (0 , t) ;

}
break ;

}

ComputePoints (i n t e r s e c t i o nTyp e , segment . p [0] , U, t , P) ;
r e t u r n i n t e r s e c t i o nT y p e ;

}

The code blocks for the find-intersection query are marked with red comments and specify a block number.
These are actually included in the GTE code and have unit tests associated with each block.

7 Rational and Symbolic Arithmetic to Avoid Square Roots

The Listings 3, 4 and 5 are written as if Real represents the set of all real numbers. Naturally, this is not
possible for a computer implementation. Typically, we use floating-point types such as 32-bit float or 64-bit
double. As with any floating-point implementation of a geometric algorithm, rounding errors inherent in
floating-point arithmetic can lead to erroneous results. In particular, the code is heavy with floating-point
comparisons, so any rounding errors that occur in computing the numbers to be compared can lead to
incorrect classifications of the particular geometric configuration of the input data. If the implementation is
robust, the computed output and the theoretical output are similar enough that the computed output is an
acceptable result for the application at hand.

The goal of this document is to provide an arbitrary precision implementation to avoid the rounding errors
yet still have an implementation that is fast enough for an application. The floating-point inputs are
rational numbers and can be converted to an arithmetic system that has a data type for such numbers.
In GTE, these classes are BSNumber and BSRational. The presence of divisions in the algorithm requires use
of BSRational. Arithmetic computations involving addition, subtraction, multiplication and division can be
performed without errors.

There are three places in the algorithm where rational arithmetic cannot immediately help.

1. The cone has an angle θ for which we need to compute cos2 θ. The value of cos θ can be any real
number in [−1, 1], and if it is irrational, we cannot represent it exactly. In some special cases, cos θ
is irrational but cos2 θ is rational; for example, this is the case when θ = π/4, whereby cos θ = 1/

√
2

and cos2 θ = 1/2. Generally, you must estimate cos2 θ by a rational number to whatever number of
significant digits makes sense for your application. This rational number is then assumed to be an
error-free input.

2. We must compute the roots to the quadratic polynomial c2t
2 + 2c1t + c0. The real-valued roots are

18

(−c1±
√
c21 − c0c2)/c2. The discriminant is δ = c21−c0c2. When δ > 0, the roots are irrational numbers.

Floating-point systems provide estimates of the square roots, but these have rounding errors.

3. Although we saw that the line direction U is not required to be unit length, the cone axis direction
D was assumed to be unit length. In an application, one might choose a cone axis direction vector E
that is not unit length and then normalize it to obtain D = E/|E|. By doing so, we must compute
the length |E| which involves yet another square root operation that will have rounding errors. If you
compute the squared length D ·D using rational arithmetic, the result is typically not 1 (although it
will be approximately 1).

Item 1 is up to the user of the line-cone find-intersection code to provide as accurate and precise an estimate
of cos2 θ as is required by the application.

An illustration of the problem with rounding errors in item 3 is provided next. A unit-length direction
vector is usually provided by specifying a 3-tuple E = (e0, e1, e2) and then normalizing it to D = E/|E| =
(e0, e1, e2)/

√
e20 + e21 + e22. When computing with floating-point arithmetic, the square root operation and

the division usually have floating-point rounding errors. The computed vector is actually D̂ and is only an
approimation to D, so it does not have unit length. Listing 6 shows code that illustrates the rounding errors
when normalizing a vector.

Listing 6. Approximation errors when normalizing a vector to obtain a unit-length vector. The code uses
the GTE library.

us ing Ra t i o n a l = BSNumber<UIntegerAP32>;

// Norma l i ze a f l o a t=component 3= t u p l e .
Vector3<f l o a t> fE = { 1 .0 f , 2 . 0 f , 3 . 0 f } ;
Vector3<f l o a t> fD = fE / Length (fE) ;
// Rep re s en t fD as a r a t i o n a l=component 3= t u p l e .
Vector3<Rat i ona l> rD = { fD [0] , fD [1] , fD [2] } ;
// Compute the exac t squa red l e n g t h o f rD .
Ra t i o n a l rSqrLen = Dot (rD , rD) ;
// = 0x0003FFFF FA4757A5 * 2ˆ{=50}
// = 1 = e p s i l o n
// < 1
// = 0x00040000 00000000 * 2ˆ{=50}
f l o a t fSq rLen = (f l o a t) rSqrLen ; // 0.999999940

// Norma l i ze a double=component 3= t u p l e .
Vector3<double> dE = { 1 . 0 , 2 . 0 , 3 . 0 } ;
Vector3<f l o a t> dD = dE / Length (dE) ;
// Rep re s en t dE as a r a t i o n a l=component 3= t u p l e .
Ra t i o n a l rD = { dD [0] , dD [1] , dD [2] } ;
// Compute the exac t squa red l e n g t h o f rD .
Ra t i o n a l rSqrLen = Dot (rD , rD) ;
// = 0x00000200 00000000 000CC8B2 FF10B80F * 2ˆ{=106}
// = 1 + d e l t a
// > 1
// = 0x00000200 00000000 00000000 00000000 * 2ˆ{=106}
double dSqrLen = (double) rSqrLen ; // 1.0000000000000000

The float-component vector fE is normalized using floating-point arithmetic, but the result is a floating-point
vector that when represented as a rational vector has squared length smaller than 1. The rounding error
is within float precision, so fSqrLen shows there is error. The double-component vector dE is normalized
using floating-point arithmetic, but the result is a floating-point vector that when represented as a rational

19

vector has squared length larger than 1. The rounding error is smaller than double precision can represent,
so dSqrLen makes it appear as if there is no error (because the result is rounded to 1).

Items 2 and are handled by using a mixture of rational arithmetic and symbolic computing to obtain an
exact result. This is the topic of the next section, which first assumes you have a unit-length D. The section
after that one makes additional modifications to allow for a non-unit-length vector E in the direction of the
cone axis.

7.1 Symbolic Arithmetic for the Square Root of the Discriminant

The roots of the quadratic polynomial c2t
2 + 2c1t + c0 are symbolically t = (−c1 ±

√
d)/c2, where the

discriminant is d = c21 − c0c2. Whether you use floating-point or rational arithmetic for computing δ,
avoiding rounding errors when estimating

√
d requires symbolic manipulation.

The roots are of the form x + y
√
d, where x, y and d are rational numbers. I will refer to these as rational

quadratic numbers. When d is not the square of a rational number (i.e.
√
d is irrational), the rational

quadratic numbers are denoted by Q[d], which is a rational quadratic field (a term from abstract algebra).
Rational quadratic fields are endowed with an addition operation and a multiplication operations. The
elements have additive inverses and multiplicative inverses, thus supporting the arithmetic operations of
addition, subtraction, multiplication and division:

(x0 + y0
√
d) + (x1 + y1

√
d) = (x0 + x1) + (y0 + y1)

√
d

(x0 + y0
√
d)− (x1 + y1

√
d) = (x0 − x1) + (y0 − y1)

√
d

(x0 + y0
√
d) ∗ (x1 + y1

√
d) = (x0x1 + y0y1d) + (x1y0 + x0y1)

√
d

(x0 + y0
√
d)/(x1 + y1

√
d) = x0x1−y0y1d

x2
1−y2

1d
+ x1y0−x0y1

x2
1−y2

1d

√
d

(7)

7.2 Symbolic Arithmetic for the Length of the Cone Axis Direction

8 Pseudocode for Rational and Symbolic Arithmetic

20

	1 Introduction
	1.1 Definition of Cones
	1.2 Practical Matters for Representing Infinity
	1.3 Definition of a Line, Ray and Segment

	2 Intersection with a Line
	2.1 Case c2 =0
	2.2 Case c2 = 0 and c1 =0
	2.3 Case c2 = 0 and c1 = 0

	3 Clamping to the Cone Height Range
	4 Pseudocode for Error-Free Real-Valued Arithmetic
	4.1 Intersection of Intervals
	4.2 Line-Cone Query

	5 Intersection with a Ray
	6 Intersection with a Segment
	7 Rational and Symbolic Arithmetic to Avoid Square Roots
	7.1 Symbolic Arithmetic for the Square Root of the Discriminant
	7.2 Symbolic Arithmetic for the Length of the Cone Axis Direction

	8 Pseudocode for Rational and Symbolic Arithmetic

