Information About Ellipses

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: December 13, 2001
Last Modified: October 22, 2011

Contents

1 Discussion 2
1 Discussion

Geometric Definition. An ellipse is the set of points in a plane whose distances from two fixed points in that plane add to a constant. One of the fixed points is called a focal point of the ellipse. The two together are referred to as the foci of the ellipse.

Standard Form. Let the foci be $(\pm c, 0)$ where $c > 0$. Let (x, y) be an ellipse point and let the sum of the distances from (x, y) to the foci be denoted $2a$ for $a > 0$. The equation that (x, y) must satisfy is

$$\sqrt{(x + c)^2 + y^2} + \sqrt{(x - c)^2 + y^2} = 2a.$$

The points (x, y), $(c, 0)$, and $(-c, 0)$ form a triangle. The sum of the lengths of two sides of a triangle must be larger than the length of the third side, so $2a > 2c$. Some algebraic manipulation of this equation leads to the standard form for an ellipse,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(1)

where $b = \sqrt{a^2 - c^2}$. The argument of the square root is positive since earlier we argued that $a > c$. Moreover, $b < a$ is guaranteed since $b = \sqrt{a^2 - c^2} < \sqrt{a^2} = a$.

The center of the standard form ellipse is $(0, 0)$. The vertices are $(\pm a, 0)$. The major axis is the line segment that connects the vertices. The minor axis is the line segment with end points $(0, \pm b)$. The number a is called the semimajor axis and the number b is called the semiminor axis. [Note: I disagree with the use of the term “axis” to denote length.] The eccentricity is the ratio $c/a \in [0, 1]$ and is a measure of how stretched the ellipse is from a circle. A ratio of 0 occurs for a circle. A ratio nearly 1 indicates a long and narrow ellipse.

If the foci are chosen to be $(0, \pm c)$ and the sum of distances is $2b$, the standard form is also given by Equation (1), but now $b > c$ and $a = \sqrt{b^2 - c^2} < b$. The center is still $(0, 0)$, but the vertices are now $(0, \pm b)$, the major axis is the line segment connecting the vertices, the minor axis is the line segment with end points $(\pm b, 0)$, the semimajor axis is b, the semiminor axis is a, and the eccentricity is now defined as the ratio c/b.

If $a = b$, the foci are coincident with the origin $(0, 0)$ and the ellipse is really a circle. The concepts of major and minor axes do not apply here, but the eccentricity is 0.

Area. The area of an ellipse in standard form is

$$A = \pi ab.$$

(2)

Length. The length of an ellipse is the total arc length of the curve. A closed form algebraic solution does not exist, but the length is given by an integral

$$L = 2 \int_{-a}^{a} \sqrt{1 + \frac{b^2 x^2}{a^2 (a^2 - x^2)}} \, dx = 2 \int_{-1}^{1} \sqrt{\frac{1 - (\lambda^2 - 1)t^2}{1 - t^2}} \, dt$$

(3)

where $\lambda = b/a$. The integral can be approximated with a numerical integrator.
Center-Orient Form. An ellipse in the standard form given by Equation (1) can be oriented via a rotation so that the major and minor axes are not necessarily parallel to the coordinate axes. In vector/matrix form, the standard form is

\[
1 = \frac{x^2}{a^2} + \frac{y^2}{b^2} = \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} =: \mathbf{X}^T D \mathbf{X} \tag{4}
\]

where the last equality defines the 2×1 vector $\mathbf{X} = [x \ y]^T$, the 2×2 diagonal matrix $D = \text{Diag}(1/a^2, 1/b^2)$, and superscript T denotes the transpose operation.

The ellipse may be rotated to a different orientation by a 2×2 rotation matrix

\[
R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
\]

The major axis direction (1, 0) is rotated to $(\cos \theta, \sin \theta)$ and the minor axis direction (0, 1) is rotated to $(-\sin \theta, \cos \theta)$. The general transformation is $\mathbf{Y} = R \mathbf{X}$ with inverse $\mathbf{X} = R^T \mathbf{Y}$. Substituting this into Equation (4) leads to

\[
\mathbf{Y}^T R D R^T \mathbf{Y} = 1. \tag{5}
\]

After orientation the ellipse can be additionally translated so that its old center, the origin 0, is mapped to a new center \mathbf{K}. The general transformation is $\mathbf{Y} = R \mathbf{X} + \mathbf{K}$; the rotation R is applied first, followed by the translation \mathbf{K}. Equation (5) is modified to include the translation,

\[
(\mathbf{Y} - \mathbf{K})^T R D R^T (\mathbf{Y} - \mathbf{K}) = 1. \tag{6}
\]

General Quadratic Form. When the Equation (6) is expanded and all terms are grouped on the left-hand side of the equation, the resulting polynomial has x, y, x^2, xy, and y^2 terms. The general quadratic equation for an ellipse is

\[
a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + c = 0 \tag{7}
\]

or in vector/matrix form,

\[
\mathbf{Y}^T A \mathbf{Y} + \mathbf{B}^T \mathbf{Y} + c = 0 \tag{8}
\]

where

\[
\mathbf{Y} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}, \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.
\]

All conic sections are represented by these equations. The ellipses are those for which $a_{11}a_{22} - a_{12}^2 > 0$. Observe that this condition states the determinant of A is positive, so A is an invertible matrix with inverse denoted by A^{-1}. The matrix A and its inverse A^{-1} are both symmetric matrices since $A^T = A$ and $A^{-T} = (A^T)^{-1} = A^{-1}$.

A typical problem is to start with the general quadratic form and convert to the center-orient form. This can be done by first completing the square on the equation. Consider that

\[
(\mathbf{Y} - \mathbf{K})^T A (\mathbf{Y} - \mathbf{K}) = \mathbf{Y}^T A \mathbf{Y} - 2 \mathbf{K}^T A \mathbf{Y} + \mathbf{K}^T A \mathbf{K}
\]

\[
= (\mathbf{Y}^T A \mathbf{Y} + \mathbf{B}^T \mathbf{Y} + c) - (2\mathbf{K}^T + \mathbf{B})^T \mathbf{Y} + (\mathbf{K}^T A \mathbf{K} - c)
\]

\[
= -(2\mathbf{A} + \mathbf{B})^T \mathbf{Y} + (\mathbf{K}^T A \mathbf{K} - c).
\]
If you set $K = -A^{-1}B/2$, then $K^TAK = B^TA^{-1}B/4$ and

$$(Y - K)^T A (Y - K) = B^TA^{-1}B/4 - c.$$

Dividing by the scalar on the right-hand side of the last equation and setting $M = A/(B^TA^{-1}B/4 - c)$ produces

$$(Y - K)^T M (Y - K) = 1.$$

Finally, M can be factored using an eigendecomposition into $M = RDR^T$ where R is a rotation matrix and D is a diagonal matrix whose diagonal entries are positive. The final equation obtained by substituting the factorization for M is exactly Equation (6).

For a 2×2 matrix, the eigendecomposition can be done symbolically. An eigenvector V of M corresponding to an eigenvalue λ is a nonzero vector such that $M V = \lambda V$. The eigenvalues are solutions to the quadratic equation $\det(M - \lambda I) = 0$ where I is the identity matrix. Since M is a symmetric matrix, the eigenvalues must be real numbers. For each eigenvalue, a corresponding eigenvector V is a nonzero solution to $(M - \lambda I) V = 0$. Let $M = [m_{ij}]$. The quadratic equation is

$$0 = \det(M - \lambda I) = \det \begin{bmatrix} m_{11} - \lambda & m_{12} \\ m_{12} & m_{22} - \lambda \end{bmatrix} = (m_{11} - \lambda)(m_{22} - \lambda) - m_{12}^2 = \lambda^2 - (m_{11} + m_{22})\lambda + (m_{11}m_{22} - m_{12}^2).$$

The roots are

$$\lambda = \frac{(m_{11} + m_{22}) \pm \sqrt{(m_{11} + m_{22})^2 - 4(m_{11}m_{22} - m_{12}^2)}}{2} = \frac{(m_{11} + m_{22}) \pm \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2}}{2}. \quad (9)$$

The argument of the square root is nonnegative, so the roots must be real-valued. The only way for the roots to be equal is if $m_{11} = m_{22}$ and $m_{12} = 0$, in which case M must have been a scalar multiple of the identity matrix (the ellipse is really a circle). I assume for the remainder of the construction that the two eigenvalues are different.

Define λ_1 to be the eigenvalue in Equation (9) that uses the plus sign and define λ_2 to be the one that uses the minus sign. It is the case that $\lambda_1 > \lambda_2$. An eigenvector corresponding to λ_1 is perpendicular to one of the rows of the matrix

$$\begin{bmatrix} m_{11} - \lambda_1 & m_{12} \\ m_{12} & m_{22} - \lambda_1 \end{bmatrix} = \begin{bmatrix} \frac{(m_{11} - m_{22}) - P}{2} & m_{12} \\ m_{12} & \frac{(m_{11} - m_{22}) + P}{2} \end{bmatrix}$$

where $P = \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2} > 0$. We need to be certain that the selected row is not the zero vector. If $m_{12} \neq 0$, then either row will suffice. In a floating-point system, though, m_{12} might be nearly zero. It is better to devise a selection scheme that does not suffer from numerical round-off errors. Specifically, if $m_{11} \geq m_{22}$, then

$$| - (m_{11} - m_{22}) - P | \geq |(m_{11} - m_{22}) - P|$$

The best choice is to use the second row to generate the eigenvector. If $m_{11} \leq m_{22}$, then

$$| - (m_{11} - m_{22}) - P | \leq |(m_{11} - m_{22}) - P|$$
and the best choice is to use the first row to generate the eigenvector. Let \(\mathbf{U}_1 = (\alpha, \beta) \) be a normalized vector that is perpendicular to the selected row. The eigenvector corresponding to \(\lambda_2 \) is chosen to be \(\mathbf{U}_2 = (-\beta, \alpha) \).

By definition of eigenvectors, \(M\mathbf{U}_1 = \lambda_1 \mathbf{U}_1 \) and \(M\mathbf{U}_2 = \lambda_2 \mathbf{U}_2 \). We can write the two equations jointly by using a matrix \(R = [\mathbf{U}_1 \; \mathbf{U}_2] \) whose columns are the unit-length eigenvectors. The columns are unit length and perpendicular to each other, so \(R \) is an orthogonal matrix. In fact, by the choice of \(\mathbf{U}_2 \), \(R \) happens to be a rotation matrix (no reflection component so to speak). The joint equation is \(MR = RD \) where \(D = \text{Diag}(\lambda_1, \lambda_2) \). Multiplying on the right by \(R^T \) leads to the decomposition \(M = RDR^T \).

In summary, for an ellipse specified as \(a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + c = 0 \), first verify that \(a_{11}a_{22} - a_{12}^2 > 0 \) so that you really do have an ellipse. Then

1. The center is
 \[
 \mathbf{K} = (k_1, k_2) = \frac{(a_{22}b_1 - a_{12}b_2, a_{11}b_2 - a_{12}b_1)}{2(a_{11}^2 - a_{12}a_{22})}.
 \]

2. Set \(\mu = 1/(\mathbf{K}^T \mathbf{A} \mathbf{K} - c) = 1/(a_{11}k_1^2 + 2a_{12}k_1k_2 + a_{22}k_2^2 - c) \) and define \(m_{11} = \mu a_{11} \), \(m_{12} = \mu a_{12} \), and \(m_{22} = \mu a_{22} \).

3. Set \(\lambda_1 = ((m_{11} + m_{22}) + \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2})/2 \). The semiminor axis of the ellipse is
 \[
 b = \frac{1}{\sqrt{\lambda_1}}.
 \]

Set \(\lambda_2 = ((m_{11} + m_{22}) - \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2})/2 \). The semimajor axis of the ellipse is
 \[
 a = \frac{1}{\sqrt{\lambda_2}}.
 \]

4. If \(m_{11} \geq m_{22} \), choose the minor axis direction of the ellipse to be
 \[
 \mathbf{U}_1 = \frac{(\lambda_1 - m_{22}, m_{12})}{|\lambda_1 - m_{22}, m_{12}|}.
 \]

If \(m_{11} < m_{22} \), choose the minor axis direction to be
 \[
 \mathbf{U}_1 = \frac{(m_{12}, \lambda_1 - m_{11})}{|m_{12}, \lambda_1 - m_{11}|}.
 \]

If \(\mathbf{U}_1 = (\alpha, \beta) \), choose the major axis direction to be \(\mathbf{U}_2 = (-\beta, \alpha) \).

5. If all you need is the angle formed by the major axis with the positive \(x \)-axis, that angle satisfies the equation
 \[
 \tan(2\theta) = -\frac{2a_{12}}{a_{22} - a_{11}}
 \]

This is obtained by making the change of variables \(x = \bar{x}\cos\theta - \bar{y}\sin\theta \) and \(y = \bar{x}\sin\theta + \bar{y}\cos\theta \) and substituting into the original quadratic equation. After expanding all terms, the coefficient of \(\bar{x}\bar{y} \) is
 \[
 -2a_{11}\sin\theta\cos\theta + 2a_{12}(\cos^2\theta - \sin^2\theta) + 2a_{22}\sin\theta\cos\theta = 2a_{12}\cos(2\theta) + (a_{22} - a_{11})\sin(2\theta)
 \]

Setting this coefficient to zero gives you an axis-aligned ellipse in the \((\bar{x}, \bar{y})\) coordinate system, so the angle \(\theta \) represents how much you must rotate the original ellipse to the axis-aligned one.
6. For $R = [U_1 \ U_2]$ where U_1 and U_2 are written as columns and $D = \text{Diag}(1/a^2, 1/b^2)$, the ellipse is represented by the factored form

$$(Y - K)^T R D R^T (Y - K) = (Y - K)^T \left(\frac{1}{a^2} U_1 U_1^T + \frac{1}{b^2} U_2 U_2^T \right) (Y - K) = 1. \quad (15)$$

7. Observe that $Y = K + RX = K + xU_1 + yU_2$. Replacing this in the factored form leads to $(x/a)^2 + (y/b)^2 = 1$, as expected since originally Y was selected to be the coordinates representing the rotation and translation of the standard form ellipse with coordinates X.

8. The bounding rectangle for the ellipse that has the same directions as the major and minor axes of the ellipse has center K. The four corners are $K \pm aU_1 \pm bU_2$.