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1 Introduction

The constructions contained in this paper are motivated by the 1996 SIGGRAPH article [1] on oriented
bounding boxes (OBBs) and on OBB trees that are used to provide a hierarchical way of deciding if two
objects intersect. The computational goal is to minimize the time spent determining if two objects do not
intersect. An OBB tree essentially provides a multiscale representation of the object. The root of the tree
corresponds to an approximation of the object by a single OBB. The boxes corresponding to the middle
levels of the tree represent smaller pieces of the object, thus providing a somewhat better approximation
to the object than the root. The leaf nodes of the tree represent the actual geometry of the object. For
all practical purposes, the object is a triangular mesh and each leaf node of the OBB tree corresponds to a
single triangle in the mesh.

Intersection testing is based on the following theorem from computational geometry:

Two nonintersecting convex polyhedra can be separated by a plane that is either parallel to a
face of one of the polyhedra or that contains an edge from each of the polyhedra.

It is necessary and sufficient to determine whether or not two convex polyhedra intersect by examining the
intersections of the projections of the polyhedra on lines that are perpendicular to the planes described in the
theorem. If the minimal intervals containing the projections of the polyhedra onto one of these lines do not
intersect, then the polyhedra themselves do not intersect. In this case the line is said to be a separating axes.
Testing for intersection amounts to processing each of the potential separating axes by projecting the objects
onto an axis and testing for intersection of the minimal intervals containing the projections of the objects. If
a separating axis is found, the remaining ones of course are not processed. For a 3D environment that is not
heavily populated, the expectation is that at any point in time, most objects are not intersecting. The “quick
out” provided when a separating axis is found early in the list of potential separating axes helps to minimize
computational expense of the collision system. The implementation for determining nonintersection of two
triangles in 3D using the method of separation axes turns out to be faster than the method in [2]. The
algorithm in that paper attempts to determine overlap of projected intervals along the line on which two
noncoplanar triangles have to intersect. It requires divisions to compute the intervals whereas the separation
axis tests do not.

The OBB tree consists of OBBs as well as triangles at the leaf nodes. Intersection testing therefore involves
comparisons of OBBs to OBBs, triangles to OBBS, and triangles to triangles. For two OBBs, there are
15 potential separating axes: 3 for the independent faces of the first OBB, 3 for the independent faces of
the second OBB, and 9 generated by an edge from the first OBB and an edge from the second OBB. For
triangle and OBB, there are 13 potential separating axes: 1 for the triangle face, 3 for the independent faces
of the OBB, and 9 generated by an edge from the triangle and an edge from the OBB. For two triangles, the
problem is slightly more complicated. If the two triangles are parallel but not coplanar, then a separating axis
whose direction is normal to the triangles will separate the two triangles. If the two triangles are coplanar,
then there are 6 additional potential separating axes, each one generated by the common normal and an
edge from either the first triangle or second triangle. If the two triangles are not parallel, then there are 11
potential separating axes: 1 for the first triangle face, 1 for the second triangle face, and 9 generated by an
edge from the first triangle and an edge from the second triangle.

The ideas in [1] are formulated for intersection testing of objects as if they are stationary, but the construction
also applies when the objects are moving. In particular, when each object has a constant velocity during the
specified time interval, the extension is mathematically straightforward. When object motion is constrained
generally by the system of ordinary differential equations dx/dt = V(t,x) where V is the velocity vector
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field that is (possibly) dependent on both current time and current position, a numerical integration of the
differential equations can be applied during the specified time interval. The simplest method to apply is
Euler’s method. For each time step, the object is assumed to have constant velocity during that step. The
methods for handling collision of objects with constant velocities can then be applied during that time step.
If more positional accuracy is desired, a higher order numerical integrator can be used to determine various
positions during the time interval. The difference between consecutive positions can be used as the constant
velocity vector for that time step. Of particular interest is the case when the objects have constant linear
velocities and constant angular velocities. The differential equations are dx/dt = V+W× (x−K) where V
is the constant linear velocity and the axis of rotation is K + tW where W is the constant angular velocity
and whose length is the angular speed. The motion is x(t) = K+ tV+R(t,W)(x0−K) where R(t,W) is a
rotation matrix about the axis K+ tW. While it is possible to perform intersection testing using the closed
form solution for position, it is not recommended. The closed form leads to a test equivalent to showing
the minimum of a function containing sinusoidals and polynomials is positive for the specified time interval.
Since minimization algorithms are iterative and since the trigonometric function evaluations are expensive,
it is better to numerically solve the differential equation (also iterative) and avoid the trigonometric function
calls.

Intersection testing for moving objects translates to intersection testing of the moving intervals of projec-
tion on the potential separating axes. If the two time-dependent projection intervals are [u0(t), u1(t)] and
[v0(t), v1(t)], then nonintersection for t ∈ [0, T ] is equivalent to showing: u1(t) < v0(t) for all t ∈ [0, T ] or
v1(t) < u0(t) for all t ∈ [0, T ].

Of additional interest for moving objects is the ability to determine the first time and first point of intersection
for the objects during a specified time interval. These quantities can be determined by processing all the
potential separating axes and computing the last time that a separating axis exists. At this time the two
objects are just touching (no interpenetration). The various quantities computed for the separation tests
provide enough information to reconstruct a first point of intersection (if this point is unique) or to reconstruct
one of the points of intersection (if not unique). It is also possible to extract all points of intersection, but
this comes with an additional computational cost.

The paper is structured as follows. There is a section for each of the comparisons: two OBBS, one triangle and
one OBB, two triangles. Each section provides the conditions for the objects to be separated by a separating
axis, both for static objects and for moving objects. Each section also contains the reconstruction algorithm
for the first time and first point of intersection when the objects have constant velocities. A separate section
contains the details for how to test for collisions in the case of general motion (using differential equation
solvers).

A section is provided to illustrate one method for automatically generating oriented bounding box trees. The
algorithm fits a mesh of triangles with an OBB using either an analysis of a covariance matrix of the vertices
and triangles in that mesh or a minimum volume bounding box fit. Once the OBB is computed, a basic
splitting algorithm is used to partition the mesh into two submeshes. The tree generation is recursive in that
the algorithm is applied to each of the two submeshes. The result is a binary tree of OBBs. The application
has the option of limiting how deep a tree is built by specifying how many triangles are to occur at a leaf
node. The default is one triangle. If the leaf nodes have multiple triangles, then only the representing OBB
is stored in the tree. The idea is to reduce computation time at the expense of accuracy.

The last section presents an implementation of a simple dynamic collision detection system. Given two OBB
trees, the problem is to traverse them simultaneously and test/find intersections. The application can specify
how deep in the tree to traverse, again to reduce computation time at the expense of accuracy. Once an
intersection is predicted, the first time and first point of intersection as well as other information is given to
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the application via callbacks associated with the objects. This scheme makes the collision detection effectively
transparent to the application. The application can concentrate solely on the physics of the response, for
example, arranging for objects to bounce off walls with the proper angle and angular momentum.

2 Oriented Bounding Boxes

In the following discussion, all vectors are in IR3. An oriented bounding box is defined by a center C, a set
of right-handed orthonormal axes A0, A1, and A2, and a set of extents a0 > 0, a1 > 0, and a2 > 0. As a
solid box, the OBB is represented by{

C +

2∑
i=0

xiAi : |xi| ≤ |ai| for all i

}
and the eight vertices of the box are

C +

2∑
i=0

σiaiAi

where |σi| = 1 for all i.

2.1 Separation of OBBs

Let the first OBB have center C0, axes A0, A1, A2, and extents a0, a1, a2. Let the second OBB have center
C1, axes B0, B1, B2, and extents b0, b1, b2. The potential separating axes are of the form C0 + sL where
L is one of Ai, Bj , or Ai ×Bj for i = 0, 1, 2 and j = 0, 1, 2.

Projection of a point P onto line C0 + sL relative to the line origin C0 is

L · (P−C0)

L · L
L.

The distance of the projection from the line origin is

ProjDist(P) =
L · (P−C0)

L · L
.

The projection distances of the first OBB’s vertices relative to the line origin C0 are

ProjDist

(
C0 +

2∑
i=0

σiaiAi

)
=

2∑
i=0

σiai
L ·Ai

L · L
.

The minimum length interval containing all eight projection distances has center K0 = 0 and radius

r0 =

∑2
i=0 aiSign(L ·Ai)L ·Ai

L · L
.

The projection distances of the second OBB’s vertices relative to the line origin C0 are

ProjDist

(
C0 +

2∑
i=0

σiaiAi

)
=

L ·D
L · L

+

2∑
i=0

σibi
L ·Bi

L · L
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where D = C1 − C0. The minimum length interval containing all eight projection distances has center
K1 = L ·D and radius

r1 =

∑2
i=0 biSign(L ·Bi)L ·Bi

L · L
.

The two projected intervals do not intersect whenever the distance between interval centers is larger than the
sum of the radii of the intervals: |K1−K0| > r0 + r1. Each of the quantities involved has in its denominator
L · L. The division is therefore not necessary, so the nonintersection test is

|L ·D| >
2∑

i=0

aiSign(L ·Ai)L ·Ai +

2∑
i=0

biSign(L ·Bi)L ·Bi.

In the remainder of the discussion we use notation

R = |L ·D|

R0 =
∑2

i=0 aiSign(L ·Ai)L ·Ai

R1 =
∑2

i=0 biSign(L ·Bi)L ·Bi

(1)

to represent the various distances without the division by the squared length of L. The nonintersection test
for an axis is R > R0 +R1.

The axes of the second OBB can be written as combinations of axes of the first:

Bi = c0iA0 + c1iA1 + c2iA2

for i = 0, 1, 2. Let A be the matrix whose columns are the Ai, let B be the matrix whose columns are the Bi,
and let C be the matrix whose entries are cij ; then B = AC in which case C = ATB where the superscript
T indicates the transpose operation. The components of C are just cij = Ai ·Bj . Similarly, the axes of the
first box can be written as linear combinations of axes of the second box:

Ai = ci0B0 + ci1B1 + ci2B2

for i = 0, 1, 2. These relationships allow us to compute the various dot products between the separating axis
directions and the box axes in terms of the cij and extents. In particular, the nonintersection tests involve
various triple scalar products involving the box axes:

Ai0 ·Ai1 ×Bj = Sign(i0, i1)ci2j and Bj0 ·Ai ×Bj1 = Sign(j1, j0)cij2 (2)

where Sign(0, 1) = Sign(1, 2) = Sign(2, 0) = +1 and Sign(1, 0) = Sign(2, 1) = Sign(0, 2) = −1. Equations (1)
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and (2) lead to the table below.

L R0 R1 R

A0 a0 b0|c00|+ b1|c01|+ b2|c02| |A0 ·D|

A1 a1 b0|c10|+ b1|c11|+ b2|c12| |A1 ·D|

A2 a2 b0|c20|+ b1|c21|+ b2|c22| |A2 ·D|

B0 a0|c00|+ a1|c10|+ a2|c20| b0 |B0 ·D|

B1 a0|c01|+ a1|c11|+ a2|c21| b1 |B1 ·D|

B2 a0|c02|+ a1|c12|+ a2|c22| b2 |B2 ·D|

A0 ×B0 a1|c20|+ a2|c10| b1|c02|+ b2|c01| |c10A2 ·D− c20A1 ·D|

A0 ×B1 a1|c21|+ a2|c11| b0|c02|+ b2|c00| |c11A2 ·D− c21A1 ·D|

A0 ×B2 a1|c22|+ a2|c12| b0|c01|+ b1|c00| |c12A2 ·D− c22A1 ·D|

A1 ×B0 a0|c20|+ a2|c00| b1|c12|+ b2|c11| |c20A0 ·D− c00A2 ·D|

A1 ×B1 a0|c21|+ a2|c01| b0|c12|+ b2|c10| |c21A0 ·D− c01A2 ·D|

A1 ×B2 a0|c22|+ a2|c02| b0|c11|+ b1|c10| |c22A0 ·D− c02A2 ·D|

A2 ×B0 a0|c10|+ a1|c00| b1|c22|+ b2|c21| |c00A1 ·D− c10A0 ·D|

A2 ×B1 a0|c11|+ a1|c01| b0|c22|+ b2|c20| |c01A1 ·D− c11A0 ·D|

A2 ×B1 a0|c12|+ a1|c02| b0|c21|+ b1|c20| |c02A1 ·D− c12A0 ·D|

Table 1. Values for R, R0, and R1 for the nonintersection test R > R0 +R1

for two OBBs.

2.2 Testing for Intersection of OBBs

2.2.1 Stationary

Testing for intersection amounts to processing each axis of the 15 potential separating axes. If a separating
axis is found, the remaining ones of course are not processed. The various entries cij and |cij | are computed
only when needed. This avoids unnecessary calculations in the event that a separating axis is found quickly
and some of the cij do not need to be computed. The basic separating axis test involves computing R0, R1,
and R and then testing for nonintersection by comparing R > R0 +R1.

2.2.2 Constant Velocities

The code for stationary boxes needs to be modified only slightly to handle the case of constant velocities.
The velocity of the second box is subtracted from the velocity of the first box so that all calculations are
done relative to a stationary first box. If the box velocities are V0 and V1, define the relative velocity
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to be W = V1 − V0. Let the initial time and final time of the calculations be t = 0 and t = T . Let
D(t) = C1 −C0 + tW for t ∈ [0, T ].

Consider the separating axis C0 + sL. The interval values R0 and R1 are independent of t and can be
calculated as in the stationary case. The quantity R is dependent on time. The nonintersection test is
to show R(t) > R0 + R1 for nonintersection for all t ∈ [0, T ]. One potential problem is that the moving
projected interval may start out on one side of the stationary interval, then pass through it to the other side
during the time period. However, because of the linear velocity it is enough for nonintersection to show that
R(0) > R0 +R1, R(T ) > R0 +R1, and Sign(L ·D0) = Sign(L ·D1).

Abstractly the problem amounts to showing that |p+ tw| > r > 0 for all t ∈ [0, T ]. Pseudocode is

i f ( p > r )
{

i f ( p+T∗w > r )
r e t u r n n o i n t e r s e c t i o n ;

}
e l s e i f ( p < −r )
{

i f ( p+T∗w < −r )
r e t u r n n o i n t e r s e c t i o n ;

}

If any of the 15 axes separates the two boxes over the full time interval, then no intersection occurs. However,
if none of the 15 axes separates the boxes for the full time, it is still possible that the boxes are not intersecting.
The motion complicates things slightly. If you view the boxes along the direction of motion, the boxes
appear to be stationary. That is, their projections onto any plane perpendicular to W are not moving. If
the projections are not intersecting, then the two boxes do not intersect over the full time interval. If the
projections do intersect, then the boxes intersect. Testing the projections for nonintersection requires up to
6 additional axis tests, the axes being W×Ai and W×Bi for 0 ≤≤ 2. Define αi = W ·Ai and βi = W ·Bi

for 0 ≤ i ≤ 2. Table 1 is extended by the following to handle the cases with motion,

L R0 R1 R

W×A0 a1|α2|+ a2|α1|
∑2

i=0 bi|c1iα2 − c2iα1| |A0 ·W×D|

W×A1 a0|α2|+ a2|α0|
∑2

i=0 bi|c0iα2 − c2iα0| |A1 ·W×D|

W×A2 a0|α1|+ a1|α0|
∑2

i=0 bi|c0iα1 − c1iα0| |A2 ·W×D|

W×B0

∑2
i=0 ai|ci1β2 − ci2β1| b1|β2|+ b2|β1| |B0 ·W×D|

W×B1

∑2
i=0 ai|ci0β2 − ci2β0| b0|β2|+ b2|β0| |B1 ·W×D|

W×B2

∑2
i=0 ai|ci0β1 − ci1β0| b0|β1|+ b1|β0| |B2 ·W×D|

Table 1’. Values for R, R0, and R1 for the nonintersection test R > R0 +R1

for two OBBs in the direction of motion.

2.3 Finding an Intersection of OBBs

Testing for intersection is a boolean operation. The algorithm returns true if there is an intersection, false
if not. No information is provided about where an intersection occurs (there may be many such points).
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In the case of two stationary objects that are intersection, the region of intersection can be computed with
great pain. This is the realm of computation solid geometry. For a dynamic system, the more interesting case
is to have two moving objects that are initially not intersecting, but then do intersect during the specified time
interval. Of interest to an application is the first time of intersection and a point (or points) of intersection
at that time. The following construction provides a point of intersection. In the cases of vertex-to-vertex,
vertex-to-edge, vertex-to-face, or edge-to-edge (transversely), the intersection point (at first time) is unique.
In the other cases of edge-to-face or face-to-face, the intersection is not unique, but the construction provides
one of the intersection points.

2.3.1 Finding the First Time of Intersection

Given that the two objects do not intersect at time t = 0, but do intersect at some later time, a simple
modification of the algorithm for testing for an intersection provides the first time of intersection. The first
time is computed as the maximum time T > 0 for which there is at least one separating axis for any t ∈ [0, T ),
but for which no separating axis exists at time T . The idea is to test each potential separating axis and keep
track of the time at which the intervals of projection intersect for the first time. The largest such time is the
first time at which the OBBs intersect. Also, it is important to keep track of which side of [−R0, R0] the
other interval intersects. Finally, knowing the separating axis associated with the maximum time T allows
us to reconstruct a point of intersection.

2.3.2 Finding a Point of Intersection

If T is the first time of intersection, the problem is now to find a point P in the intersection of the two OBBs
at that time. We need to solve

2∑
i=0

xiAi = D +

2∑
j=0

yjBj (3)

where D = (C1 + TV1) − (C0 + TV0), and for xi with |xi| ≤ ai, i = 0, 1, 2, and for yj with |yj | ≤ bj ,
j = 0, 1, 2.

Last Separating Axis Ai. If the separating axis at time T is Ai, then the intersection must occur on one
of the two faces perpendicular to Ai. Dotting equation (3) with Ai yields

xi = Ai ·D +

2∑
j=0

cijyj .

If Ai ·D > 0, then Ai ·D = R0 + R1 since the two intervals intersect at the right endpoint of [−R0, R0].
If Ai ·D < 0, then Ai ·D = −(R0 +R1) since the two intervals intersect at the left endpoint of [−R0, R0].
Thus, Ai ·D = σ(R0 +R1) where |σ| = 1 and

xi = σ(R0 +R1) +
∑2

j=0 cijyj

= σ(ai +
∑2

j=0 bj |cij |) +
∑2

j=0 cijyj

0 =
∑2

j=0 |cij |(bj + σSign(cij)yj) + (ai − σxi).

(4)

Since |yj | ≤ bj and |σSign(cij)| ≤ 1, it must be that bj + σSign(cij)yj ≥ 0. Similarly, ai − σxi ≥ 0 in which
case xi = σai. If cij 6= 0, then yj = −σSign(cij)bj is required to make the sum in equation (4) zero.
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If any cij = 0, then the sum in equation (4) places no restriction on yj . For example, this happens when the
intersection is edge-to-face or face-to-face. Instead take the dot product of equation (3) with Bj to obtain

yj = −Bj ·D +

2∑
k=0

xkckj .

Using |xk| ≤ ak, we have

min(yj) = −Bj ·D−
2∑

k=0

|ckj |ak ≤ yj ≤ −Bj ·D +

2∑
k=0

|ckj |ak = max(yj).

Additionally we know |yj | ≤ bj . We must choose a value yj ∈ [min(yj),max(yj)] ∩ [−bj , bj ]. Since we know
an intersection must occur, min(yj) ≤ bj and −bj ≤ max(yj). If bj ≤ max(yj), then yj = bj is an intersection
point. If −bj ≥ min(yj), then yj = −bj is an intersection point. Otherwise, we may choose yj = min(yj) as
an intersection point.

Last Separating Axis Bi. If the separating axis at time T is Bi, then the intersection must occur on one
of the two faces perpendicular to Bi. Dotting equation (3) with Bi yields

2∑
j=0

cjixj = Bi ·D + yi.

As in the last section it can be shown that Bi ·D = σ(R0 +R1) where |σ| = 1. Moreover,∑2
j=0 cjixj = σ(R0 +R1) + yi

= σ(
∑2

j=0 aj |cji|+ bi) + yi

0 =
∑2

j=0 |cji|(aj − σSign(cji)xj) + (b0 + σy0).

(5)

Since |xj | ≤ aj and |σSign(cji)| ≤ 1, it must be that aj − σSign(cji)xj ≥ 0. Similarly, bi + σyi ≥ 0 in which
case yi = −σbi. If cji 6= 0, then xj = σSign(cji)aj is required to make the sum in equation (5) zero.

If any cji = 0, then the sum in the displayed equation places no restriction on xi. For example, this happens
when the intersection is edge-to-face or face-to-face. Instead take the dot product of equation (3) with Aj

to obtain

xj = Aj ·D +

2∑
k=0

ykcjk.

Using |yk| ≤ bk, we have

min(xj) = Aj ·D−
2∑

k=0

|cjk|bk ≤ xj ≤ Aj ·D +

2∑
k=0

|cjk|bk = max(xj).

Additionally we know |xj | ≤ aj . We must choose a value xj ∈ [min(xj),max(xj)] ∩ [−aj , aj ]. Since we
know an intersection must occur, min(xj) ≤ aj and −aj ≤ max(xj). If aj ≤ max(xj), then xj = aj is an
intersection point. If −aj ≥ min(xj), then xj = −aj is an intersection point. Otherwise, we may choose
xj = min(xj) as an intersection point.

10



Last Separating Axis Ai × Bj . Let (i0, i1, i2) and (j0, j1, j2) be permutations of (0, 1, 2) in the set
{(0, 1, 2), (1, 0, 2), (2, 1, 0)}. Dot equation (3) with Ai0 ×Bj0 to obtain

(Ai1 ·Ai0 ×Bj0)xi1 + (Ai2 ·Ai0 ×Bj0)xi2 = Ai0 ×Bj0 ·D + (Bj1 ·Ai0 ×Bj0)yj1 + (Bj2 ·Ai0 ×Bj0)yj2

Sign(i1, i0)ci2j0xi1 + Sign(i2, i0)ci1j0xi1 = σ(|ci2j0 |ai1 + |ci1j0 |ai2 + |ci0j2 |bj1 + |ci0j1 |bj2)

+Sign(j0, j1)ci0j2yj1 + Sign(j0, j2)ci0j1yj2 .

where |σ| = 1. Grouping terms and factoring yields

0 = |ci2j0 |(ai1 − σSign(i1, i0)Sign(ci2j0)xi1) + |ci1j0 |(ai2 − σSign(i1, i0)Sign(ci1j0)xi2)+

|ci0j2 |(bj1 − σSign(j1, j0)Sign(ci0j2)yj1) + |ci0j1 |(bj2 − σSign(j2, j0)Sign(ci0j1)yj2)

As in the previous section, the quantities multiplying the |cij | terms must be zero when the cij term is not
zero.

The first case to consider is ci2j0 6= 0, ci1j0 6= 0, ci0j2 6= 0, and ci0j1 6= 0. Then

xi1 = σSign(i1, i0)Sign(ci2j0)ai1

xi2 = σSign(i2, i0)Sign(ci1j0)ai2

yj1 = σSign(j1, j0)Sign(ci0j2)bj1

yj2 = σSign(j2, j0)Sign(ci0j1)bj2 .

To solve for xi0 and yj0 , dot equation (3) with Ai0 and Bj0 to obtain

xi0 = Ai0 ·D + ci0j0yj0 + ci0j1yj1 + ci0j2yj2 ,

ci0j0xi0 + ci1j0xi1 + ci2j0xi2 = Bj0 ·D + yj0 .

Replacing each equation in the other yields

xi0 = 1
1−c2i0j0

[Ai0 ·D + ci0j0 (−Bj0 ·D + ci1j0xi1 + ci2j0xi2) + ci0j1yj1 + ci0j2yj2 ]

yj0 = 1
1−c2i0j0

[−Bj0 ·D + ci0j0 (Ai0 ·D + ci0j1yj1 + ci0j2yj2) + ci1j0xi1 + ci2j0xi2 ]

The denominator of the fraction is not zero since 1− c2i0j0 = c2i1j0 + c2i2j0 6= 0 since ci1j0 6= 0 and ci2j0 6= 0.

Geometrically, these four cij numbers must be zero since this case represents either (1) an edge-to-edge
collision and the intersection point must be unique or (2) an edge-to-edge collision where the edges are
perfectly aligned. In the latter case, a face axis should separate the two OBBs. Just in case the face axis
separation does not happen due to numerical round-off errors, the code has cases to handle whenever any of
the cij = 0. The handlers are similar to what was discussed earlier. The intersection equation is dotted with
the appropriate vector to solve explicitly for the to-be-determined variable (a xi or a yj term). Inequalitites
are obtained for that variable and the minimum and maximum values are used as before to find a point in
the intersection of two intervals for that variable.
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The coefficients needed to produce the unique points of intersection are summarized in the following table.

L coefficients

Ai yj = −σSign(cij)bj , j = 0, 1, 2

Bj xi = +σSign(cij)ai, i = 0, 1, 2

A0 ×B0 x1 = −σSign(c20)a1, x2 = +σSign(c10)a2, y1 = −σSign(c02)b1, y2 = +σSign(c01)b2,

x0 = 1
1−c200

(A0 ·D + c00(−B0 ·D + c10x1 + c20x2) + c01y1 + c02y2)

A0 ×B1 x1 = −σSign(c21)a1, x2 = +σSign(c11)a2, y0 = +σSign(c02)b0, y2 = −σSign(c00)b2,

x0 = 1
1−c201

(A0 ·D + c01(−B1 ·D + c11x1 + c21x2) + c00y0 + c02y2)

A0 ×B2 x1 = −σSign(c22)a1, x2 = +σSign(c12)a2, y0 = −σSign(c01)b0, y1 = +σSign(c00)b1,

x0 = 1
1−c202

(A0 ·D + c02(−B2 ·D + c12x1 + c22x2) + c00y0 + c01y1)

A1 ×B0 x0 = +σSign(c20)a0, x2 = −σSign(c00)a2, y1 = −σSign(c12)b1, y2 = +σSign(c11)b2,

x1 = 1
1−c210

(A1 ·D + c10(−B0 ·D + c00x0 + c20x2) + c11y1 + c12y2)

A1 ×B1 x0 = +σSign(c21)a0, x2 = −σSign(c01)a2, y0 = +σSign(c12)b0, y2 = −σSign(c10)b2,

x1 = 1
1−c211

(A1 ·D + c11(−B1 ·D + c01x0 + c21x2) + c10y0 + c12y2)

A1 ×B2 x0 = +σSign(c22)a0, x2 = −σSign(c02)a2, y0 = −σSign(c11)b0, y1 = +σSign(c10)b1,

x1 = 1
1−c212

(A1 ·D + c12(−B2 ·D + c02x0 + c22x2) + c10y0 + c11y1)

A2 ×B0 x0 = −σSign(c10)a0, x1 = +σSign(c00)a1, y1 = −σSign(c22)b1, y2 = +σSign(c21)b2,

x2 = 1
1−c220

(A2 ·D + c20(−B0 ·D + c00x0 + c10x1) + c21y1 + c22y2)

A2 ×B1 x0 = −σSign(c11)a0, x1 = +σSign(c01)a1, y0 = +σSign(c22)b0, y2 = −σSign(c20)b2,

x2 = 1
1−c221

(A2 ·D + c21(−B1 ·D + c01x0 + c11x1) + c20y0 + c22y2)

A2 ×B2 x0 = −σSign(c12)a0, x1 = +σSign(c02)a1, y0 = −σSign(c21)b0, y1 = +σSign(c20)b1,

x2 = 1
1−c222

(A2 ·D + c22(−B2 ·D + c02x0 + c12x1) + c20y0 + c21y1)

Table 2. Coefficients for unique points of OBB-OBB intersection.

3 Triangle and Oriented Bounding Box

Triangles are represented in this framework as a collection of three vertices Ui, i = 0, 1, 2. The edges of the
triangle are E0 = U1 −U0, E1 = U2 −U0, and E2 = E1 − E0. A normal for the triangle is N = E0 × E1

and is not necessarily unit length. The triangle and its interior are given by

{U0 + sE0 + tE1 : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, s+ t ≤ 1} .

12



3.1 Separation of Triangle and OBB

Let the OBB have center C, axes A0, A1, A2, and extents a0, a1, a2. Let the triangle have vertices U0, U1,
U2; edges E0 = U1 −U0, E1 = U2 −U0, E2 = E1 − E0; and normal N = E0 × E1. Define D = U0 −C.
The potential separating axes are of the form C+ sL where L is one of N, Ai, or Ai×Ej for i = 0, 1, 2 and
j = 0, 1, 2.

For the OBB, the projection distances of the vertices relative to the line origin C are

ProjDist

(
C +

2∑
i=0

σiaiAi

)
=

2∑
i=0

σiai
L ·Ai

L · L

and the minimum length interval containing all eight projection distances has center 0 and radius

r =

∑2
i=0 aiSign(L ·Ai)L ·Ai

L · L
.

The projection distances of the triangle’s vertices relative to the line origin are

ProjDist(Uk −C) =
L · (Uk −C)

L · L

for k = 0, 1, 2. The projection of the triangle does not have a natural center or radius as does the OBB.
Nonintersection now amounts to showing that the minimal interval containing the three projected triangle
vertices is separated from the projected OBB interval.

Define R to be r without the division by squared length of L,

R =

2∑
i=0

aiSign(L ·Ai)L ·Ai. (6)

The projection distances without the division by squared length of L are

p0 = L · (U0 −C) = L ·D

p1 = L · (U1 −C) = L · (D + E0) = p0 + L ·E0

p2 = L · (U2 −C) = L · (D + E1) = p0 + L ·E1.

(7)
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Equations (6) and (7) lead to the entries in the table below.

L p0 p1 p2 R

N N ·D p0 p0 a0|N ·A0|+ a1|N ·A1|+ a2|N ·A2|

A0 A0 ·D p0 + A0 ·E0 p0 + A0 ·E1 a0

A1 A1 ·D p0 + A1 ·E0 p0 + A1 ·E1 a1

A2 A2 ·D p0 + A2 ·E0 p0 + A2 ·E1 a2

A0 ×E0 A0 ×E0 ·D p0 p0 + A0 ·N a1|A2 ·E0|+ a2|A1 ·E0|

A0 ×E1 A0 ×E1 ·D p0 −A0 ·N p0 a1|A2 ·E1|+ a2|A1 ·E1|

A0 ×E2 A0 ×E2 ·D p0 −A0 ·N p0 −A0 ·N a1|A2 ·E2|+ a2|A1 ·E2|

A1 ×E0 A1 ×E0 ·D p0 p0 + A1 ·N a0|A2 ·E0|+ a2|A0 ·E0|

A1 ×E1 A1 ×E1 ·D p0 −A1 ·N p0 a0|A2 ·E1|+ a2|A0 ·E1|

A1 ×E2 A1 ×E2 ·D p0 −A1 ·N p0 −A1 ·N a0|A2 ·E2|+ a2|A0 ·E2|

A2 ×E0 A2 ×E0 ·D p0 p0 + A2 ·N a0|A1 ·E0|+ a1|A0 ·E0|

A2 ×E1 A2 ×E1 ·D p0 −A2 ·N p0 a0|A1 ·E1|+ a1|A0 ·E1|

A2 ×E2 A2 ×E2 ·D p0 −A2 ·N p0 −A2 ·N a0|A1 ·E2|+ a1|A0 ·E2|

Table 3. Values for R, p0, p1, and p2 for the nonintersection test
min(p0, p1, p2) > R or max(p0, p1, p2) < −R for triangle and
OBB.

For axis direction N, the projected triangle vertices are identical, so the nonintersection test amounts to
showing N ·D is not in the interval [−R,R]. For axis directions Ai, the projected triangle vertices may all
be distinct. For axis directions Ai × Ej , at most two of the projected vertices are distinct. If the triangle
interval is [min(p0, p1, p2),max(p0, p1, p2)] and the OBB interval is [−R,R], then the triangle and OBB do
not intersect whenever min(p0, p1, p2) > R or max(p0, p1, p2) < −R.

3.2 Testing for Intersection of Triangle and OBB

3.2.1 Stationary

Testing for intersection amounts to processing each axis of the 13 potential separating axes. If a separating
axis is found, the remaining ones are not processed. Any quantities that are needed multiple times are
calculated only once and only when needed.

Axis N. The nonintersection test is |N ·D| > R. Pseudocode for testing if p is not in [−R,R] is

i f ( | p | > R )
r e t u r n n o i n t e r s e c t i o n ;
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Axes Ak. The p-values are p, p+ d0, and p+ d1. The nonintersection test is: min(p, p+ d0, p+ d1) > R or
max(p, p+ d0, p+ d1) < −R. Pseudocode is

i f ( p > R )
{

i f ( d0 >= 0 )
{

i f ( d1 >= 0 )
r e t u r n n o i n t e r s e c t i o n ; // pmin = p > R

i f ( p+d1 > R )
r e t u r n n o i n t e r s e c t i o n ; // pmin = p+d1 > R

}
e l s e i f ( d1 <= d0 )
{

i f ( p+d1 > R )
r e t u r n n o i n t e r s e c t i o n ; // pmin = p+d1 > R

}
e l s e
{

i f ( p+d0 > R )
r e t u r n n o i n t e r s e c t i o n ; // pmin = p+d0 > R

}
}
e l s e i f ( p < −R )
{

i f ( d0 <= 0 )
{

i f ( d1 <= 0 )
r e t u r n n o i n t e r s e c t i o n ; // pmax = p < −R

i f ( p+d1 < −R )
r e t u r n n o i n t e r s e c t i o n ; // pmax = p+d1 < −R

}
e l s e i f ( d1 >= d0 )
{

i f ( p+d1 < −R )
r e t u r n n o i n t e r s e c t i o n ; // pmax = p+d1 < −R

}
e l s e
{

i f ( p+d0 < −R )
r e t u r n n o i n t e r s e c t i o n ; // pmax = p+d0 < −R

}
}

Axes Ai ×Ej . There are at most two distinct values for the pi, call them p and p+ d. The nonintersection
test is: min(p, p+ d) > R or max(p+ d) < −R). Pseudocode is

i f ( p > R )
{

i f ( d >= 0 )
r e t u r n n o i n t e r s e c t i o n ; // pmin = p > R

i f ( p+d > R )
r e t u r n n o i n t e r s e c t i o n ; // pmin = p+d > R

}
e l s e i f ( p < −R )
{

i f ( d <= 0 )
r e t u r n n o i n t e r s e c t i o n ; // pmax = p < −R

i f ( p+d < −R )
r e t u r n n o i n t e r s e c t i o n ; // pmax = p+d < −R

}

3.2.2 Constant Velocities

The code for stationary triangle and OBB needs to be modified slightly to handle the case of constant
velocities. The velocity of the OBB is subtracted from the velocity of the triangle so that all calculations
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are done relative to a stationary box. If the box velocity is V0 and the triangle velocity is V1, define the
relative velocity to be W = V1 −V0. Let the initial time and final time of the calculations be t = 0 and
t = T . Let D0 = U0 −C and D1 = D0 + TW.

The projected OBB interval [−R,R] is stationary. The projected triangle interval is dependent on time,
[min(p)(t),max(p)(t)]. The test for nonintersection during the time interval [0, T ] is min(p)(t) > R for all
t ∈ [0, T ] or max(p)(t) < −R for all t ∈ [0, T ]. Because the linear velocity is constant, it is enough to show
nonintersection by verifying that min{min(p)(0),min(p)(T )} > R or max{max(p)(0),max(p)(T )} < −R.

Axis N. The nonintersection test amounts to showing p+ tw is not in [−R,R] for t ∈ [0, T ] (p = N ·D and
w = N ·W). Moreover, the point p + tw must not pass through [−R,R] during the given time period, so
the algorithm keeps track of which side of [−R,R] the point starts on. Pseudocode is

i f ( p > R )
{

i f ( p+T∗w > R )
r e t u r n n o i n t e r s e c t i o n ;

}
e l s e i f ( p < −R )
{

i f ( p+T∗w < −R )
r e t u r n n o i n t e r s e c t i o n ;

}

Axes Ak. The problem is to make sure that the minimum interval containing {p+Tw, p+d0+Tw, p+d1+Tw}
does not intersect [−R,R]. When w = 0 (the static case), the pseudocode for nonintersection was given
earlier. For the case when w 6= 0, each case where a “no intersection” is returned when t = 0 must be refined
to make sure the projected triangle interval remains on the same side of [−R,R] at t = T . The pseudocode
is

i f ( p > R )
{

i f ( d0 >= 0 )
{

i f ( d1 >= 0 )
{

min = p ;
i f ( min+T∗w > R )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

min = p+d1 ;
i f ( min > R && min+T∗w > R )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( d1 <= d0 )
{

min = p+d1 ;
i f ( min > R && min+T∗w > R )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

min = p+d0 ;
i f ( min > R && min+T∗w > R )

r e t u r n n o i n t e r s e c t i o n ;
}

}
}
e l s e i f ( p < −R )
{

i f ( d0 <= 0 )
{
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i f ( d1 <= 0 )
{

max = p ;
i f ( max+T∗w < −R )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = p+d1 ;
i f ( max < −R && max+T∗w < −R )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( d1 >= d0 )
{

max = p+d1 ;
i f ( max < −R && max+T∗w < −R )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = p+d0 ;
i f ( max < −R && max+T∗w < −R )

r e t u r n n o i n t e r s e c t i o n ;
}

}

Axes Ai × Ej . The problem is to make sure that the minimum interval containing {p+ Tw, p+ d+ Tw}
does not intersect [−R,R]. When w = 0 (the static case), the pseudocode for nonintersection was given
earlier. For the case when w 6= 0, each case where a “no intersection” is returned when t = 0 must be refined
to make sure the projected triangle interval remains on the same side of [−R,R] at t = T . The pseudocode
is

i f ( p > R )
{

i f ( d >= 0 )
{

min = p ;
i f ( min+T∗w > R )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

min = p+d ;
i f ( min > R && min+T∗w > R )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( p < −R )
{

i f ( d <= 0 )
{

max = p ;
i f ( max+T∗w < −R )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = p+d ;
i f ( max < −R && max+T∗w < −R )

r e t u r n n o i n t e r s e c t i o n ;
}

}
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3.3 Finding an Intersection of Triangle and OBB

Testing for intersection is a boolean operation. The algorithm returns true if there is an intersection, false
if not. No information is provided about where an intersection occurs (there may be many such points).

In the case of two stationary objects that are intersecting, the region of intersection can be computed with
great pain. For a dynamic system, the more interesting case is to have two moving objects that are initially
not intersecting, but then do intersect during the specified time interval. Of interest to an application is
the first time of intersection and a point (or points) of intersection at that time. The following construction
provides a point of intersection. In the cases of vertex-to-vertex, vertex-to-edge, vertex-to-face, or edge-to-
edge (transversely), the intersection point (at first time) is unique. In the other cases of edge-to-face or
face-to-face, the intersection is not unique, but the construction provides one of the intersection points.

3.3.1 Finding the First Time of Intersection

Given that the two objects do not intersect at time t = 0, but do intersect at some later time, a simple
modification of the algorithm for testing for an intersection provides the first time of intersection. The first
time is computed as the maximum time T > 0 for which there is at least one separating axis for any t ∈ [0, T ),
but for which no separating axis exists at time T . The idea is to test each potential separating axis and
keep track of the time at which the intervals of projection intersect for the first time. The largest such time
is the first time at which the triangle and OBB intersect. Also, it is important to keep track of which side
of [−R,R] the other interval intersects. Finally, knowing the separating axis associated with the maximum
time T allows us to reconstruct a point of intersection.

3.3.2 Finding a Point of Intersection

If T is the first time of intersection, the problem is now to find a point P in the intersection of the triangle
and OBB at that time. We need to solve

2∑
i=0

xiAi = D + y0E0 + y1E1 (8)

where D = (C + TV1) − (U0 + TV0), and for xi with |xi| ≤ ai, i = 0, 1, 2, and for yj with 0 ≤ y0 ≤ 1,
0 ≤ y1 ≤ 1, and y0 + y1 ≤ 1.

Equation (8) can be solved for each variable individually. The solutions are

xi = Ai ·D + (Ai ·E0)y0 + (Ai ·E1)y1

yj = 1−2j
|N|2

(
−N ·D×E1−j +

∑2
i=0 xiN ·Ai ×E1−j

) (9)

for i = 0, 1, 2 and j = 0, 1. The equations define the left-hand side as a linear function of the variables in
the right-hand side. The x extreme values occur at the vertices of the triangular domain of the function:
(0, 0), (1, 0), and (0, 1). The extreme values of the equations define intervals bounding each variable, xi ∈
[min(xi),max(xi)]. The interval end points are

min(xi) = Ai ·D + min(0,Ai ·E0,Ai ·E1),

max(xi) = Ai ·D + max(0,Ai ·E0,Ai ·E1).
(10)
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The y extreme values occur at the vertices of the rectoidal domain of the function (all |xi| = ai). The extreme
values of the equations define intervals bounding each variable, yj ∈ [min(yj),max(yj)]. The interval end
points are

min(yj) =
(2j−1)N·D×E1−j−

∑2
i=0 ai|N·Ai×E1−j |

|N|2 ,

max(yj) =
(2j−1)N·D×E1−j+

∑2
i=0 ai|N·Ai×E1−j |

|N|2 .
(11)

In the following constructions of the first point of intersection, if any of the variables is not uniquely con-
strained by the derived equations, then such a variable can be selected from the intervals [min(xi),max(xi)]
or [min(yj),max(yj)] and subject to the other domain constraints for that variable.

The following are a few useful functions in the constructions. Define α, β, γ, and δ by

α(k) =


0, k = 0

1, k = 1

1, k = 2

 , β(k) =


1, k = 0

0, k = 1

1, k = 2

 ,

γ(k) =


−1, k = 0

0, k = 1

1, k = 2

 , δ(k) =


−1, k = 0

1, k = 1

1, k = 2

 .

Some useful identities are δ ≡ 2α− 1, δ2 ≡ 1, αδ ≡ α, and γδ ≡ β.

Last Separating Axis N. If the separating axis at time T is N, then the intersection must occur on the
triangle itself. Dotting equation (8) with N yields

2∑
i=0

xiN ·Ai = N ·D.

Note that N ·D = σR for |σ| = 1. Thus,∑2
i=0 xiN ·Ai = σR∑2
i=0 xiN ·Ai = σ

∑2
i=0 ai|N ·Ai|

0 =
∑2

i=0 |N ·Ai|(ai − σSign(N ·Ai)xi).

(12)

Since |xi| ≤ ai and |σSign(N · Ai)| ≤ 1, it must be that ai − σSign(N · Ai)xi ≥ 0. If N · Ai 6= 0, then
xi = σSign(N ·Ai)ai is required to make the sum in equation (12) zero. If any N ·Ai = 0, then the sum in
equation (12) places no restriction on xi. For example, this happens when the intersection is edge-to-triangle
or face-to-triangle. Any xi ∈ [min(xi),max(xi) ∩ [−ai, ai] can be selected for a point of intersection.

Last Separating Axis Ai. If the separating axis at time T is Ai, then the intersection must occur on one
of the two OBB faces perpendicular to Ai and R = ai. The formula for xi from equation (9) has three cases
to be considered.

The first case is p0 = minj(pj) = ai in which case σ = 1 or p0 = maxj(pj) = −ai in which case σ = −1.
Then σAi ·E0 ≥ 0, σAi ·E1 ≥ 0, and xi = σai + y0Ai ·E0 + y1Ai ·E1. The intersection occurs on a face of
the OBB perpendicular to Ai, so it must be that xi = σai and

0 = (σAi ·E0)y0 + (σAi ·E1)y1. (13)
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If Ai ·E0 6= 0 and Ai ·E1 6= 0, then y0 = 0 and y1 = 0 are required. If Ai ·E0 = 0 and Ai ·E1 6= 0, equation
(13) requires y1 = 0 but does not constrain y0. In this case y0 ∈ [min(y0),max(y0)] ∩ [0, 1] where min(y0)
and max(y0) are defined in equation (11). If Ai ·E0 6= 0 and Ai ·E1 = 0, equation (13) requires y0 = 0 but
does not constrain y1. In this case y1 ∈ [min(y1),max(y1)] ∩ [0, 1] where min(y1) and max(y1) are defined
in equation (11). If Ai · E0 = 0 and Ai · E1 = 0, equation (13) constrains neither y0 nor y1. The OBB
intersects the triangle face-to-face, a case handled by the separating axis test for N.

The second case is p1 = minj(pj) = ai in which case σ = 1 or p1 = maxj(pj) = −ai in which case σ = −1.
Then −σAi ·E0 ≥ 0, σ(Ai ·E1 −Ai ·E0) ≥ 0, and xi = σai −Ai ·E0 + y0Ai ·E0 + y1Ai ·E1. Once again,
xi = σai and

0 = (−σAi ·E0)(1− y0 − y1) + [σ(Ai ·E1 −Ai ·E0)]y1. (14)

If Ai · E0 6= 0 and Ai · E1 6= Ai · E0, then 1 − y0 − y1 = 0 and y1 = 0 are required. Therefore, y0 = 1
and y1 = 0. If Ai · E0 = 0 and Ai · E1 6= Ai · E0, equation (14) requires y1 = 0 but does not constrain
y0. In this case y0 ∈ [min(y0),max(y0)] ∩ [0, 1] where min(y0) and max(y0) are defined in equation (11). If
Ai ·E0 6= 0 and Ai ·E1 = Ai ·E0, equation (14) requires y0 + y1 = 1 but does not constrain y1. In this case
y1 ∈ [min(y1),max(y1)] ∩ [0, 1] where min(y1) and max(y1) are defined in equation (11). Given a choice of
y1, then y0 = 1 − y1. If Ai · E0 = Ai · E1 = 0, then neither y0 nor y1 is constrained. In this event, N and
Ai are parallel, a case handled by the separating axis test for N.

The third case is p2 = minj(pj) = ai in which case σ = 1 or p2 = maxj(pj) = −ai in which case σ = −1.
Then −σAi ·E1 ≥ 0, σ(Ai ·E0 −Ai ·E1) ≥ 0, and xi = σai −Ai ·E1 + y0Ai ·E0 + y1Ai ·E1. Once again,
xi = σai and

0 = [σ(Ai ·E0 −Ai ·E1)]y0 + (−σAi ·E1)(1− y0 − y1). (15)

If Ai · E1 6= 0 and Ai · E0 6= Ai · E1, then 1 − y0 − y1 = 0 and y0 = 0 are required. Therefore, y0 = 0 and
y1 = 1. If Ai ·E1 = 0 and Ai ·E0 6= Ai ·E1, equation (15) requires y0 = 0 but does not constrain y1. In this
case y1 ∈ [min(y1),max(y1)]∩ [0, 1] where min(y1) and max(y1) are defined in equation (11). Given a choice
of y1, then y0 = 1 − y1. If Ai · E1 6= 0 and Ai · E0 = Ai · E1, equation (15) requires 1 − y0 − y1 = 0 but
does not constrain y0. In this case y0 ∈ [min(y0),max(y0)] ∩ [0, 1] where min(y0) and max(y0) are defined
in equation (11). Given a choice of y0, then y1 = 1− y0. If Ai ·E1 = Ai ·E0 = 0, then neither y0 nor y1 is
constrained. In this event, N and Ai are parallel, a case handled by the separating axis test for N.

Last Separating Axis Ai × Ej . Let (i0, i1, i2) and (j0, j1, j2) be permutations of (0, 1, 2) in the set
{(0, 1, 2), (1, 0, 2), (2, 1, 0)}. Dot equation (8) with Ai0 ×Ej0 to obtain

(Ai1 ·Ai0 ×Ej0)xi1 + (Ai2 ·Ai0 ×Ej0)xi2 = Ai0 ×Ej0 ·D + (E0 ·Ai0 ×Ej0)y0 + (E1 ·Ai0 ×Ej0)y1.

Using various identities, the equation reduces to

(Sign(i1, i0)Ai2 ·Ej0)xi1 + (Sign(i2, i0)Ai1 ·Ej0)xi2 = p0 − α(j0)N ·Ai0y0 − γ(j0)N ·Ai0y1. (16)

where p0 = Ai0 × Ej0 · D from Table 3. The projection of the triangle’s vertices leads to (possibly) two
distinct p values, {p0, p0− δ(j0)N ·Ai0}. There are two cases to consider depending on which of the p values
are minima or maxima. In all cases,

R = ai1 |Ai2 ·Ej0 |+ ai2 |Ai1 ·Ej0 |.

The first case is p0 = mink(pk) = R in which case σ = 1 or p0 = maxk(pk) = −R in which case σ = −1.
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Then p0 = σR and −σδ(j0)Ai0 ·N ≥ 0. Equation (16) is equivalent to

0 = |Ai2 ·Ej0 |(ai1 − σSign(i1, i0)Sign(Ai2 ·Ej0)xi1)+

|Ai1 ·Ej0 |(ai2 − σSign(i2, i0)Sign(Ai1 ·Ej0)xi2)+

(−σδ(j0)Ai0 ·N)(α(j0)y0 + β(j0)y1).

If Ai2 ·Ej0 6= 0, then xi1 = σSign(i1, i0)Sign(Ai2 ·Ej0)ai1 . If Ai1 ·Ej0 6= 0, then xi2 = σSign(i2, i0)Sign(Ai1 ·
Ej0)ai2 . If Ai0 ·N 6= 0, then α(j0)y0 + β(j0)y1 = 0. These provide three equations in five unknowns. Two
additional equations to form an invertible system can be selected from equations (9).

The second case is p0−δ(j0)N·Ai0 = mink(pk) = R in which case σ = 1 or p0−δ(j0)N·Ai0 = maxk(pk) = −R
in which case σ = −1. Then p0 = σR+ δ(j0)N ·Ai0 and σδ(j0)Ai0 ·N ≥ 0. Equation (16) is equivalent to

0 = |Ai2 ·Ej0 |(ai1 − σSign(i1, i0)Sign(Ai2 ·Ej0)xi1)+

|Ai1 ·Ej0 |(ai2 − σSign(i2, i0)Sign(Ai1 ·Ej0)xi2)+

(σδ(j0)Ai0 ·N)(1− α(j0)y0 − β(j0)y1).

If Ai2 ·Ej0 6= 0, then xi1 = σSign(i1, i0)Sign(Ai2 ·Ej0)ai1 . If Ai1 ·Ej0 6= 0, then xi2 = σSign(i2, i0)Sign(Ai1 ·
Ej0)ai2 . If Ai0 ·N 6= 0, then α(j0)y0 + β(j0)y1 = 1. These provide three equations in five unknowns. Two
additional equations to form an invertible system can be selected from equations (9).

If any of the xi or yj are not constrained because their coefficients are zero, a similar construction can be
used as before where intervals are obtained on each of the variables and the intersection of those intervals
with their natural restrictions produce a point of intersection.

The coefficients needed to produce the unique points of intersection are summarized in the following tables.

L coefficients

N xi = +σSign(N ·Ai)ai, i = 0, 1, 2

Ai y0 = 0, y1 = 0, σp0 = mink(σpk)

y0 = 1, y1 = 0, σp1 = mink(σpk)

y0 = 0, y1 = 1, σp2 = mink(σpk)

Table 4a. Coefficients for unique points of OBB-Triangle intersection for N and Ai.
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L coefficients

A0 ×E0 x1 = −σSign(A2 ·E0)a1, x2 = +σSign(A1 ·E0)a2,

y1 =

 0, σp0 = mink(σpk)

1, σ(p0 + N ·A0) = mink(σpk)


x0 = N·D×E0−|N|2y1−N·A1×E0x1−N·A2×E0x2

N·A0×E0

A0 ×E1 x1 = −σSign(A2 ·E1)a1, x2 = +σSign(A1 ·E1)a2,

y0 =

 0, σp0 = mink(σpk)

1, σ(p0 −N ·A0) = mink(σpk)


x0 = N·D×E1+|N|2y0−N·A1×E1x1−N·A2×E1x2

N·A0×E1

A0 ×E2 x1 = −σSign(A2 ·E2)a1, x2 = +σSign(A1 ·E2)a2,

y0 + y1 =

 0, σp0 = mink(σpk)

1, σ(p0 −N ·A0) = mink(σpk)


x0 = N·D×E2+|N|2(y0+y1)−N·A1×E2x1−N·A2×E2x2

N·A0×E2

Table 4b. Coefficients for unique points of OBB-Triangle intersection for A0 ×Ej .

L coefficients

A1 ×E0 x0 = +σSign(A2 ·E0)a0, x2 = −σSign(A0 ·E0)a2,

y1 =

 0, σp0 = mink(pk)

1, σ(p0 + N ·A1) = mink(σpk)


x1 = N·D×E0−|N|2y1−N·A0×E0x0−N·A2×E0x2

N·A1×E0

A1 ×E1 x0 = +σSign(A2 ·E1)a0, x2 = −σSign(A0 ·E1)a2,

y0 =

 0, σ(p0 = mink(pk))

1, σ(p0 −N ·A1) = mink(σpk)


x1 = N·D×E1+|N|2y0−N·A0×E1x0−N·A2×E1x2

N·A1×E1

A1 ×E2 x0 = +σSign(A2 ·E2)a0, x2 = −σSign(A0 ·E2)a2,

y0 + y1 =

 0, σp0 = mink(pk)

1, σ(p0 −N ·A1) = mink(σpk)


x1 = N·D×E2+|N|2(y0+y1)−N·A0×E2x0−N·A2×E2x2

N·A1×E2

Table 4c. Coefficients for unique points of OBB-Triangle intersection for A1 ×Ej .
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L coefficients

A2 ×E0 x0 = −σSign(A1 ·E0)a0, x1 = +σSign(A0 ·E0)a1,

y1 =

 0, σp0 = mink(σpk)

1, σ(p0 + N ·A2) = mink(σpk)


x2 = N·D×E0−|N|2y1−N·A0×E0x0−N·A1×E0x1

N·A2×E0

A2 ×E1 x0 = −σSign(A1 ·E1)a0, x1 = +σSign(A0 ·E1)a1,

y0 =

 0, σp0 = mink(σpk)

1, σ(p0 −N ·A2) = mink(σpk)


x2 = N·D×E1+|N|2y0−N·A0×E1x0−N·A1×E1x1

N·A2×E1

A2 ×E2 x0 = −σSign(A1 ·E2)a0, x1 = +σSign(A0 ·E2)a1,

y0 + y1 =

 0, σp0 = mink(σpk)

1, σ(p0 −N ·A2) = mink(σpk)


x2 = N·D×E2+|N|2(y0+y1)−N·A0×E2x0−N·A1×E2x1

N·A2×E2

Table 4d. Coefficients for unique points of OBB-Triangle intersection for A2 ×Ej .

4 Triangles

4.1 Separation of Triangles

Let the first triangle have vertices A0, A1, A2, edges E0 = A1 −A0, E1 = A2 −A0, E2 = E1 − E0, and
normal N = E0 ×E1 (not necessarily unit length). Let the second triangle have vertices B0, B1, B2, edges
F0 = B1−B0, F1 = B2−B0, F2 = F1−F0, and normal M = F0×F1 (not necessarily unit length). Define
D = B0 −A0.

Triangles in 3D present an interesting problem for nonintersection by the separating axis approach. The set
of potential separating axes depends on whether or not the triangles are parallel. If the two triangles are
parallel but not coplanar, then the triangle normals will provide separating axes. However, if the triangles
are coplanar, then neither normal provides a separating axis. Moreover, cross products of pair of edges from
the triangles are all normal vectors, so they do not yield separating axes. It turns out that for the coplanar
case, cross products of a triangle normal with the edges of the other triangle provide the potential separating
axes.

For nonparallel triangles, the potential separating axes are of the form A0 + sL where L is one of N, M, or
Ei × Fj for i = 0, 1, 2 and j = 0, 1, 2. For parallel or coplanar triangles, L is one of N, N × Ei, or N × Fi

for i = 0, 1, 2.
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The projection distances of the triangle vertices without the division by the squared length of L are

p0 = L · (A0 −A0) = 0

p1 = L · (A1 −A0) = L ·E0

p2 = L · (A2 −A0) = L ·E1

(17)

and

q0 = L · (B0 −A0) = L ·D

q1 = L · (B1 −A0) = L · (D + F0) = q0 + L · F0

q2 = L · (B2 −A0) = L · (D + F1) = q0 + L · F1.

(18)

Equations (17) and (18) lead to the entries in the table below. This table represents the potential separating
axes for nonparallel triangles.

L p0 p1 p2 q0 q1 q2

N 0 0 0 N ·D q0 + N · F0 q0 + N · F1

M 0 M ·E0 M ·E1 M ·D q0 q0

E0 × F0 0 0 −N · F0 E0 × F0 ·D q0 q0 + M ·E0

E0 × F1 0 0 −N · F1 E0 × F1 ·D q0 −M ·E0 q0

E0 × F2 0 0 −N · F2 E0 × F2 ·D q0 −M ·E0 q0 −M ·E0

E1 × F0 0 N · F0 0 E1 × F0 ·D q0 q0 + M ·E1

E1 × F1 0 N · F1 0 E1 × F1 ·D q0 −M ·E1 q0

E1 × F2 0 N · F2 0 E1 × F2 ·D q0 −M ·E1 q0 −M ·E1

E2 × F0 0 N · F0 N · F0 E2 × F0 ·D q0 q0 + M ·E2

E2 × F1 0 N · F1 N · F1 E2 × F1 ·D q0 −M ·E2 q0

E2 × F2 0 N · F2 N · F2 E2 × F2 ·D q0 −M ·E2 q0 −M ·E2

Table 5. Values for pi and qj for the nonintersection test mini(pi) >
maxj(qj) or maxi(pi) < minj(qj) for noncoplanar triangles.

The table for the potential separating axes for coplanar triangles is given below. The quantites in that table
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are ` = |N|; Ei × Fj = λijN for i = 0, 1 and j = 0, 1; and F0 × F1 = µN.

L p0 p1 p2 q0 q1 q2

N 0 0 0 N ·D q0 q0

N×E0 0 0 `2 N×E0 ·D q0 + λ00`
2 q0 + λ01`

2

N×E1 0 −`2 0 N×E1 ·D q0 + λ10`
2 q0 + λ11`

2

N×E2 0 −`2 −`2 N×E2 ·D q0 + (λ10 − λ00)`2 q0 + (λ11 − λ01)`2

N× F0 0 −λ00`2 −λ10`2 N× F0 ·D q0 q0 + µ`2

N× F1 0 −λ01`2 −λ11`2 N× F1 ·D q0 − µ`2 q0

N× F2 0 (λ00 − λ01)`2 (λ10 − λ11)`2 N× F2 ·D q0 − µ`2 q0 − µ`2

Table 6. Values for pi and qj for the nonintersection test mini(pi) >
maxj(qj) or maxi(pi) < minj(qj) for coplanar triangles.

4.2 Testing for Intersection of Noncoplanar Triangles

I consider only the noncoplanar case. For 3D collision systems, the objects may as well be formed from
triangles (rather than polygons of four or more sides). Moreover, the objects tend to have volume, so if two
objects are colliding and the contact occurs between two coplanar triangles, one from each object, an instant
later other triangles, (1) not in the same plane as the colliding triangles and (2) attached to the colliding
triangles, will transversely intersect. The collision system will detect those intersections as occurring between
noncoplanar triangles.

4.2.1 Stationary

Testing for intersection amounts to processing the various potential separating axes. Any quantities that
are needed multiple times are calculated only once and only when needed. The basic separating axis test
involves computing the triangle intervals [mini(pi),maxi(pi)] and [minj(qj),maxj(qj)] and then testing for
nonintersection by comparing the two intervals.

Axes N or M. One triangle projects to a single point p and the other projects to up to three points q,
q + d0, and q + d1. The nonintersection test is: min(q, q + d0, q + d1) > p or max(q, q + d0, q + d1) < p.
Pseudocode is

i f ( q > p )
{

i f ( q+d0 > p && q+d1 > p )
r e t u r n n o i n t e r s e c t i o n ;

}
e l s e i f ( q < p )
{

i f ( q+d0 < p && q+d1 < p )
r e t u r n n o i n t e r s e c t i o n ;

}
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Axes Ei×Fj . The triangles each project to exactly two points, the first with values 0 and p, the second with
values q and q+ d. The nonintersection test is: min(q, q+ d0, q+ d1) > max{0, p} or max(q, q+ d0, q+ d1) <
min{0, p}. Pseudocode is

i f ( p >= 0 )
{

i f ( ( q < 0 && q+d < 0) | | ( q > p && q+d > p ) )
r e t u r n n o i n t e r s e c t i o n ;

}
e l s e
{

i f ( ( q > 0 && q+d > 0) | | ( q < p && q+d < p ) )
r e t u r n n o i n t e r s e c t i o n ;

}

4.2.2 Constant Velocities

The code for stationary triangles needs to be modified slightly to handle the case of constant velocities. The
velocity of the first triangle is subtracted from the velocity of the second triangle so that all calculations
are done relative to a stationary first triangle. If the triangle velocities are V0 and V1, define the relative
velocity to be W = V1 −V0. Let the initial time and final time of the calculations be t = 0 and t = T .

Axes N or M. One triangle projects to a single p-value. The other triangle projects to three moving
q-values. Abstractly the problem is to show that min(q+ tw, q+ d0 + tw, q+ d1 + tw) > p or max(q+ tw, q+
d0 + tw, q + d1 + tw) < p for t ∈ [0, T ]. Pseudocode is

i f ( q > p )
{

i f ( d0 >= 0 )
{

i f ( d1 >= 0 )
{

min = q ;
i f ( min+T∗w > p )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

min = q+d1 ;
i f ( min > p && min+T∗w > p )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( d1 <= d0 )
{

min = q+d1 ;
i f ( min > p && min+T∗w > p )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

min = q+d0 ;
i f ( min > p && min+T∗w > p )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( q < p )
{

i f ( d0 <= 0 )
{

i f ( d1 <= 0 )
{

max = q ;
i f ( max+T∗w < p )
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r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = q+d1 ;
i f ( max < p && max+T∗w < p )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( d1 >= d0 )
{

max = q+d1 ;
i f ( max < p && max+T∗w < p )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = q+d0 ;
i f ( max < p && max+T∗w < p )

r e t u r n n o i n t e r s e c t i o n ;
}

}
}

Axes Ei×Fj . The first triangle projects to 0 and p. The second triangle projects to q+tw and q+d+tw for
t ∈ [0, T ]. The abstract problem is to show that min(q+tw, q+d+tw) > max(0, p) or max(q+tw, q+d+tw) <
min(0, p). Pseudocode is

i f ( p >= 0 )
{

i f ( q < 0 )
{

i f ( d <= 0 )
{

max = q ;
i f ( max+T∗w < 0 )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = q+d ;
i f ( max < 0 && max+T∗w < 0 )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( q > p )
{

i f ( d >= 0 )
{

min = q ;
i f ( min+T∗w > p )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

min = q+d ;
i f ( min > p && min+T∗w > p )

r e t u r n n o i n t e r s e c t i o n ;
}

}
}
e l s e
{

i f ( q > 0 )
{

i f ( d >= 0 )
{

min = q ;
i f ( min+T∗w > 0 )

r e t u r n n o i n t e r s e c t i o n ;
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}
e l s e
{

min = q+d ;
i f ( min > 0 && min+T∗w > 0 )

r e t u r n n o i n t e r s e c t i o n ;
}

}
e l s e i f ( q < p )
{

i f ( d <= 0 )
{

max = q ;
i f ( max+T∗w < p )

r e t u r n n o i n t e r s e c t i o n ;
}
e l s e
{

max = q+d ;
i f ( max < p && max+T∗w < p )

r e t u r n n o i n t e r s e c t i o n ;
}

}
}

4.3 Finding an Intersection of Noncoplanar Triangles

4.3.1 Finding the First Time of Intersection

Given that the two triangles do not intersect at time t = 0, but do intersect at some later time, a simple
modification of the algorithm for testing for an intersection provides the first time of intersection. The first
time is computed as the maximum time T > 0 for which there is at least one separating axis for any t ∈ [0, T ),
but for which no separating axis exists at time T . The idea is to test each potential separating axis and keep
track of the time at which the intervals of projection intersect for the first time. The largest such time is
the first time at which the triangles intersect. Also, it is important to keep track of which side each of the
intervals is relative to the other interval. Finally, knowing the separating axis associated with the maximum
time T allows us to reconstruct a point of intersection.

4.3.2 Finding a Point of Intersection

If T is the first time of intersection, the problem is to find a point P in the intersection of the two triangles.
Since the triangles are not coplanar, the only possibilities for the set of intersections is a single point or a
line segment. We need to solve

x0E0 + x1E1 = D + y0F0 + y1F1 (19)

where D = (B0 + TV1) − (A0 + TV0); for xi with 0 ≤ x0 ≤ 1, 0 ≤ x1 ≤ 1, x0 + x1 ≤ 1; and for yj with
0 ≤ y0 ≤ 1, 0 ≤ y1 ≤ 1, y0 + y1 ≤ 1.

Equation (19) can be solved for each variable individually by crossing then dotting equation with the proper
vectors. The solutions are

xi = 1−2i
|N|2 (N ·D×E1−i + (N · F0 ×E1−i)y0 + (N · F1 ×E1−i)y1)

yj = 1−2j
|M|2 (−M ·D× F1 + (M ·E0 × F1−j)x0 + (M ·E1 × F1−j)x1)
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for i = 0, 1 and j = 0, 1. Each of these equations defines the left-hand side as a linear function of the
variables in the right-hand side. The extreme values occur at the vertices of the triangular domain of
the function: (0, 0), (1, 0), and (0, 1). The extreme values of the equations define intervals bounding each
variable, xi ∈ [min(xi),max(xi)] and yj ∈ [min(yj),max(yj)]. The interval end points are

min(xi) = 1

|N|2 min ((1− 2i)φ0(i), (1− 2i)φ1(i), (1− 2i)φ2(i)) ,

max(xi) = 1

|N|2 max ((1− 2i)φ0(i), (1− 2i)φ1(i), (1− 2i)φ2(i)) ,

min(yj) = 1

|M|2 min ((1− 2j)ψ0(j), (1− 2j)ψ1(j), (1− 2j)ψ2(j)) ,

max(yj) = 1

|M|2 max ((1− 2j)ψ0(j), (1− 2j)ψ1(j), (1− 2j)ψ2(j)) ,

(20)

where φ0(i) = N ·D×E1−i, φ1 = φ0(i)+N ·F0×E1−i, φ2(i) = φ0(i)+N ·F1×E1−i, ψ0(j) = −M ·D×F1−j ,
ψ1(j) = ψ0(j) + M ·E0 × F1−j , and ψ2(j) = ψ0(j) + M ·E1 × F1−j .

In the following constructions of the first point of intersection, if any of the variables is not uniquely con-
strained by the derived equations, then such a variable can be selected from the intervals [min(xi),max(xi)]
or [min(yj),max(yj)] and subject to triangular domain constraints for that variable.

Last Separating Axis N. Dot equation (19) with N to obtain

0 = N ·D + y0N · F0 + y1N · F1.

The projection of the first triangle’s vertices leads to a single p value of 0. The projection of the second
triangle’s vertices leads to (possibly) distinct q values, {q0, q1, q2}, defined in Table 5. There are three cases
to consider.

The first case is q0 = mini(qi) in which case σ = 1 or q0 = maxi(qi) in which case σ = −1. Then N ·D = 0,
σN · F0 ≥ 0, σN · F1 ≥ 0, and

0 = (σN · F0)y0 + (σN · F1)y1. (21)

If N · F0 6= 0 and N · F1 6= 0, then y0 = 0 and y1 = 0 are required. If N · F0 = 0 and N · F1 6= 0,
equation (21) requires y1 = 0, but does not constraint y0. A point of intersection is provided by any
y0 ∈ [min(y0),max(y0)] ∩ [0, 1] where min(y0) and max(y0) are defined in equation (20). If N · F0 6= 0 and
N · F1 = 0, equation (21) requires y0 = 0, but does not constrain y1. A point of intersection is provided
by any y1 ∈ [min(y1),max(y1)] ∩ [0, 1] where min(y1) and max(y1) are defined in equation (20). If both
N · F0 = 0 and N · F1 = 0, then N and M must be parallel and the triangles must be coplanar. While the
assumption of this section is that the two vectors are not parallel, numerical error might generate this case.
Discussion of intersection of coplanar triangles occurs later in this document.

The second case is q1 = mini(qi) in which case σ = 1 or q1 = maxi(qi) in which case σ = −1. Then
N ·D = −N · F0, σN · F0 ≤ 0, σ(N · F1 −N · F0) ≥ 0, and

0 = (−σN · F0)(1− y0 − y1) + [σ(N · F1 −N · F0)]y1. (22)

If N · F0 6= 0 and N · F1 6= N · F0, then y0 + y1 = 1 and y1 = 0 are required, Therefore, y0 = 1 and
y1 = 0. If N · F0 = 0 and N · F1 6= N · F0, equation (22) requires y1 = 0, but does not constrain y0.
In this case y0 ∈ [min(y0),max(y0)] ∩ [0, 1] where min(y0) and max(y0) are defined in equation (20). If
N · F0 6= 0 and N · F1 = N · F0, equation (22) requires y0 + y1 = 1, but does not constrain y1. In this case
y1 ∈ [min(y1),max(y1)] ∩ [0, 1] where min(y1) and max(y1) are defined in equation (20). Given a choice for
y1, set y0 = 1−y1. If both N ·F0 = 0 and N ·F1 = N ·F0, then N and M must be parallel and the triangles
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must be coplanar. As before, the discussion of intersection of coplanar triangles is postponed until later in
this document.

The third case is q2 = mini(qi) in which case σ = 1 or q2 = maxi(qi) in which case σ = −1. Then
N ·D = −N · F1, σ(N · F0 −N · F1) ≥ 0, σN · F1 ≤ 0, and

0 = [σ(N · F0 −N · F1)]y0 + (−σN · F1)(1− y0 − y1). (23)

If N · F0 6= N · F1 and N · F1 6= 0, then y0 = 0 and y0 + y1 = 1 are required. Therefore, y0 = 0 and y1 = 1.
If N ·F0 = N ·F1 and N ·F1 6= 0, equation (23) requires y0 + y1 = 1, but does not constrain y0. In this case
y0 ∈ [min(y0),max(y0)] ∩ [0, 1] where min(y0) and max(y0) are defined in equation (20). Given a choice for
y0, set y1 = 1− y0. If N ·F0 6= N ·F1 and N ·F1 = 0, equation (23) requires y0 = 0, but does not constrain
y1. In this case y1 ∈ [min(y1),max(y1)] ∩ [0, 1] where min(y1) and max(y1) are defined in equation (20). If
both N · F0 = N · F1 and N · F1 = 0, then N and M must be parallel and the triangles must be coplanar.
As before, the discussion of intersection of coplanar triangles is postponed until later in this document.

Last Separating Axis M. Dot equation (19) with M to obtain

x0M ·E0 + x1M ·E1 = M ·D.

The projection of the first triangle’s vertices leads to (possibly) distinct p values {p0, p1, p2}. The projection
of the second triangle’s vertices leads to a single q value, q0, all defined in Table 5. There are three cases to
consider.

The first case is p0 = mini(pi) in which case σ = −1 or p0 = maxi(pi) in which case σ = 1. Then M ·D = 0,
σM ·E0 ≤ 0, σM ·E1 ≤ 0, and

(σM ·E0)x0 + (σM ·E1)x1 = 0. (24)

If M · E0 6= 0 and M · E1 6= 0, then x0 = 0 and x1 = 0 are required. If M · E0 = 0 and M · E1 6= 0,
equation (24) requires x1 = 0, but does not constrain x0. A point of intersection is provided by any
x0 ∈ [min(x0),max(x0)] ∩ [0, 1] where min(x0) and max(x0) are defined in equation (20). If M ·E0 6= 0 and
M · E1 = 0, equation (24) requires x0 = 0, but does not constrain x1. A point of intersection is provided
by any x1 ∈ [min(x1),max(x1)] ∩ [0, 1] where min(x1) and max(x1) are defined in equation (20). If both
M ·E0 = 0 and M ·E1 = 0, then N and M must be parallel and the triangles must be coplanar. While the
assumption of this section is that the two vectors are not parallel, numerical error might generate this case.
Discussion of intersection of coplanar triangles occurs later in this document.

The second case is p1 = mini(pi) in which case σ = −1 or p1 = maxi(pi) in which case σ = 1. Then
M ·D = M ·E0, σM ·E0 ≥ 0, σ(M ·E1 −M ·E0) ≤ 0, and

0 = (−σM ·E0)(1− x0 − x1) + [σ(M ·E1 −M ·E0)]x1. (25)

If M · E0 6= 0 and M · E1 6= M · E0, then x0 + x1 = 1 and x1 = 0 are required. Therefore, x0 = 1 and
x1 = 0. If M · E0 = 0 and M · E1 6= M · E0, equation (25) requires x1 = 0, but does not constrain x0.
In this case x0 ∈ [min(x0),max(x0)] ∩ [0, 1] where min(x0) and max(x0) are defined in equation (20). If
M ·E0 6= 0 and M ·E1 = M ·E0, equation (25) requires x0 + x1 = 1, but does not constrain x1. In this case
x1 ∈ [min(x1),max(x1)]∩ [0, 1] where min(x1) and max(x1) are defined in equation (20). Given a choice for
x1, set x0 = 1 − x1. If both M · E0 = 0 and M · E1 = M · E0, then N and M must be parallel and the
triangles must be coplanar. As before, the discussion of intersection of coplanar triangles is postponed until
later in this document.

The third case is p2 = mini(pi) in which case σ = −1 or p2 = maxi(pi) in which case σ = 1. Then
M ·D = M ·E1, σ(M ·E0 −M ·E1) ≤ 0, σM ·E1 ≥ 0, and

0 = [σ(M ·E1 −M ·E0)]x0 + (σM ·E1)(1− x0 − x1). (26)
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If M · E0 6= M · E1 and M · E1 6= 0, then x0 = 0 and x0 + x1 = 1 are required. Therefore, x0 = 0 and
x1 = 1. If M ·E0 = M ·E1 and M ·E1 6= 0, equation (25) requires x0 + x1 = 1, but does not constrain x0.
In this case x0 ∈ [min(x0),max(x0)]∩ [0, 1] where min(x0) and max(x0) are defined in equation (20). Given
a choice for x0, set x1 = 1 − x0. If M · E0 6= M · E1 and M · E1 = 0, equation (25) requires x0 = 0, but
does not constrain x1. In this case x1 ∈ [min(x1),max(x1)] ∩ [0, 1] where min(x1) and max(x1) are defined
in equation (20). If both M ·E0 = M ·E1 and M ·E1 = 0, then N and M must be parallel and the triangles
must be coplanar. As before, the discussion of intersection of coplanar triangles is postponed until later in
this document.

Last Separating Axis Ei × Fj . Let (i0, i1, i2) and (j0, j1, j2) be permutations of (0, 1, 2) in the set
{(0, 1, 2), (1, 0, 2), (2, 1, 0)}. The functions α, β, γ, and δ are the same used in the section on finding inter-
sections between OBBs and triangles.

Dot equation (19) with Ei0 × Fj0 to obtain

(E0 ·Ei0 × Fj0)x0 + (E1 ·Ei0 × Fj0)x1 = D ·Ei0 × Fj0 + (F0 ·Ei0 × Fj0)y0 + (F1 ·Ei0 × Fj0)y1.

Using the various identities mentioned earlier, the equation reduces to

α(i0)(N · Fj0)x0 + γ(i0)(N · Fj0)x1 = D ·Ei0 × Fj0 − α(j0)(M ·Ei0)y0 − γ(j0)(M ·Ei0)y1. (27)

The projection of the first triangle’s vertices leads to two distinct p values, p0 = 0 and p1 = δ(i0)N · Fj0 .
The projection of the second triangle’s vertices leads to two distinct q values, q0 = D · Ei0 × Fj0 and
q1 = q0 − δ(j0)M · Ei0}. There are four cases to consider depending on which of the projection values are
minima or maxima. In each case I derive the solutions when the intersection point is unique. Nonuniqueness
is discussed after the four cases.

The four cases each require two additional constraints on the variables. Dotting equation (19) with M and
N yields equations

M ·E0x0 + M ·E1x1 = M ·D

N · F0y0 + N · F1y1 = −N ·D.
(28)

The first case is min(q) = q0 and max(p) = 0 in which case σ = 1 or max(q) = q0 and min(p) = 0 in which
case σ = −1. Then q0 = 0, σδ(i0)N · Fj0 ≤ 0, and σδ(j0)M ·Ei0 ≤ 0. Equation (27) is equivalent to

0 = [−σδ(i0)N · Fj0 ][α(i0)x0 + β(i0)x1] + [−σδ(j0)M ·Ei0 ][α(j0)y0 + β(j0)y1].

If N · Fj0 6= 0 and M · Ei0 6= 0, then α(i0)x0 + β(i0)x1 = 0 and α(j0)y0 + β(j0)y1 = 0 are required. These
two constraints and equations (28) uniquely determine x0, x1, y0, and y1.

The second case is min(q) = q0 and max(p) = δ(i0)N · Fj0 in which case σ = 1 or max(q) = q0 and
min(p) = δ(i0)N·Fj0 in which case σ = −1. Then q0 = δ(i0)N·Fj0 , σδ(i0)N·Fj0 ≥ 0, and σδ(j0)M·Ei0 ≤ 0.
Equation (27) is equivalent to

0 = [σδ(i0)N · Fj0 ][1− α(i0)x0 − β(i0)x1] + [−σδ(j0)M ·Ei0 ][α(j0)y0 + β(j0)y1].

If N · Fj0 6= 0 and M · Ei0 6= 0, then α(i0)x0 + β(i0)x1 = 1 and α(j0)y0 + β(j0)y1 = 0 are required. These
two constraints and equations (28) uniquely determine x0, x1, y0, and y1.

The third case is min(q) = q0−δ(j0)M·Ei0 and max(p) = 0 in which case σ = 1 or max(q) = q0−δ(j0)M·Ei0

and min(p) = 0 in which case σ = −1. Then q0 = δ(j0)M · Ei0 , σδ(i0)N · Fj0 ≤ 0, and σδ(j0)M · Ei0 ≥ 0.
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Equation (27) is equivalent to

0 = [−σδ(i0)N · Fj0 ][α(i0)x0 + β(i0)x1] + [σδ(j0)M ·Ei0 ][1− α(j0)y0 − β(j0)y1].

If N · Fj0 6= 0 and M · Ei0 6= 0, then α(i0)x0 + β(i0)x1 = 0 and α(j0)y0 + β(j0)y1 = 1 are required. These
two constraints and equations (28) uniquely determine x0, x1, y0, and y1.

The fourth case is min(q) = q0 − δ(j0)M · Ei0 and max(p) = δ(i0)N · Fj0 in which case σ = 1 or max(q) =
q0 − δ(j0)M · Ei0 and min(p) = δ(i0)N · Fj0 in which case σ = −1. Then q0 = δ(i0)N · Fj0 + δ(j0)M · Ei0 ,
σδ(i0)N · Fj0 ≥ 0, and σδ(j0)M ·Ei0 ≥ 0. Equation (27) is equivalent to

0 = [σδ(i0)N · Fj0 ][1− α(i0)x0 − β(i0)x1] + [σδ(j0)M ·Ei0 ][1− α(j0)y0 − β(j0)y1].

If N · Fj0 6= 0 and M · Ei0 6= 0, then α(i0)x0 + β(i0)x1 = 1 and α(j0)y0 + β(j0)y1 = 1 are required. These
two constraints and equations (28) uniquely determine x0, x1, y0, and y1.

The coefficients needed to produce the unique points of intersection are summarized in the following tables.

L coefficients

N y0 = 0, y1 = 0, σq0 = mink(σqk)

y0 = 1, y1 = 0, σq1 = mink(σqk)

y0 = 0, y1 = 1, σq2 = mink(σqk)

M x0 = 0, x1 = 0, σp0 = mink(σpk)

x0 = 1, x1 = 0, σp1 = mink(σpk)

x0 = 0, x1 = 1, σp2 = mink(σpk)

E0 × Fj x1 = 0, x0 = M ·D/M ·E0, 0 = maxk(σpk)

x1 = 1, x0 = 0, 0 = mink(σpk)

E1 × Fj x0 = 0, x1 = M ·D/M ·E1, 0 = maxk(σpk)

x0 = 1, x1 = 0, 0 = mink(σpk)

E2 × Fj x0 = 0, x1 = 0, 0 = maxk(σpk)

x0 = (M ·E1 −M ·D)/M ·E2, 0 = mink(σpk)

Table 7. Coefficients for unique points of TRI-TRI intersection.

5 Processing of Moving Objects

Consider a rigid, moving object with a central point K(t) and a frame field F (t), a 3 × 3 rotation matrix
whose columns represent a coordinate system with origin K(t), where t ∈ [0, T ]. The frame field does not
necessarily have to be the Frenet frame for the curve traversed by the central point. The path followed by
any other point X0 is X(t) = K(t) + F (t)F (0)T(X0 −K(0)). If G0 is a frame field for X0, then the frame
field for X(t) is G(t) = F (t)F (0)TG0.
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In particular, the path and orientation of each triangle in the mesh representing the object is derivable from
the path and orientation of the central point of the object. The path of an OBB center and the axes of the
OBB are similarly derivable. The tests for nonintersection of OBB-OBB, triangle-OBB, and triangle-triangle
for two rigid, moving objects are equivalent to showing that the minimum of a function of time with domain
[0, T ] is positive. For example, the nonintersection test of OBB-OBB is of the form R(t)−R0(t)−R1(t) > 0
for t ∈ [0, T ].

Computing the minimum of a function can be an expensive operation, especially in the context of a dynamic
collision detection system that is used in a real-time environment. Rather than minimize the given function
f(t) for t ∈ [0, T ], approximate f by a piecewise linear function by computing N ≥ 2 samples ti = i∗T/(N−1)
and fi = f(ti) for 0 ≤ i ≤ N − 1. On each subinterval [ti, ti+1] the central point of the object is assumed
to have constant velocity V = K(ti+1) − K(ti). The nonintersection tests on the subinterval and with
the specified constant velocity are exactly those derived in the previous sections of this document. The
application can select N as desired, the choice probably dependent on frame rate (or number of cycles to
spare per frame for the collision system).

Of particular interest is the situation where the object motion is defined by the system of differential equations

dX

dt
= V + W× (X−K0)

where K0 is the initial location for the central point of the object, V is a constant tangential velocity, and
W is a constant angular velocity. The length of V is the constant tangential speed and the length of W is
the constant angular speed. The solution to the differential equation for initial condition X(0) = X0 is

X(t) = K0 + tV +R(t,W)(X0 −K0)

where R(t,W) is a rotation matrix about the axis K0 + tW. The central path is K(t) = K0 + tV. The
difference of the two paths X(t) and K(t) is

X(t)−K(t) = R(t,W)(X0 −K0).

The initial frame field F (0) has colums of the form X0 −K0, so the frame field at other times is F (t) =
R(t,W)F (0).

Rather than compute the closed form for F (t) which requires evaluation of trigonometric functions, it is
better to numerically integrate the system of differential equations to obtain the sample positions. That is,
solve dF/dt = SF where S is the skew symmetric matrix defined by the linear operation W × X = SX.
Euler’s method is certainly the easies to apply, but nothing prevents you from using a higher-order method
such as Runge-Kutta. Regardless of numerical integrator, it is necessary to take the iterate representing
F (t) and use Gram-Schmidt orthonormalization to guarantee that you have a rotation matrix to work with.

6 Constructing an Oriented Bounding Box Tree

Given a triangular mesh consisting of a collection of vertices and a connectivity list, the basic approach to
constructing an OBB tree is recursive. An OBB is computed to contain the initial triangular mesh. The
mesh is split ino two submeshes, the algorithm possibly using information about the OBB to determine how
to split the mesh. If a submesh contains at least two triangles, then the process is repeated on that submesh.
If a submesh has exactly one triangle, no OBB is constructed, but the triangle is considered to be at a leaf
node of the tree.
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The OBB nodes themselves must store various information to aid in collision detection. I assume that the
trimesh represents a rigid body. Dynamically morphed objects are problematic in that OBB trees would
need to be recomputed during runtime, an expensive operation. While there are many ways to organize the
data, the simplest is to require each OBB node to store a pointer to the rigid body object, an OBB, pointers
to the two child OBB nodes, and an index to a triangle.

The pointer to the object is used to query the object about motion information. For example, if the object
velocity is a function of time, an OBB node may need to query the object to determine at a specific time
what the velocity is. The pointers to the children are both not null for interior OBB nodes and both null
for leaf OBB nodes. The index to a triangle is only used at OBB leaf nodes. This index is used in querying
the object to get the actual triangle vertex data that is needed to compute triangle-triangle intersections.

The tree generation algorithm also allows for building less than a full tree. An application can specify a
threshold on the number of triangles for an OBB leaf node. The full tree has a single triangle per leaf node.
However, if an application specifies at least two triangles per leaf node, the splitting algorithm will be applied
during construction of an OBB node only if that node has more than two triangles in its mesh. The number
is heuristic in that an OBB node with three triangles is allowed to be split. The child with two triangles is
no longer subdivided. The other child has a single triangle.

6.1 Generating an OBB for a Trimesh

A variety of methods can be used for computing an OBB for a triangular mesh. In real-time applications,
these methods are applied in a preprocessing phase, so their execution times are not typically an issue. The
three algorithms discussed are: minimum volume OBB, OBB based on distribution of mesh points, and OBB
based on distribution of mesh triangles. The last type of OBB is what is described in [1].

6.1.1 Minimum Volume OBB

Ideally this provides the best fit of a mesh in the sense that the OBB requires the minimum volume of space
of all the possible OBBs that can fit the mesh. Whether or not this is the best practical choice I leave up to
the implementor.

Given a collection of points Xj for 0 ≤ j < n, an OBB that fits the points can be constructed for each
choice of coordinate axes Ai, i = 0, 1, 2. The points are projected onto the axes X0 + sAi, the values being
ρij = Ai · (Xj −X0) for all j. Define αi = minj(ρij), βi = maxj(ρij), and γi = (αi + βi)/2. The center of
the smallest volume OBB with specified axes is

C = X0 +

2∑
i=0

γiAi.

The extents of the OBB are ai = (βi − αi)/2.

Each set of coordinate axes can be represented as the columns of rotation matrices. Each rotation matrix
is generated by a unit-length vector U and an angle θ ∈ [−, 2π]. The mapping from rotation matrices to
coordinate axes is of course not one-to-one. However, the volume of the OBBs can be viewed as a function
V : S2 × [0, 2π] → [0,∞) where S2 is the unit sphere. The volume is V (U, θ) =

∏2
i=0(βi − αi). This

function is continuous on its compact domain, so from calculus it must attain its minimum on that domain.
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Therefore, there exists an axis U0 and an angle θ0 for which V (U0, θ0) ≤ V (U, θ) for all axes U and all
angles θ.

The construction of U0 and θ0 can be implemented as a numerical minimization using techniques that do
not require derivatives. A good choice is Powell’s direction set method, [3]. The rate of convergence to the
minimum depends on initial guess for axis and angle. The algorithm discussed next provides a reasonable
initial guess for the minimizer.

6.1.2 OBB from Points

An OBB can be constructed by fitting the mesh points Xj for 0 ≤ j < n with an anisotropic Gaussian
distribution. The center of the OBB is the mean of the points,

C =
1

n

n∑
j=0

Xj .

The axes of the OBB are selected as unit-length eigenvectors of the covariance matrix

M =
1

n

n−1∑
j=0

(Xj −C)(Xj −C)T

where T indicates transpose. If Ai are unit-length eigenvectors, the extents along those axes are ai =
maxj |Ai · (Xj −C)|.

A minor variation that leads to a slightly better fit is to compute just the eigenvectors of the covariance
matrix and compute the intervals of projection as in the case of building a minimum volume OBB. The
center of the OBB is computed the same way as in the minimum volume algorithm.

The main problem with this approach is that the box orientation can be heavily influenced by mesh points
that are interior to the convex hull of the points. As in the algorithm for minimum volume OBB construction,
the box orientation should depend only on the convex hull of the mesh points. The solution is to first apply
a convex hull algorithm, then process only those points in the covariance matrix.

6.1.3 OBB from Triangles

The fit of an OBB to the convex hull of the mesh points given previously still has problems with sampling.
The mesh points on the convex hull may be irregularly distributed so that a small, dense collection of points
can unfairly affect the orientation of the bounding box. This effect can be minimized by using a continuous
formulation of the covariance matrix.

Suppose there are ` triangles. If the ith triangle has vertices V0,i, V1,i, and Vi,2, then the triangle and
its interior are represented by Xi(s, t) = V0,i + s(V1,i −V0,i) + t(V2,i −V0,i) for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1,
and s + t ≤ 1. Let mi = |(V1,i −V0,i) × (V2,i −V0,i)|/2 be the area of the triangle. Define the weights

wi = mi/
∑`−1

i=0 mi. The mean point of the convex hull is

C = 2
`

∑`−1
i=0 wi

∫ 1

0

∫ 1−t
0

Xi(s, t) ds dt

= 1
3`

∑`−1
i=0 wi

(∑2
j=0 Vj,i

)
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and the covariance matrix of the convex hull is

M = 2
`

∑`−1
i=0 wi

∫ 1

0

∫ 1−t
0

(Xi(s, t)−C)(Xi(s, t)−C)T ds dt

= 1
12`

∑`−1
i=0 wi

(∑2
j=0

∑2
k=0(Vj,i −C)(Vk,i −C)T

)
.

If Ai are unit-length eigenvectors, the extents along those axes are ai = maxj |Ai · (Xj − C)| where the
Xj are the vertices. As in the section on fitting points with a Gaussian distribution, a variation allows
adjustment of C once the axes Ai are known.

6.2 Splitting a Trimesh

Given a triangular mesh with corresponding oriented bounding box, the mesh can be split into two submeshes.
The idea is to split the OBB by a plane orthgonal to the longest axis of the box, then partition the triangles
based on which side of the splitting plane their centers lie. There are many heuristics for location of splitting
plane, but I present only two.

The first algorithm uses the splitting plane orthogonal to the longest axis and passing through the center of
the OBB. Because of variations in triangle size, this algorithm may not produce a balanced tree. Worse is
that it may not provide a subdivision in that all the triangle centers occur on the same side of the plane. If
the longest axis does not partition the triangles, the next longest axis can be used. If in turn this does not
partition the triangles, then the last axis is used. If all three axes fail to partition the triangles, then some
other criterion for splitting must be used.

The second algorithm uses the splitting plane orthogonal to the longest axis and passing through that point
corresponding to the median value of the projection of the triangle centers onto the longest axis. This
guarantees that the tree is balanced, a desirable trait since it keeps the height of the tree small compared to
the number of triangles represented by the tree.

7 A Simple Dynamic Collision Detection System

There are many choices for testing for collisions between two OBB trees. I present one simple method
that implements a dual recursion on the two OBB trees and compares OBBs and triangles for collisions.
Effectively an OBB of one tree is compared against an OBB of the other tree. If the two OBBs intersect,
then the children of the second OBB are compared against the current OBB of the first tree.

The algorithms assume a function bool HasObb (ObbTree node) that returns true if and only if the node
has an associated OBB. It also assumes a function

boo l HasCh i l d r en (ObbTree node , i n t depth )
{

r e t u r n ( E x i s t s ( node . L c h i l d ) && E x i s t s ( node . Rch i l d ) && depth != 0 ) ;
}

Having children is necessary but not sufficient for this function to return true. The test on depth supports
limiting the depth of traversal. The application specifes a positive depth to limit the traversal. To get a
full traversal, the application specifies the depth to be a negative number. The depth is decremented for
each recursive call of TestCollisions, so in the case of an initial positive depth, any visited node for which
current depth value is zero is considered a leaf node. For an initial negative depth, the test for children is
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unaffected by the subsequent depth values. The semantics of HasChildren precludes the calls to HasObb

being replaced by calls to HasChildren.

7.1 Testing for Collision

The method TestIntersection calls the appropriate intersection routine based on whether or not the tree
node is interior or leaf. The returned value is true if and only if the corresponding OBBs or triangles
intersect during the specified time interval. Motion parameters are maintained by the object whose pointer
is stored in the OBB nodes and can be accessed within the intersection calls.

boo l T e s t I n t e r s e c t i o n ( f l o a t dt , ObbTree node0 , ObbTree node1 )
{

i f ( HasObb ( node0 ) )
{

i f ( HasObb ( node1 ) )
r e t u r n ObbObbInte r sect ( dt , node0 .Obb , node1 . Obb ) ;

e l s e
r e tu rn ObbT r i I n t e r s e c t ( dt , node0 .Obb , node1 . T r i ) ;

}
e l s e
{

i f ( HasObb ( node1 ) )
r e t u r n Tr iObb I n t e r s e c t ( dt , node0 . Tr i , node1 . Obb ) ;

e l s e
r e tu rn T r i T r i I n t e r s e c t ( dt , node0 . Tr i , node1 . T r i ) ;

}
}

The values depth0 and depth1, when passed to the TestCollision for the root nodes of the OBB trees,
are the application-specified maximum depths of traversal for the OBB trees. The returned value for
TestCollision is true if and only if the two subtrees that are rooted at the input nodes do intersect.

boo l T e s t C o l l i s i o n ( f l o a t dt , ObbTree node0 , i n t depth0 , ObbTree node1 , i n t depth1 )
{

i f ( ! T e s t I n t e r s e c t i o n ( dt , node0 , node1 ) )
r e t u r n f a l s e ;

i f ( HasCh i l d r en ( node0 , depth0 ) )
{

i f ( T e s t C o l l i s i o n ( dt , node0 . L ch i l d , depth0−1,node1 , depth1 ) )
r e t u r n t rue ;

i f ( T e s t C o l l i s i o n ( dt , node0 . Rch i l d , depth0−1,node1 , depth1 ) )
r e t u r n t rue ;

i f ( HasCh i l d r en ( node1 , depth1 ) )
{

i f ( T e s t C o l l i s i o n ( dt , node0 , depth0 , node1 . L ch i l d , depth1−1) )
r e t u r n t rue ;

i f ( T e s t C o l l i s i o n ( dt , node0 , depth0 , node1 . Rch i l d , depth1−1) )
r e t u r n t rue ;

}
r e t u r n f a l s e ;

}

i f ( HasCh i l d r en ( node1 , depth1 ) )
{

i f ( T e s t C o l l i s i o n ( dt , node0 , depth0 , node1 . L ch i l d , depth1−1) )
r e t u r n t rue ;

i f ( T e s t C o l l i s i o n ( dt , node0 , depth0 , node1 . Rch i l d , depth1−1) )
r e t u r n t rue ;

r e t u r n f a l s e ;
}

r e t u r n t rue ;
}

37



The last line of the function returns true since both node0 and node1 are at the end of the recursive calls and
the call to TestIntersection already has shown that the corresponding OBBs or triangles are intersecting.
Also note that the semantics of this routine say that if the traversal is limited by an application-specified
depth, an intersection between two OBBs or between an OBB and a triangle is counted as a collision, even
if the underlying trimesh geometry does not intersect. This illustrates once again the trade-off between
accuracy and compute time.

7.2 Finding Collision Points

The method FindIntersection calls the appropriate intersection routine based on whether or not the tree
node is interior or leaf. A returned value is true if the collision system is to continue searching other
collisions. The value does not indicate that there is an intersection point between the OBBs, OBB and
triangle, or triangles.

Any intersection points found by FindIntersection when applied to OBBs or triangles are passed onto the
application via a callback mechanism that is associated with the object whose pointer is stored by the OBB
node. Normal vectors are also passed to the callback. A normal for an OBB is computed as if the OBB were
an ellipsoid, thus providing a smoothed normal vector field for the box. The return value of the callback is
boolean and indicates whether or not the collision system should continue searching for collisions. This gives
the application the opportunity to terminate the search after one or more collisions rather than processing
all possible collision points.

boo l F i n d I n t e r s e c t i o n ( f l o a t dt , ObbTree node0 , ObbTree node1 )
{

// f i r s t t ime , l o c a t i o n , and norma l s o f i n t e r s e c t i o n
f l o a t t ime ;
Po int3 i n t e r s e c t , normal0 , normal1 ;

i f ( HasObb ( node0 ) )
{

i f ( HasObb ( node1 ) )
{

FindObbObb ( dt , node0 .Obb , node1 .Obb , t ime , i n t e r s e c t ) ;
node1 . Obb . GetNormal ( i n t e r s e c t ) ;

}
e l s e
{

FindObbTri ( dt , node0 .Obb , node1 . Tr i , t ime , i n t e r s e c t ) ;
node1 . T r i . GetNormal ( i n t e r s e c t ) ;

}

normal0 = node0 .Obb . GetNormal ( i n t e r s e c t ) ;
}
e l s e
{

i f ( HasObb ( node1 ) )
{

FindTriObb ( dt , node0 . Tr i , node1 .Obb , t ime , i n t e r s e c t ) ;
node1 . Obb . GetNormal ( i n t e r s e c t ) ;

}
e l s e
{

F i n dT r iT r i ( dt , node0 . Tr i , node1 . Tr i , t ime , i n t e r s e c t ) ;
node1 . T r i . GetNormal ( i n t e r s e c t ) ;

}

normal0 = node0 . T r i . GetNormal ( i n t e r s e c t ) ;
}

}

// p r o v i d e the a p p l i c a t i o n wi th the c o l l i s i o n i n f o rma t i o n
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boo l bCont inue0 ;
i f ( node0 . Object . Ca l l b a c k )
{

bCont inue0 = node0 . Object . Ca l l b a c k ( node1 . Object , t ime , i n t e r s e c t ,
normal0 , normal1 ) ;

}
e l s e
{

bCont inue0 = t rue ;
}

boo l bCont inue1 ;
i f ( node1 . Object . Ca l l b a c k )
{

bCont inue1 = node1 . Object . Ca l l b a c k ( node0 . Object , t ime , i n t e r s e c t ,
normal1 , normal0 ) ;

}
e l s e
{

bCont inue1 = t rue ;
}

r e t u r n bCont inue0 && bCont inue1 ;

Pseudocode for finding a point of intersection is given below. The return value is true if and only if the
collision system should continue searching for collisions.

boo l F i n d C o l l i s i o n ( f l o a t dt , ObbTree node0 , i n t depth0 , ObbTree node1 , i n t depth1 )
{

i f ( ! T e s t I n t e r s e c t i o n ( dt , node0 , node1 ) )
r e t u r n t rue ;

i f ( HasCh i l d r en ( node0 , depth0 ) )
{

i f ( ! F i n d C o l l i s i o n ( dt , node0 . L ch i l d , depth0−1,node1 , depth1 ) )
r e t u r n f a l s e ;

i f ( ! F i n d C o l l i s i o n ( dt , node0 . Rch i l d , depth0−1,node1 , depth1 ) )
r e t u r n f a l s e ;

i f ( HasCh i l d r en ( node1 , depth1 ) )
{

i f ( ! F i n d C o l l i s i o n ( dt , node0 , depth0 , node1 . L ch i l d , depth1−1) )
r e t u r n f a l s e ;

i f ( ! F i n d C o l l i s i o n ( dt , node0 , depth0 , node1 . Rch i l d , depth1−1) )
r e t u r n f a l s e ;

}
r e t u r n t rue ;

}

i f ( HasCh i l d r en ( node1 , depth1 ) )
{

i f ( ! F i n d C o l l i s i o n ( dt , node0 , depth0 , node1 . L ch i l d , depth1−1) )
r e t u r n f a l s e ;

i f ( ! F i n d C o l l i s i o n ( dt , node0 , depth0 , node1 . Rch i l d , depth1−1) )
r e t u r n f a l s e ;

r e t u r n t rue ;
}

// At t h i s p o i n t we know th e r e i s an i n t e r s e c t i o n . Compute the
// i n t e r s e c t i o n and make t h i s i n f o rma t i o n a v a i l a b l e to the a p p l i c a t i o n
// v i a the o b j e c t c a l l b a c k mechanism .

r e t u r n F i n d I n t e r s e c t i o n ( dt , pkTree1 ) ;
}
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