Documentation Updates for Geometric Tools

November 29, 2018. Intersection of a Box and a Cone or Cone Frustum
The previous title of the document is Intersection of an Oriented Box and a Cone. That document described a test-intersection query for an oriented box and an infinite cone. The ideas can be extended to apply to aligned boxes and cone frusta. The document was modified to describe the extension. Both the intersection queries in the GTEngine code and the sample test application were modified.

November 28, 2018. Intersection of a Line and a Box
This is a new document that describes the test-intersection and find-intersection queries between a linear component (line, ray, segment) and a box (aligned, oriented). Some of this material is in 3D Game Engine Design, 2nd edition, but the new document includes many more details and ties the documentation to the GTEngine online source code.

October 30, 2018. Least Squares Fitting of Data by Linear or Quadratic Structures
Expanded the discussion on choosing an initial guess for cone fitting. An implementation of the algorithm is now in the GTEngine code and there is a sample application (FitCone) that illustrates the code.

October 28, 2018. Representing a Circle or a Sphere with NURBS
Fixed several typographical errors involving control points. Added more details about the Bernstein polynomials for the triangle patch that represents an eighth sphere. These details are for derivative computations in newly added classes in GTEngine, NURBSCircle and NURBSSphere, that encapsulate the details of curve and surface construction. Two corresponding sample applications were added to GTEngine. Screen captures are provided in the PDF.

October 9, 2018. A Robust Eigensolver for 3x3 Symmetric Matrices
The paragraph after equation (9) in Section 5.2 had “… are the rows of the matrix $B - \beta_0 I.$” The matrix should be $A - \alpha_0 I$. The code listing of Section 6 for the noniterative algorithm has code that computes the eigenvalues eval[0], eval[1] and eval[2]. The code after that had a bug that I fixed in the online source code but failed to update the PDF. The block starting with comment The index $i_0$ corresponds… should be deleted. The if-else statement in the block after that, which has comment Compute the eigenvectors., has been updated. Finally, I updated the comments in the main block (online code and code in PDF) of the solver to use variable names consistent with those of the PDF. More comments were included to explain the code (which was somewhat cryptic).

October 8, 2018. Least Squares Fitting of Data by Linear or Quadratic Structures
Added a subsection to the section on fitting a cone to points that shows how to choose the initial cone vertex and cone axis direction for the iterative nonlinear least-squares algorithm.

October 3, 2018. Intersection of Moving Sphere and Box
This is a new document that describes how to compute the first time of contact and point of contact between a sphere and a box (considered as solids), each moving with constant linear velocity. An implementation is available at the website and a sample application was added to demonstrate (GeometricTools/GTEngine/Samples/Mathematics/MovingSphereBox).

October 3, 2018. Intersection of Moving Circle and Rectangle
Minor changes to make the presentation comparable with 3D extension of moving sphere-box intersections.

September 28, 2018. Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid
The function GetRoot in the pseudocode of Listing 4 had the initialization $s0 = z1 - 1$ that should have been
\[ s_0 = z_2 - 1 \]. This appears to have been a cut-and-paste error from Listing 2. The actual source code in GteDistPointHyperellipsoid.h has the correct initialization.

**September 18, 2018. Intersection of Moving Circle and Rectangle**
The pseudocode for InRegion4 had variable result that was intended to be the pair contactTime and contactPoint.

**September 16, 2018. Least Squares Fitting of Data by Linear or Quadratic Structures**
This is a major revision of the document. Some new algorithms were added for fitting circles, spheres, ellipses, ellipsoids, and cones. The descriptions have been expanded and pseudocode has been included.

**September 16, 2018. Fitting 3D Data with a Torus**
This is a new document describing several algorithms for fitting 3D points with a torus. The source code implementation already exists in the current GT Engine distribution.

**September 11, 2018. A Fast and Accurate Estimate for SLERP**
This is a new document that is a revision of a paper I published in 2011 in the Journal of Graphics, GPU, and Game Tools (later called simply the Journal of Graphics Tools). The error analysis of the paper was incorrect. The new document fixes that, using the correct error-balancing approach I had intended in the original paper.

**August 10, 2018. Least Squares Fitting of Segments by Line or Plane**
This is a new document that describes a simple extension of least-squares fitting of points by line or plane to least-squares fitting of line segments by line or plane.

**August 10, 2018. Least Squares Fitting of Data**
Fixed some typographical errors.

**August 1, 2018. Intersection of Moving Circle and Rectangle**
Added a description of how to reduce the amount of code by sharing based on geometric symmetry.

**July 31, 2018. Intersection of Moving Circle and Rectangle**
This is a new document that describes how to compute the first time of contact and point of contact between a circle and a rectangle (considered as solids), each moving with constant linear velocity. An implementation is available at the website and a sample application was added to demonstrate (GeometricTools/GTEngine/Samples/Mathematics/MovingCircleRectangle).

**June 8, 2018. Numerical Integration**
Fixed the typographical error in equation (2), replacing 1/2 by 1/4. Added equation numbers to the displayed equations.

**June 7, 2018. B-Spline Interpolation on Lattices**
This is a major rewrite of the original document that was written as part of the draft for my *Ridges in Image and Data Analysis* book. The source code implementation in Wild Magic 5 is also quite old. The GT Engine source code is a complete rewrite with a sample application to illustrate the interpolators. That application is used as a unit test for the code.

**June 5, 2018. Distance from Line to Rectangle in 3D**
Fixed three typographical errors.

**May 2, 2018. Robust Computation of Distance Between Line Segments**
Fixed a typographical error in the pseudocode for region 8.

**April 28, 2018. Distance from Line to Rectangle in 3D**
Fixed two typographical errors.

**April 22, 2018. Distance from Line to Rectangle in 3D**
Added a section for computing the distance between a rectangle and either a ray or a segment.

**April 7, 2018. $C^1$ Quadratic Interpolation of Meshes**
This document is a major rewrite of the previous version. That version was missing a lot of mathematical details that are important to understand the algorithm. I replaced the section about interpolation for general meshes with information about how to generate surface parameters (texture coordinates) for a general mesh and then apply the Cendes-Wong algorithm to each positional component of the mesh.

**March 31, 2018. Distance from Line to Rectangle in 3D**
This is a new document that describes a robust and efficient algorithm for computing the distance between a line and a rectangle in 3D, including computing a pair of closest points—one on the line and one on the rectangle (possibly the same point if the line intersects the rectangle). The document is intended to replace the discussion in Section 10.9.2 of *Geometric Tools for Computer Graphics*, a section that is full of annoying errors. See the book corrections page for details about the errors.

**January 21, 2017. Thin-Plate Splines**
The constants for the Green’s function $G(r)$ of equation (28) were listed as $a_0$ and $a_1$ but the text after the equation mentioned $a_0$ and $a_1$. The $b_1$ needed to be $a_1$, but there might still be some confusion because I used $a_0$ and $a_1$ in the coefficients for the function for thin-plate splines without smoothing. I modified equation (28) to use $\alpha$ as the constant and specified the values based on dimension $n$. I had also made statements about absorbing the constant (now $\alpha$) into the linear solver for the thin-plate splines—with or without smoothing. Without smoothing, this is not a problem. With smoothing, the solution as stated was not correct; it needed a division of $\lambda$ by $\alpha$. To avoid this, I removed the comments about absorbing the constants. I also added some more details about the construction of the linear system for thin-plate splines with smoothing.

**December 12, 2017. Least Squares Fitting of Data**
A term in equation (17) was missing a transpose operator.

**December 10, 2017. Convex Quadratic Programming**
Added a new document that shows how to solve convex quadratic programming problems formulated as linear complementarity problems (LCPs). Many standard geometric queries can be formulated as convex quadratic programming problems, including distance and closest-point queries and including intersection testing. When using floating-point arithmetic, LCPs can suffer from rounding errors—as can any attempt to solve geometric queries when the algorithm requires cases to handle non-parallel or parallel situations. The new document discusses how to use rational arithmetic in order to obtain an exact solution. When normalized vectors are part of the algorithm, one can avoid the rounding and approximation errors introduced during normalization by using real quadratic fields.

**December 9, 2017. GTEngine: Arbitrary Precision Arithmetic**
Fixed some typographical errors. Added new sections to discuss how to obtain exact results when square roots are involved, although the output is produced by a mixture of rational arithmetic and symbolic manipulation. The exact results use real quadratic fields, and the approach is useful when solving convex quadratic programming problems as linear complementarity programs (such as computing the distance between standard geometric solids).

**October 29, 2017. Distance Between Point and Triangle in 3D**
Added code listings for all 7 regions. Fixed some inconsistencies with variable names in the code listings.
Polished some of the discussion and added website links to the actual C++ source code.

October 15, 2017. Interpolation of Rigid Motions in 3D
Added a new document that describes how to compute the geodesic path connecting two rigid transformations involving rotations and translations.

October 11, 2017. In all the PDF documentation, replaced the copyright notices and All Rights Reserved by the Creative Commons Attribution 4.0 International License.

April 16, 2017. Intersection of Cylinders
Modified the pseudocode to include all the parameters in the calls to the functions $F(t,*)$ and $FDer(t,*)$.

April 2, 2017. GTEngine: Arbitrary Precision Arithmetic
Fixed the title (wrong title due to a cut-and-paste error). Modified the paragraph that mentioned overflow occurs for values in the interval $[0, 2^{-149})$, which should be fully open $(0, 2^{-149})$.

November 26, 2016. The Area of Intersecting Ellipses
Fixed broken hyperlinks.

November 25, 2016. Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid
Fixed a typographical error in the pseudocode of Listing 4. The distance term in the block of code where $y_0$, $y_1$, and $y_2$ are positive with $g$ not equal to zero was missing the squared $x_2-y_2$ term.

November 20, 2016. Least Squares Fitting of Data
Fixed several typographical errors and added equation numbers. New sections were added for fitting circles and spheres to points by estimating coefficients for quadratic equations. New section for fitting a $k$-flat to points in $n$ dimensions. Fixed broken links (because of a problem with spaces in arguments to the \href command). Added new links to source code implementations of the algorithms.

September 21, 2016. Derivative Approximation by Finite Differences
Fixed a couple of typographical errors and added clarification about how equation (17) is derived.

September 20, 2016. A Robust Eigensolver for 3x3 Symmetric Matrices
Added the discussion about a noniterative eigensolver for $3 \times 3$ real-valued symmetric matrices.

September 9, 2016. Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid
Fixed some typographical errors in pseudocode. The terms $ey_0$ and $ey_1$ were replaced by the correct terms $numer_0$ and $numer_1$.

July 23, 2016. A Robust Eigensolver for 2x2 Symmetric Matrices
A new document that describes the robust algorithm for computing the eigenvalues and eigenvectors of a $2 \times 2$ symmetric matrix. The source code is in GteSymmetricEigensolver2x2.h but is also listed in this document.

May 31, 2016. Akima Interpolation for Nonuniform 1D Data
The pseudocode listed header files for GTEngine, but the body of main had code style and references to Wild Magic 5 code. Also, the file GteIntpAkimaNonuniform1.h is referenced in the pseudocode but was missing from the GTEngine distribution. It is now in the distribution.

This is a major revision of the document. The new version shows how to estimate vertex tangents and vertex normals for a parameterized mesh (or mesh with texture coordinates) at each vertex using the entire set of triangles that share the vertex. The algorithm is useful for constructing the vertex normals and tangents whose interpolated values are used in a pixel shader for tangent-space normal mapping. An implementation
of these algorithms will be posted with the update GTEngine version 2.6. This construction may be used as a replacement for the one-triangle (biased) estimate in the now obsolete document *Estimating a Tangent Vector for Bump Mapping* (*BumpMapping.pdf*). The bump mapping document has been removed, but the link to it is now redirected to the new version of this document.

**April 24, 2016. Approximating an Ellipse by Circular Arcs**
Removed the references to Wild Magic 4 code and added pseudocode for the actual fitting algorithm. After posting the revision, a minor change was added in the pseudocode (changed an occurrence of circles[] to centers[]).

**April 7, 2016. Mesh Differential Geometry**
Fixed a typographical error in the $T(s)$ equation on page 4 [$\theta(t)$ needed to be $\theta(s)$].

**April 2, 2016. Constructing a Cycle Basis for a Planar Graph**
At the request of a reader, the document was rewritten again, this time eliminating the discussion of the min-heap speed up that was interleaved in the algorithm. The discussion is easier to follow and it is clearer now how the nesting of cycles is handled. More pseudocode was added. The GTEngine source code (*GteMinimalCycleBasis.h*) was rewritten to match the document. Without the min-heap support, the performance is still reasonable. Running on an Intel i7-4790 CPU (3.6 GHz), a graph with 32K vertices and 32K edges required 12 seconds to complete, including the validation that the graph is planar. And this run used exact rational arithmetic.

**March 14, 2016. Converting Between Coordinate Systems**
Fixed a broken link to source code and a minor typographical error.

**March 7, 2016. Constructing a Cycle Basis for a Planar Graph**
This is a complete rewrite of the document *The Minimal Cycle Basis for a Planar Graph*. The PDF name is the same but the title is new (using correct terminology). The Wild Magic 5 sample application was ported, but testing showed that the implementation was incorrect. The GTEngine implementation has been tested more heavily, and code was added to test whether the input graph is planar (requires exact arithmetic).

**December 3, 2015. Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid**
Fixed broken links to source code.

**November 1, 2015. Thin Plate Splines**
Provided more details for the construction of the Green’s functions. Fixed some typographical errors and incorrect equation references. Added comments about the unboundedness of the Green’s functions for dimensions 4 and larger.

**September 20, 2015. Intersection of Rectangle and Ellipse**
Fixed the pseudocode regarding intersections and overlaps.

**September 20, 2015. Intersection of Box and Ellipse**
Fixed the pseudocode regarding intersections and overlaps.

**August 16, 2015. Triangulation by Ear Clipping**
Fixed several typographical errors and added some clarification to the constructions.

**August 1, 2015. Fitting 3D Data with a Cylinder**
Fixed several typographical errors and added some clarification to the constructions.

**July 25, 2015. Minimum-Volume Box Containing a Set of Points**
A new document describing how to compute the minimum-volume box that contains a set of 3D points.
June 23, 2015. **Intersection of Ellipses**
Fixed some typographical errors.

June 23, 2015. **Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid**
Fixed some typographical errors.

May 31, 2015. **Distance to Circles in 3D**
Major revision of the content of the documents for computing the distance from a 3D circle to a point, line, or circle. The documents have been combined into a single new document. The source code for the distance queries was updated to match the document, and unit tests were added internally to verify the results. The old documents have been removed, but the links to them are now redirected to the new document.

- **Distance Between Point and Circle or Disk in 3D** ([DistancePoint3Circle3.pdf](#))
- **Distance Between Line and Circle or Disk in 3D** ([DistanceLine3Circle3.pdf](#))
- **Distance Between Two Circles in 3D** ([DistanceCircle3Circle3.pdf](#))
- **Distance Between Circle and a Disk in 3D** ([DistanceCircle3Disk3.pdf](#))

May 17, 2015. **Minimum-Area Rectangle Containing a Set of Points**
Major revision of the document. The previous version described only the exhaustive $O(n^2)$ algorithm for computing the minimum-area rectangle bounding a convex polygon. The revised version describes the $O(n)$ rotating calipers algorithm. The GTEngine source code was modified to match the document, and it now runs nearly twice as fast as the previous code (that did not do an efficient job of maintaining the supporting vertex information).

May 13, 2015. **An Approximation for the Inverse Square Root Function**
Removed the document *Fast and Accurate Inverse Square Root* ([FastInverseSqrt.pdf](#)). Enough is enough for wondering where the magic number came from (see the Wikipedia page for details about fast inverse square root). Added the following document for approximating the inverse square root function using a minimax approach. The algorithm is of interest because it establishes a mathematical pattern that can be used for other function approximations. Its application to inverse square root is of interest only for hardware that does not have support for the operation (current generation floating-point units do have support).

April 25, 2015.
Removed documents that were not accessed frequently, are not particularly important, need significant rewriting, or have been rewritten and the old links redirected to the new files.

- **Bisection in 1D, 2D, and 3D** ([Bisection.pdf](#))
- **Compressed Unit Vectors** ([CompressedUnitVectors.pdf](#))
- **CORDIC Methods** ([CordicMethods.pdf](#))
- **A Collinearity Test Independent of Point Order** ([CollinearityTest.pdf](#))
- **Command Line Parsing** ([CommandLineParsing.pdf](#))
- **Distance from Point to a General Quadratic Curve or a General Quadric Surface** ([DistancePointToQuadratic.pdf](#))
April 25, 2015. Derivative Approximations by Finite Differences
Slight clean-up of the document and a fix to several equation references.

April 24, 2015. Representing a Circle or a Sphere with NURBS
Expanded the document to include more NURBS representations. In particular, there is a degree-3 representation for a full circle that uses an internal repeated knot to splice together two half-circles. There is a tensor product NURBS surface, degree-3 in each parameter, that uses the same idea of an internal repeated knot to splice together two hemispheres.

April 23, 2015. Converting Between Coordinate Systems
Major rewrite of the document on converting between coordinate systems. The original version of this document was entitled Conversion of Left-Handed Coordinates to Right-Handed Coordinates and was written to handle the conversion of LightWave coordinate systems (left-handed) to Wild Magic coordinate systems (right-handed). The process was specific to LightWave’s choice of representing rotations using Euler angles, and the discussion included how to deal with cameras, lights, and transformation hierarchies. The new version is the general process of converting between any two coordinate systems. An implementation is provided that automates the process.

Added significant improvements to the document for the test-intersection and find-intersection queries for ellipses and to the document for computing the area of intersection of ellipses. The source code implementation for the test-intersection and find-intersection queries were updated to use the details described in the document. Implemented the query for area of intersection of ellipses.

April 4, 2015. Low-Degree Polynomial Roots
Rewrote the document for computing the roots of low-degree polynomials. The new document goes into great detail about the classification of roots (real or non-real, multiplicities) and how to use exact rational arithmetic to correctly classify the roots in a program. This leads to more robust root finding using the closed-form expressions for polynomials of degrees 2, 3, and 4. The motivation for the revisions was based on trying to compute intersections of ellipses, and the nonrobust root finder for quartic polynomials created many problems numerically.
April 2, 2015. **GTEngine: Arbitrary Precision Arithmetic**
Fixed the algorithm description for conversion from a BSRational object to a floating-point type. When the round-up step causes a carry-out, so to speak, from the trailing significand, a block of code was executed to set w to 1 and adjust p-q. This was incorrect and, in fact, not necessary because w is not used as the trailing significand in the conversion.

March 29, 2015. **Intersection of Cylinders**
Added some definitions for variables used in the equations in the section *Separation Tests Involving Other Directions*. Converted the verbatim pseudocode to use `lstlisting` format.

March 10, 2015. **Parallel Projection of an Ellipse, Perspective Projection of an Ellipse**
Fixed typographical errors and added some clarification.

January 26, 2015. **Robust Computation of Distance Between Line Segments**
Fixed an error in the description for region 2 and added some clarification about the sign tests for the partial derivatives of $R(s,t)$.

January 5, 2015. **Least Squares Fitting of Data**
Added comments about fitting lines $y = ax + b$ and planes $z = ax + by + c$, mentioning that the numerical problem for solving the linear equations in the coefficients is ill conditioned unless you compute the averages of the data points first and subtract those averages from the data points before solving the linear system.

January 4, 2015. **Intersection of a Box and a Cone**
A new document describing the test-intersection query for boxes and cones.

December 28, 2014. **Intersection of a Line and a Cone**
Modified the document on line-cone intersection to give greater detail. The source code was updated accordingly.

December 12, 2014. **Distance from a Point to an Ellipse, an Ellipsoid, or a Hyperellipsoid**
The document was rewritten to add more details about the algorithm. The source code was modified accordingly.

December 7, 2014. **A Robust Eigensolver for 3x3 Symmetric Matrices**
A new document describing a variation of an iterative eigensolver for symmetric 3x3 matrices. A source code implementation and a sample application are provided. The GTEngine code now uses only the iterative solvers for symmetric matrices; we also have an iterative implementation for the singular value decomposition (SVD).

November 27, 2014. **Fitting 3D Data with a Cylinder**
The pseudocode for computing the fitted cylinder subtracted the input point average for numerically stable computations. The returned center needed the average added to it.

November 25, 2014. **GTEngine: Arbitrary Precision Arithmetic**
Overhauled the arbitrary precision library to improve the performance and to improve readability. The unsigned integer arithmetic was factored out of `BSNumber` into two classes, one for arbitrary precision with storage of type `std::vector` and one for user-selected fixed precision with storage of type `std::array`. Both classes share code for the arithmetic logic unit. Many computations are now performed in-place to avoid expensive allocation, deallocation, and memory copies. A new PDF is posted that greatly expands on the library compared to the discussion in the *GPGPU Programming for Games and Science* book. The document serves as a discussion about the design of the library and a reference for how to use it. Examples are provided for using `BSPrecision` to determine the template parameter of `UInteger<N>` that represents the maximum
number of bits required to compute the exact results for a sequence of expressions.

**November 6, 2014. Distance Between Two Line Segments in 3D**
 Implemented a robust algorithm for computing the distance between line segments in any dimension. Revised the PDF for computing distance between segments in 3D to describe the new algorithm. A GPU implementation is available in the sample application.

**October 20, 2014. Platonic Solids (parameters, vertices, mesh connectivity)**
The volume equation for a dodecahedron was in error.

**August 15, 2014. The Area of Intersecting Ellipses**
Fixed a typographical error in Equation (14). Replaced the LaTeX verbatim commands with \lstlisting commands for more readable pseudocode.