Distance Between Point and Line, Ray, or Line Segment

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: March 2, 1999
Last Modified: March 1, 2008

Contents

1 Discussion 2
1 Discussion

The following construction applies in any dimension, not just in 3D. Let the test point be \(P \). A line is parameterized as \(L(t) = B + tM \) where \(B \) is a point on the line, \(M \) is the line direction, and \(t \in \mathbb{R} \). A ray is of the same form but with restriction \(t \geq 0 \). A line segment is restricted even further with \(t \in [0, 1] \). The end points of the line segment are \(B \) and \(B + M \).

The closest point on the line to \(P \) is the projection of \(P \) onto the line, \(Q = B + t_0M \), where

\[
t_0 = \frac{M \cdot (P - B)}{M \cdot M}.
\]

The distance from \(P \) to the line is

\[
D = |P - (B + t_0M)|.
\]

If \(t_0 \leq 0 \), then the closest point on the ray to \(P \) is \(B \). For \(t_0 > 0 \), the projection \(B + t_0M \) is the closest point. The distance from \(P \) to the ray is

\[
D = \begin{cases}
|P - B|, & t_0 \leq 0 \\
|P - (B + t_0M)|, & t_0 > 0
\end{cases}
\]

Finally, if \(t_0 > 1 \), then the closest point on the line segment to \(P \) is \(B + M \). The distance from \(P \) to the line segment is

\[
D = \begin{cases}
|P - B|, & t_0 \leq 0 \\
|P - (B + t_0M)|, & 0 < t_0 < 1 \\
|P - (B + M)|, & t_0 \geq 1
\end{cases}
\]

The division by \(M \cdot M \) is the most expensive algebraic operation. The implementation should defer the division as late as possible.