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1 Introduction

This document describes an algorithm for computing the distance from a point to an ellipse (2D), from a
point to an ellipsoid (3D), and from a point to a hyperellipsoid (any dimension).

2 Distance from a Point to an Ellipse

A general ellipse in 2D is represented by a center point C, an orthonormal set of axis-direction vectors
{U0,U1}, and associated extents ei with e0 ≥ e1 > 0. The ellipse points are

P = C + x0U0 + x1U1 (1)

where (
x0
e0

)2

+

(
x1
e1

)2

= 1 (2)

If e0 = e1, then the ellipse is a circle with center C and radius e0. The orthonormality of the axis directions
and Equation (1) imply xi = Ui · (P−C). Substituting this into Equation (2) we obtain

(P−C)
T
M (P−C) = 1 (3)

where M = RDRT, R is an orthogonal matrix whose columns are U0 and U1, and D is a diagonal matrix
whose diagonal entries are 1/e20 and 1/e21.

The problem is to compute the distance from a point Q to the ellipse. It is sufficient to solve this problem
in the coordinate system of the ellipse; that is, represent Q = C + y0U0 + y1U1. The distance from Q to
the closest point P on the ellipse as defined by Equation (3) is the same as the distance from Y = (y0, y1)
to the closest point X = (x0, x1) on the standard ellipse of Equation (2).

We may additionally use symmetry to simplify the construction. It is sufficient to consider the case when
(y0, y1) is in the first quadrant: y0 ≥ 0 and y1 ≥ 0. For example, if (y0, y1) is in the second quadrant where
y0 < 0, and if (x0, x1) is the closest point which must be in the second quadrant, then (−y0, y1) is in the first
quadrant and (−x0, x1) is the closest ellipse point which must be in the first quadrant. If we transform the
query point into the first quadrant by sign changes on the components, we can construct the closest point
in the first quadrant, and then undo the sign changes to obtain the result in the original quadrant.

2.1 The Closest Point’s Normal is Directed Toward the Query Point

A parameterization of the standard ellipse is X(θ) = (e0 cos θ, e1 sin θ) for θ ∈ [0, 2π). The squared distance
from Y to any point on the ellipse is

F (θ) = |X(θ)−Y|2 (4)

This is a nonnegative, periodic, and differentiable function; it must have a global minimum occurring at an
angle for which the first-order derivative is zero,

F ′(θ) = 2(X(θ)−Y) ·X′(θ) = 0 (5)

For the derivative to be zero, the vectors (X(θ)−Y) and X′(θ) must be perpendicular. The vector X′(θ) is
tangent to the ellipse at X(θ). This implies that the vector from Y to the closest ellipse point X is normal to
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the curve at X. Using the implicit form of the ellipse, namely, G(x0, x1) = (x0/e0)2 + (x1/e1)2 − 1 = 0, half
the gradient of G(x0, x1) is a normal vector to the ellipse at (x0, x1), so (y0, y1)− (x0, x1) = t∇G(x0, x1)/2 =
t(x0/e

2
0, x1/e

2
1) for some scalar t, or

y0 = x0

(
1 +

t

e20

)
, y1 = x1

(
1 +

t

e21

)
(6)

If (y0, y1) is outside the ellipse, it is necessary that t > 0. If (y0, y1) is inside the ellipse, it is necessary that
t < 0. If (y0, y1) is already on the ellipse, then t = 0 and the distance is zero.

2.2 The Case of a Circle

If e0 = e1, then the ellipse is a circle. The origin (0, 0) has infinitely many closest circle points (all of
them), but clearly the distance from the origin to the circle is e0. The closest circle point to a point
(y0, y1) 6= (0, 0) is (x0, x1) = e0(y0, y1)/|(y0, y1)|. Equation (6) is consistent with this, because it implies
(x0, x1) = (e20/(t+ e20))(y0, y1) for some t; that is, (x0, x1) is parallel to (y0, y1) and must have length e0. It
is easily shown that t = −e20 + e0

√
y20 + y21 .

For the remainder of Section 2, we assume e0 > e1 and that all analysis is restricted to the first quadrant.

2.3 The Query Point is the Origin

Let y0 = 0 and y1 = 0. Equation (6) becomes 0 = x0(1 + t/e20) and 0 = x1(1 + t/e21). We have four cases to
consider.

� If x0 = 0 and x1 = 0, the point is not on the ellipse; this case may be discarded.

� If x0 = 0 and x1 6= 0, then t = −e21 and the only constraint on x1 is that (x0, x1) be a point on the
ellipse, which means x1 = e1. The candidate closest point is (0, e1).

� If x0 6= 0 and x1 = 0, then t = −e20 and the only constraint on x0 is that (x0, x1) be a point on the
ellipse, which means x0 = e0. The candidate closest point is (e0, 0).

� If x0 6= 0 and x1 6= 0, then t = −e20 and t = −e21, which is a contradiction because e0 6= e1; this case
may be discarded.

The only candidate ellipse points in the first quadrant closest to (0, 0) are (e0, 0) and (0, e1). Of these two,
(0, e1) is closer. In summary: The closest ellipse point in the first quadrant to (0, 0) is the point (0, e1) with
distance d = e1.

2.4 The Query Point is on the Vertical Axis

Let y0 = 0 and y1 > 0. Equation (6) becomes 0 = x0(1 + t/e20) and y1 = x1(1 + t/e21). We have two cases to
consider.

� If x0 = 0, then for (x0, x1) to be on the ellipse, we need x1 = e1. The candidate closest point is (0, e1).
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� If x0 6= 0, then t = −e20 and y1 = x1(1 − e20/e21) ≤ 0, where the last inequality is a consequence of
x1 ≥ 0 and e0 > e1. This contradicts the assumption that y1 > 0.

The only candidate ellipse point is (0, e1). In summary: The closest in the first quadrant to (0, y1) for y1 > 0
is (0, e1) with distance d = |y1 − e1|.

2.5 The Query Point is on the Horizontal Axis

Let y0 > 0 and y1 = 0. Equation (6) becomes y0 = x0(1 + t/e20) and 0 = x1(1 + t/e21). We have two subcases
to consider.

� If x1 = 0, then for (x0, x1) to be on the ellipse, we need x0 = e0. The candidate closest point is (e0, 0).
The squared distance to this candidate is

d20 = (y0 − e0)2 (7)

� If x1 6= 0, then t = −e21 and y0 = x0(1 − e21/e20). It follows that x0 = e20y0/(e
2
0 − e21) ≤ e0. The last

inequality is a consequence of (x0, x1) being on the ellipse. The implication is that y0 ≤ (e20− e21)/e0 <
e0. Notice that this limits the construction to points (y0, 0) inside the ellipse. For points (y0, 0) with
y0 ≥ (e20 − e21)/e0, which includes points inside and outside the ellipse, the closest point is necessarily
(e0, 0). When y0 ≤ (e20−e21)/e0, for (x0, x1) to be on the ellipse, we may solve for x1 = e1

√
1− (x0/e0)2.

The squared distance from the candidate (x0, x1) to (y0, 0) is

d21 = (x0 − y0)2 + x21 = e21

(
1− y20

e20 − e21

)
(8)

The two candidates are (e0, 0) and (x0, x1). We need to determine which of these is closer to (y0, 0). It may
be shown that

d20 − d21 =
(e0y0 + e21 − e20)2

e20 − e21
≥ 0 (9)

This implies that (x0, x1) is the closer point. In summary: The closest point in the first quadrant to (y0, 0)
for 0 < y0 < (e20 − e21)/e0 is (x0, x1) with x0 = e20y0/(e

2
0 − e21), x1 = e1

√
1− (x0/e0)2, and distance

d =
√

(x0 − y0)2 + x21 = e1
√

1− y20/(e20 − e21). The closest point to (y0, 0) for y0 ≥ e0 − e21/e0 is (e0, 0) with
distance d = |y0 − e0|.

2.6 The Query Point is Strictly in the First Quadrant

Let y0 > 0 and y1 > 0. Equation (6) has solution

x0 =
e20y0
t+ e20

, x1 =
e21y1
t+ e21

(10)

for some scalar t. We know that the closest point in the first quadrant requires x0 ≥ 0 and x1 ≥ 0, which
implies t > −e20 and t > −e21. Because e0 > e1, it is enough to analyze only those t-values for which t > −e21.
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Substitute Equation (10) in Equation (2) to obtain

F (t) =

(
e0y0
t+ e20

)2

+

(
e1y1
t+ e21

)2

− 1 = 0 (11)

The first equality defines the function F (t) with domain (−e21,∞). The candidates for the ellipse point
(x0, x1) closest to (y0, y1) are generated by the roots t to F (t) = 0.

The first-order and second-order derivatives of F are

F ′(t) = − 2e20y
2
0

(t+ e20)3
− 2e21y

2
1

(t+ e21)3
, F ′′(t) =

6e20y
2
0

(t+ e20)4
+

6e21y
2
1

(t+ e21)4
(12)

For t > −e21 we have the conditions F ′(t) < 0 and F ′′(t) > 0. Also observe that

lim
t→−e2+1

F (t) = +∞, lim
t→∞

F (t) = −1 (13)

The first expression is a one-sided limit where t approaches e21 through values larger than e21. We have shown
that F (t) is a strictly decreasing function for t ∈ (−e21,+∞) that is initially positive, then becomes negative.
Consequently it has a unique root on the specified domain. Figure 1 shows a typical graph of F (t).

Figure 1. A typical graph of F (t) for t > −e21. The unique root t̄ is shown.

The domain (−e21,∞) contains 0 and F (0) = (y0/e0)2 + (y1/e1)2 − 1. When (y0, y1) is inside the ellipse we
see that F (0) < 0 and t̄ < 0. When (y0, y1) is outside the ellipse we see that F (0) > 0 and t̄ > 0. When
(y0, y1) is on the ellipse we see that F (0) = 0 and t̄ = 0.

2.7 A Summary of the Mathematical Algorithm

Listing 1 summarizes the algorithm for computing the ellipse point (x0, x1) closest to the query point (y0, y1)
in the first quadrant and for computing the distance to the closest point. The preconditions are e0 ≥ e1 > 0,
y0 ≥ 0, and y1 ≥ 0.

Listing 1. Pseudocode for computing the closest ellipse point and distance to a query point. It is required
that e0 ≥ e1 > 0, y0 ≥ 0, and y1 ≥ 0.
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Rea l D i s t a n c e P o i n t E l l i p s e ( Rea l e0 , Rea l e1 , Rea l y0 , Rea l y1 , Rea l& x0 , Rea l& x1 )
{

Rea l d i s t a n c e ;
i f ( y1 > 0)
{

i f ( y0 > 0)
{

Compute the un ique r oo t t b a r o f F( t ) on (=e1*e1 , + i n f i n i t y ) ;
x0 = e0*e0*y0 /( t ba r + e0*e0 ) ;
x1 = e1*e1*y1 /( t ba r + e1*e1 ) ;
d i s t a n c e = s q r t ( ( x0 = y0 )* ( x0 = y0 ) + ( x1 = y1 )* ( x1 = y1 ) ) ;

}
e l s e // y0 == 0
{

x0 = 0 ;
x1 = e1 ;
d i s t a n c e = f ab s ( y1 = e1 ) ;

}
}
e l s e // y1 == 0
{

i f ( y0 < ( e0*e0 = e1*e1 ) / e0 )
{

x0 = e0*e0*y0 /( e0*e0 = e1*e1 ) ;
x1 = e1* s q r t (1 = ( x0/e0 )* ( x0/e0 ) ) ;
d i s t a n c e = s q r t ( ( x0 = y0 )* ( x0 = y0 ) + x1*x1 ) ;

}
e l s e
{

x0 = e0 ;
x1 = 0 ;
d i s t a n c e = f ab s ( y0 = e0 ) ;

}
}
r e t u r n d i s t a n c e ;

}

2.8 Robust Root Finders

Various methods are discussed for computing the unique root t̄ ∈ (−e21,+∞) of F (t). The first uses bisection
and is the most robust. The second uses Newton’s method, but is has numerical problems when y1 is nearly
zero. The third uses a conversion to a polynomial equation, but this approach has its own problems. The
conclusion is that bisection is the safest and most robust method to use.

2.8.1 Bisection Method

You may locate the unique root t̄ ∈ (−e21,∞) of F (t) using bisection. A finite-length bounding interval
[t0, t1] that contains t̄ is required. The minimum of the bounding interval may be chosen as

t0 = −e21 + e1y1 > −e21 (14)

The function value at that parameter is

F (t0) =

(
e0y0
t0 + e20

)2

> 0 (15)

Because t+ e20 > t+ e21, we can see that

F (t) =

(
e0y0
t+ e20

)2

+

(
e1y1
t+ e21

)2

− 1 <

(
e0y0
t+ e21

)2

+

(
e1y1
t+ e21

)2

− 1 =
e20y

2
0 + e21y

2
1

(t+ e21)2
− 1 (16)
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The right-hand side of this equation is negative for t ≥ t1, where

t1 = −e21 +
√
e20y

2
0 + e21y

2
1 (17)

that is, F (t) < 0 for t ≥ t1. In summary, a bounding interval for the root t̄ is [t0, t1], where t0 is defined by
Equation (14) and t1 is defined by Equation (17).

You may bisect until you reach your own stopping criterion, say, |t1 − t0| < ε for a specified small number
ε > 0. Our implementation bisects until F = 0 exactly as a floating-point number or until the midpoint
(t0 + t1)/2 is equal to an endpoint due to rounding. The maximum number of iterations is 149 for float

(32-bit numbers) or 1074 for double (64-bit numbers). Generally, the maximum number is

maxIterations = std::numeric limits<Real>::digits - std::numeric limits<Real>::min exponent; (18)

where Real is a floating-point type.

2.8.2 Newton’s Method

The condition F ′′(t) > 0 says that F is a convex function. Such functions are ideally suited for the application
of Newton’s Method for root finding. Given an initial guess t0, the iterates are

tn+1 = tn −
F (tn)

F ′(tn)
, n ≥ 0 (19)

It is important to choose an initial guess for which the method converges. Newton’s method has an intuitive
geometric appeal to it. The next value tn+1 is computed by determining where the tangent line to the graph
at (tn, F (tn)) intersects the t-axis. The intersection point is (tn+1, 0). If we choose an initial guess t0 < t̄,
the tangent line to (t0, F (t0)) intersects the t-axis at (t1, 0) where t0 < t1 < t̄. Figure 2 illustrates this.

Figure 2. An initial guess t0 to the left of t̄ guarantees t0 < t1 < t̄.

If we were instead to choose an initial guess t0 > t̄, the new iterate satisfies t1 < t̄, but potentially t1 < −e21
which is outside the domain of interest, namely t ∈ (−e21,∞). Figure 3 illustrates this.

Figure 3. An initial guess t0 to the right of t̄ guarantees t1 < t̄ but does not guarantee t1 > −e21.
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To avoid this potential problem, it is better to choose an initial guess to the left of the root. Any t0 > −e21
for which F (t0) > 0 will work. In particular, you can choose t0 = −e21 + e1y1, in which case F (t0) =
[e0y0/(e1y1 + e20 − e21)]2 > 0.

The stopping criterion for Newton’s Method typically involves testing the values F (tn) for closeness to zero.
For robustness, testing is recommended to determine whether progress is made in the domain; that is, if the
difference |tn+1 − tn| of consecutive iterates is sufficiently small, then the iteration terminates.

As mentioned previously, you need to be careful when using Newton’s Method. At first it is mathematically
comforting to have a convex function F (t) for t ∈ (−e21,∞), knowing that there is a unique root. However,
there are potential problems when y1 is nearly zero. When y0 > 0 and y1 > 0, Figure 4 shows typical graphs
of F (t).

Figure 4. Typical graphs of F (t) when y0 > 0 and y1 > 0.

The three possibilities are based on where (y0, y1) is located with respect to the evolute of the ellipse. Define
G(y0, y1) = (e0y0)2/3 +(e1y1)2/3− (e20−e21)2/3. The evolute is the level set defined by G(y0, y1) = 0. The left
image of Figure 4 corresponds to (y0, y1) outside the evolute, so G(y0, y1) > 0. The middle image corresponds
to (y0, y1) on the evolute itself, so G(y0, y1) = 0. The right image corresponds to (y0, y1) inside the evolute,
so G(y0, y1) < 0. You can generate the evolute equation by eliminating t from the simultaneous equations
F (t) = 0 and F ′(t) = 0.

Imagine choosing positive values of y1 closer and closer to zero. The vertical asymptotes at t = −e20 and
t = −e21 remain so, but the graph of F (t) near the asymptote t = −e21 changes: it begins to hug the vertical
asymptote. In the limiting sense as y1 approaches zero, the graph is illustrated by Figure 5.
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Figure 5. The limiting graph of F (t) when y0 > 0 and y1 → 0+. Notice that there is effectively a
discontinuity at t = −e21, and the largest root jumps from t̄ to t̂.

Just setting y1 = 0, we have F (t) = (e0y0/(t+ e20))2 − 1 and the largest root of F (t) is t̂ ∈ (−e20,−e21). As a
function of y1, the largest root of F (t) is discontinuous in the sense that

− e21 = lim
y1→0+

t̄(y1) 6= t̂ = −e20 + e0y0 (20)

Thus, the graph of F (t) has a topological change at y1 = 0, which can cause numerical problems with
Newton’s Method. For the initial guess t0 = −e21 + e1y1 when y1 > 0,

F ′(t0) = − 2e20y
2
0

(e1y1 + e20 − e21)3
− 2

e1y1
(21)

which is a negative number of large magnitude when y1 is nearly zero. The number can be so large that the
floating-point representation is infinite. The next iterate t1 = t0−F (t0)/F ′(t0) is computed in floating-point
arithmetic to be t0 because F (t0) > 0 as a floating-point number and F (t0)/F ′(t0) is zero as a floating-point
number. The algorithm makes no progress towards computing the root.

2.8.3 Conversion to a Polynomial Equation

An approach for ellipsoids—but applies to ellipses as well—is described in [1]. The roots of the following
quartic polynomial may be computed, leading to candidates for the closest ellipse point,

P (t) = (t+ e20)2(t+ e21)4F (t) = e20y
2
0(t+ e21)2 + e21y

2
1(t+ e20)2 − (t+ e20)2(t+ e21) (22)

When y1 > 0, the roots of P (t) are the same as those for F (t), and the largest root of P (t) is the same as
the largest root t̄ for F (t). However, when y1 = 0, P (t) has a double root at t = −e21 but F (t) does not have
a root at t = −e21.

The Graphics Gems IV article mentions that the largest root of P (t) is the one that corresponds to the
closest point. This is not true when y1 = 0, as mentioned in the previous paragraph. In this case, P (t) =
(t+ e21)2[e20y

2
0− (t+ e20)2]. The largest root is t̄ = −e21 and another root is t̂ = −e20 + e0y0, as shown in Figure

5. It is t̂ that determines the closest ellipse point, not t̄.
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The article also mentions that Newton’s Method may be used, starting with an initial guess greater than
the largest root. When (y0, y1) is inside the ellipse, then t̄ < 0 and so the initial guess is chosen to be t0 = 0.
When (y0, y1) is outside the ellipse, a geometric and algebraic argument is used to construct an initial guess
t0 = e0

√
y20 + y21 . No analysis is provided for the graph of P (t) at the largest root. In particular, there are

no guarantees that P (t) is convex at that root, so the convergence of the Newton iterates is not guaranteed.
Even so, when y1 = 0, the iterates might converge to the root t̄ = −e21, which is not the correct root that
determines the closest ellipse point.

Empirical evidence suggests that Newton’s Method applied to P (t) to find its largest root suffers from
numerical problems when y0 or y1 is nearly zero. For example, if y0 is positive and if y1 is a very small
positive number, then t̄ is the largest root of P (t). It is nearly a double root, which can cause problems with
Newton’s Method. Specifically, if a function G(t) has a double root at t̄, Newton’s Method must be slightly
modified to ti+1 = ti− 2G(ti)/G

′(ti). Generally, if G(t) has a root of multiplicity m, then Newton’s Method
should be ti+1 = ti −mG(ti)/G

′(ti).

And finally, the initial guess suggested in the Graphics Gems IV article is also quite large. From the discussion
of the bisection method, t1 = −e1 +

√
e20y

2
0 + e21y

2
1 is an estimate greater than the maximum root but smaller

than t0 = e0
√
y20 + y21 . To see this,

(t1 + e1)2 = e20y
2
0 + e21y

2
1 = t20 − (e20 − e21)y21 < t20 (23)

which implies t1 < t1 + e1 < t0.

2.9 A Robust Implementation

An implementation that uses the robust bisection method is described next. A change of variables helps
keep the magnitude of the numbers to a moderate size, s = t/e21. The query point components are also
scaled by the ellipse extents to keep the inputs on the order of 1 when the query is executed for points near
the ellipse, zi = yi/ei. Define the ratio of squared extents r0 = e20/e

2
1 > 1. The function F (t) is transformed

to

G(s) =

(
r0z0
s+ r0

)2

+

(
z1
s+ 1

)2

− 1 (24)

for s ∈ (−1,+∞). The root of G(s) = 0 is s̄ = t̄/e21 and it is in the interval [s0, s1], where s0 = −1 + z1 and
s1 = −1 +

√
r20z

2
0 + z21 .

Listing 2 is the robust implementation of the algorithm. The maximum number of iterations is provided by
Equation (18).
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Listing 2. Pseudocode for robustly computing the closest ellipse point and distance to a query point. It
is required that e0 ≥ e1 > 0, y0 ≥ 0, and y1 ≥ 0.

Rea l GetRoot ( Rea l r0 , Rea l z0 , Rea l z1 , Rea l g )
{

Rea l n0 = r0 *z0 ;
Rea l s0 = z1 = 1 , s1 = ( g < 0 ? 0 : RobustLength ( n0 , z1 ) = 1 ) ;
Rea l s = 0 ;
f o r ( i n t i = 0 ; i < max I t e r a t i o n s ; ++i )
{

s = ( s0 + s1 ) / 2 ;
i f ( s == s0 | | s == s1 ) { break ; }
Rea l r a t i o 0 = n0 /( s + r0 ) , r a t i o 1 = z1 /( s + 1 ) ;
g = Sqr ( r a t i o 0 ) + Sqr ( r a t i o 1 ) = 1 ;
i f ( g > 0) { s0 = s ; } e l s e i f ( g < 0) { s1 = s ; } e l s e { break ; }

}
r e t u r n s ;

}

Rea l D i s t a n c e P o i n t E l l i p s e ( Rea l e0 , Rea l e1 , Rea l y0 , Rea l y1 , Rea l& x0 , Rea l& x1 )
{

Rea l d i s t a n c e ;
i f ( y1 > 0)
{

i f ( y0 > 0)
{

Rea l z0 = y0/e0 , z1 = y1/e1 , g = Sqr ( z0 ) + Sqr ( z1 ) = 1 ;
i f ( g != 0)
{

Rea l r0 = Sqr ( e0/e1 ) , s ba r = GetRoot ( r0 , z0 , z1 , g ) ;
x0 = r0 *y0 /( sba r + r0 ) ; x1 = y1 /( sba r + 1 ) ;
d i s t a n c e = s q r t ( Sqr ( x0 = y0 ) + Sqr ( x1 = y1 ) ) ;

}
e l s e
{

x0 = y0 ; x1 = y1 ; d i s t a n c e = 0 ;
}

}
e l s e // y0 == 0
{

x0 = 0 ; x1 = e1 ; d i s t a n c e = f ab s ( y1 = e1 ) ;
}

}
e l s e // y1 == 0
{

Rea l numer0 = e0*y0 , denom0 = Sqr ( e0 ) = Sqr ( e1 ) ;
i f ( numer0 < denom0 )
{

Rea l xde0 = numer0/denom0 ;
x0 = e0*xde0 ; x1 = e1* s q r t (1 = xde0*xde0 ) ;
d i s t a n c e = s q r t ( Sqr ( x0 = y0 ) + Sqr ( x1 ) ) ;

}
e l s e
{

x0 = e0 ; x1 = 0 ; d i s t a n c e = f ab s ( y0 = e0 ) ;
}

}
r e t u r n d i s t a n c e ;

}

The function Sqr(t) simply returns t2. The function RobustLength(v0,v1) computes the length of the input
vector (v0, v1) by avoiding floating-point overflow that could occur normally when computing v20 + v21 . If
|v0| = max{|v0|, |v1|}, then

√
v20 + v21 = |v0|

√
1 + (v1/v0)2. If |v1| = max{|v0|, |v1|}, then

√
v20 + v21 =

|v1|
√

1 + (v0/v1)2.
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3 Distance from a Point to an Ellipsoid

A general ellipsoid in 3D is represented by a center point C, an orthonormal set of axis-direction vectors
{U0,U1,U2}, and associated extents ei with e0 ≥ e1 ≥ e2 > 0. The ellipsoid points are

P = C + x0U0 + x1U1 + x2U2 (25)

where (
x0
e0

)2

+

(
x1
e1

)2

+

(
x2
e2

)2

= 1 (26)

If e0 = e1 = e2, then the ellipsoid is a sphere with center C and radius e0. If e0 = e1 > e2, the ellipsoid is said
to be an oblate spheroid. If e0 > e1 = e2, the ellipsoid is said to be a prolate spheroid. The orthonormality
of the axis directions and Equation (25) imply xi = Ui · (P −C). Substituting this into Equation (26) we
obtain

(P−C)
T
M (P−C) = 1 (27)

where M = RDRT, R is an orthogonal matrix whose columns are U0, U1, and U2 and D is a diagonal
matrix whose diagonal entries are 1/e20, 1/e21, and 1/e22.

The problem is to compute the distance from a point Q to the ellipsoid. It is sufficient to solve this problem
in the coordinate system of the ellipsoid; that is, represent Q = C + y0U0 + y1U1 + y2U2. The distance
from Q to the closest point P on the ellipsoid as defined by Equation (25) is the same as the distance from
Y = (y0, y1, y2) to the closest point X = (x0, x1, x2) on the standard ellipsoid of Equation (26).

As in the 2D ellipse problem, we may additionally use symmetry to simplify the construction. It is sufficient
to consider the case when (y0, y1, y2) is in the first octant: y0 ≥ 0, y1 ≥ 0, and y2 ≥ 0.

3.1 The Closest Point’s Normal is Directed Toward the Query Point

A parameterization of the standard ellipsoid is X(θ, φ) = (e0 cos θ sinφ, e1 sin θ sinφ, e2 cosφ) for θ ∈ [0, 2π)
and φ ∈ [0, π]. The squared distance from Y to any point on the ellipsoid is

F (θ, φ) = |X(θ, φ)−Y|2 (28)

This is a nonnegative, doubly periodic, and differentiable function; it must have a global minimum occurring
at angles for which the first-order partial derivatives are zero,

∂F

∂θ
= 2(X(θ, φ)−Y) · ∂X

∂θ
= 0,

∂F

∂φ
= 2(X(θ, φ)−Y) · ∂X

∂φ
= 0 (29)

For the derivatives to be zero, the vector (X(θ, φ) − Y) must be perpendicular to the tangent vectors
∂X/∂θ and ∂X/∂φ. This implies that the vector from Y to the closest ellipsoid point X must be normal
to the surface at X. Using the implicit form of the ellipsoid, namely, G(x0, x1, x2) = (x0/e0)2 + (x1/e1)2 +
(x2/e2)2 − 1, half the gradient of G(x0, x1, x2) is a normal vector to the ellipsoid at (x0, x1, x2), so we have
(y0, y1, y2)− (x0, x1, x2) = t∇G(x0, x1, x2)/2 = t(x0/e

2
0, x1/e

2
1, x2/e

2
2) for some scalar t, or

y0 = x0

(
1 +

t

e20

)
, y1 = x1

(
1 +

t

e21

)
, y2 = x2

(
1 +

t

e22

)
(30)

If (y0, y1, y2) is outside the ellipsoid, it is necessary that t > 0. If (y0, y1, y2) is inside the ellipsoid, it is
necessary that t < 0. If (y0, y1, y2) is already on the ellipsoid, then t = 0 and the distance is zero.
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3.2 The Case of a Sphere

If e0 = e1 = e2, then the ellipsoid is a sphere. The origin (0, 0, 0) has infinitely many closest sphere
points (all of them), but clearly the distance from the origin to the sphere is e0. The closest sphere point
to (y0, y1, y2) 6= (0, 0, 0) is (x0, x1, x2) = e0(y0, y1, y2)/|(y0, y1, y2)|. Equation (30) is consistent with this,
because it implies (x0, x1, x2) = (e20/(t+e

2
0))(y0, y1, y2) for some t; that is, (x0, x1, x2) is parallel to (y0, y1, y2)

and must have length e0. It is easily shown that t = −e20 + e0
√
y20 + y21 + y22 .

3.3 The Case of an Oblate Spheroid

If e0 = e1 > e2, then the ellipsoid is an oblate spheroid. The standard ellipse equation reduces to (x20 +
x21)/e20 + x22/e

2
2 = 1, which is the equation of an ellipse in the (r, x2)-plane where r =

√
x20 + x21. An

implementation can make the reduction by mapping the query point (y0, y1, y2) to (
√
y20 + y21 , y2) and using

the point-ellipse algorithm discussed in Section 2.

3.4 The Case of a Prolate Spheroid

If e0 > e1 = e2, then the ellipsoid is a prolate spheroid. The standard ellipse equation reduces to x20/e
2
0+(x21+

x22/e
2
2 = 1, which is the equation of an ellipse in the (x0, r)-plane where r =

√
x21 + x22. An implementation

can make the reduction by mapping the query point (y0, y1, y2) to (y0,
√
y21 + y22 and using the point-ellipse

algorithm discussed in Section 2.

For the remainder of Section 3, we assume that e0 > e1 > e2 and that all analysis is restricted to the first
octant.

3.5 The Query Point is the Origin

Equation (30) becomes 0 = xi(1 + t/e2i ) for i = 0, 1, 2. The construction of candidate points is similar to
that shown in Section 2.3. There are eight subcases to consider. The subcase x0 = x1 = x2 = 0 is discarded
because the point is not on the ellipsoid. Any two subcases that require t = −e2i and t = −e2j with i 6= j are
contradictory because ei 6= ej ; there are four such subcases. The remaining three subcases lead to candidates
(e0, 0, 0), (0, e1, 0), and (0, 0, e2). Of these, (0, 0, e2) is closest to the origin. In summary: The closest ellipsoid
point in the first octant to (0, 0, 0) is (0, 0, e2) with distance d = e2.

3.6 The Query Point has y2 > 0

Equation (30) leads to y2 = x2(1 + t/e22). Because y2 > 0 and the search for closest point is in the first
octant, it must be that x2 > 0 and 1 + t/e22 > 0. We have four cases to consider depending on whether y0
or y1 are zero or positive.

� Let y0 = 0 and y1 = 0; then 0 = x0(1 + t/e20) and 0 = x1(1 + t/e21). If x0 > 0, then t = −e20 and
y2 = x2(1 − e20/e21) < 0. The last inequality is due to e0 > e1, but is a contradiction because y2 > 0.
Similarly, if x1 > 0, then t = −e21 and y2 = x2(1 − e21/e22) < 0, also a contradiction. It must be that
x0 = 0 and x1 = 0, so the closest ellipsoid point is (x0, x1, x2) = (0, 0, e2).
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� Let y0 > 0 and y1 = 0; then y0 = x0(1 + t/e20), in which case x0 > 0. We saw previously that y1 = 0
forces x1 = 0. This reduces the 3D point-ellipsoid problem to the 2D point-ellipse problem where the
ellipse is (x0/e0)2 + (x2/e2)2 = 1 with query point (y0, y2) whose components are both positive; see
Section 2.6.

� Let y1 > 0 and y0 = 0; then y1 = x1(1 + t/e21), in which case x1 > 0. We saw previously that y0 = 0
forces x0 = 0. This reduces the 3D point-ellipsoid problem to the 2D point-ellipse problem where the
ellipse is (x1/e1)2 + (x2/e2)2 = 1 with query point (y1, y2) whose components are both positive.; see
Section 2.6.

� Let y0 > 0 and y1 > 0; then Equation (30) is solved for xi = e2i yi/(t+ e2i ) for 0 ≤ i ≤ 2. The algorithm
for computing the closest ellipsoid point is similar to that of Section 2.6. Substituting the xi into
Equation (26), we obtain

F (t) =

(
e0y0
t+ e20

)2

+

(
e1y1
t+ e21

)2

+

(
e2y2
t+ e22

)2

− 1 = 0 (31)

The first equality defines the function F (t) with domain (−e22,∞). The candidates for the ellipsoid
point (x0, x1, x2) closest to (y0, y1, y2) are generated by the roots t to F (t) = 0.

The first-order and second-order derivatives of F are

F ′(t) = − 2e20y
2
0

(t+ e20)3
− 2e21y

2
1

(t+ e21)3
− 2e22y

2
2

(t+ e22)3
, F ′′(t) =

6e20y
2
0

(t+ e20)4
+

6e21y
2
1

(t+ e21)4
+

6e22y
2
2

(t+ e22)4
(32)

We know that y0 > 0, y1 > 0, y2 > 0, and t > −e22. These conditions imply F ′(t) < 0 and F ′′(t) > 0
for t > −e22. Observe that

lim
t→−e2+2

F (t) = +∞, lim
t→∞

F (t) = −1 (33)

The first expression is a one-sided limit where t approaches e22 through values larger than e22. We
have shown that F (t) is a strictly decreasing function for t ∈ (−e22,+∞) that is initially positive, then
becomes negative. Consequently it has a unique root on the specified domain. Figure 6 shows a typical
graph of F (t).

Figure 6. A typical graph of F (t) for t > −e22. The unique root t̄ is shown.

Observe that the domain (−e22,∞) contains 0 and that F (0) = (y0/e0)2 + (y1/e1)2 + (y2/e2)2 − 1.
When (y0, y1, y2) is inside the ellipsoid we see that F (0) < 0 and t̄ < 0. When (y0, y1, y2)) is outside
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the ellipsoid we see that F (0) > 0 and t̄ > 0. When (y0, y1, y2) is on the ellipse we see that F (0) = 0
and t̄ = 0.

For all t, a typical graph of F (t) is shown in Figure 7.

Figure 7. A typical graph of F (t) when y0 > 0, y1 > 0, and y2 > 0.

The illustration shows F (t) with 4 roots. However, it is possible for F (t) to have up to 6 roots.

3.7 The Query Point has y2 = 0

The construction is analogous to that of Section 2.5. Equation (30) states that y0 = x0(1 + t/e20), y1 =
x1(1 + t/e21), and 0 = x2(1 + t/e22). The last equation has two cases.

� Let x2 = 0. For (x0, x1, 0) to be on the ellipsoid, we need (x0/e0)2 + (x1/e1)2 = 1. The 3D point-
ellipsoid problem is therefore reduced to the 2D point-ellipse problem with query point (y0, y1).

� Let x2 > 0; then t = −e22, y0 = x0(1−e22/e20), and y1 = x1(1−e22/e21). It follows that x0 = e20y0/(e
2
0−e22)

and x1 = e21y1/(e
2
1 − e22). Because (x0, x1, x2) is on the ellipsoid, we know that

1 ≥ 1−
(
x2
e2

)2

=

(
x0
e0

)2

+

(
x1
e1

)2

=

(
e0y0
e20 − e22

)2

+

(
e1y1
e21 − e22

)2

(34)

The implication is that (y0, y1) is contained by a subellipse of the x0x1-domain for the hemiellipsoid
x2 ≥ 0. For (y0, y1) outside this subellipse, the closest point is necessarily on the ellipse (x0/e0)2 +
(x1/e1)2 = 1. When (y0, y1) is inside the subellipse, for (x0, x1, x2) to be on the ellipsoid, we may solve
for x2 = e2

√
1− (x0/e0)2 − (x1/e1)2.

3.8 A Summary of the Mathematical Algorithm

Listing 3 summarizes the algorithm for computing the ellipsoid point (x0, x1, x2) closest to the query point
(y0, y1, y2) in the first octant and for computing the distance to the closest point. The preconditions are
e0 ≥ e1 ≥ e2 > 0, y0 ≥ 0, y1 ≥ 0, and y2 ≥ 0.
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Listing 3. Pseudocode for computing the closest ellipsoid point and distance to a query point. It is
required that e0 ≥ e1 ≥ e2 > 0, y0 ≥ 0, y1 ≥ 0, and y2 ≥ 0.

Rea l D i s t a n c e P o i n t E l l i p s o i d ( Rea l e0 , Rea l e1 , Rea l e2 , Rea l y0 , Rea l y1 , Rea l y2 ,
Rea l& x0 , Rea l& x1 , Rea l& x2 )

{
Rea l d i s t a n c e ;
i f ( y2 > 0)
{

i f ( y1 > 0)
{

i f ( y0 > 0)
{

Compute the un ique r oo t t b a r o f F( t ) on (=e2*e2 , + i n f i n i t y ) ;
x0 = e0*e0*y0 /( t ba r + e0*e0 ) ;
x1 = e1*e1*y1 /( t ba r + e1*e1 ) ;
x2 = e2*e2*y2 /( t ba r + e2*e2 ) ;
d i s t a n c e = s q r t ( ( x0 = y0 )* ( x0 = y0 ) + ( x1 = y1 )* ( x1 = y1 ) + ( x2 = y2 )* ( x2 = y2 ) ) ;

}
e l s e // y0 == 0
{

x0 = 0 ;
d i s t a n c e = D i s t a n c e P o i n t E l l i p s e ( e1 , e2 , y1 , y2 , x1 , x2 ) ;

}
}
e l s e // y1 == 0
{

x1 = 0 ;
i f ( y0 > 0)
{

d i s t a n c e = D i s t a n c e P o i n t E l l i p s e ( e0 , e2 , y0 , y2 , x0 , x2 ) ;
}
e l s e // y0 == 0
{

x0 = 0 ;
x2 = e2 ;
d i s t a n c e = abs ( y2 = e2 ) ;

}
}

}
e l s e // y2 == 0
{

Rea l denom0 = e0*e0 = e2*e2 , denom1 = e1*e1 = e2*e2 ;
Rea l numer0 = e0*y0 , numer1 = e1*y1 ;
boo l computed = f a l s e ;
i f ( numer0 < denom0 && numer1 < denom1 )
{

Rea l xde0 = numer0/denom0 , xde1 = numer1/denom1 ;
Rea l xde0 sq r = xde0*xde0 , xde1 sq r = xde1*xde1 ;
Rea l d i s c r = 1 = xde0sq r = xde1sq r ;
i f ( d i s c r > 0)
{

x0 = e0*xde0 ;
x1 = e1*xde1 ;
x2 = e2* s q r t ( d i s c r ) ;
d i s t a n c e = s q r t ( ( x0 = y0 )* ( x0 = y0 ) + ( x1 = y1 )* ( x1 = y1 ) + x2*x2 ) ;
computed = t rue ;

}
}
i f ( ! computed )
{

x2 = 0 ;
d i s t a n c e = D i s t a n c e P o i n t E l l i p s e ( e0 , e1 , y0 , y1 , x0 , x1 ) ;

}
}
r e t u r n d i s t a n c e ;

}
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3.9 Robust Root Finding and Conversion to a Polynomial

The ideas of Section 2.8 apply equally well in the point-ellipsoid problem. The bisection method is robust.
The finite bounding interval for t̄ is [t0, t1] with t0 = −e22+e2y2 and t1 = −e22+

√
(e0y0)2 + (e1y1)2 + (e2y2)2.

Newton’s Method may be used with initial guess t0, but the same numerical issues must be addressed when
y2 is nearly zero. In the limit as y2 approaches to zero, the vertical asymptote disappears and there is a
discontinuity in the root t̄ when viewed as a function of y2.

The conversion to a polynomial of degree 6 is suggested in [1], but has the same problems mentioned for the
point-ellipse problem. The roots of the polynomial may be computed, leading to candidates for the closest
ellipsoid point,

P (t) = (t+ e20)2(t+ e21)2(t+ e22)2F (t)

= e20y
2
0(t+ e21)2(t+ e22)2 + e21y

2
1(t+ e20)2(t+ e22)2 + e22y

2
2(t+ e20)2(t+ e21)2

(35)

When y2 > 0, the roots of P (t) are the same as those for F (t), and the largest root of P (t) is the same as
the largest root of F (t). However, when y2 = 0, P (t) has a double root at t = −e22 but F (t) does not have a
root at t = −e22. Just as in the point-ellipse distance algorithm, this causes numerical problems when y2 is
nearly zero. In fact, numerical problems occur when any of the yi are nearly zero.

The Graphics Gems IV article suggests using Newton’s Method starting with an initial guess greater than the
largest root of P (t), namely, t0 = e0

√
y20 + y21 + y22 . As in Section 2.8.3, the convergence is not guaranteed,

especially when y2 is nearly zero. The discussion about double roots in that section applies here as well, and
if you choose to use Newton’s Method for P (t), a better initial guess is t1 = −e1 +

√
e20y

2
0 + e21y

2
1 + e22y

2
2 . It

may be shown that t1 < t1 + e2 < t0.

3.10 A Robust Implementation

An implementation that uses the robust bisection method is described next. A change of variables helps
keep the magnitude of the numbers to a moderate size, s = t/e22. Te query point components are also scaled
by the ellipsoid extents to keep the inputs on the order of 1 when the query is executed for points near the
ellipsoid, zi = yi/ei. Define the ratios of squared extents r0 = e20/e

2
2 and r1 = e21/e

2
2. The function F (t) is

transformed to

G(s) =

(
r0z0
s+ r0

)2

+

(
r1z1
s+ r1

)2

+

(
z2
s+ 1

)2

− 1 (36)

for s ∈ (−1,+∞). The root of G(s) = 0 is s̄ = t̄/e22 and it is in the interval [s0, s1], where s0 = −1 + z2 and
s1 = −1 +

√
r20z

2
0 + r21z

2
1 + z22 .

Listing 4 is the robust implementation of the algorithm. The maximum number of iterations is provided by
Equation (18).

Listing 4. Pseudocode for robustly computing the closest ellipsoid point and distance to a query point.
It is required that e0 ≥ e1 ≥ e2 > 0, y0 ≥ 0, y1 ≥ 0, and y2 ≥ 0.

Rea l GetRoot ( Rea l r0 , Rea l r1 , Rea l z0 , Rea l z1 , Rea l z2 , Rea l g )
{

Rea l n0 = r0 *z0 , n1 = r1 *z1 ;
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Rea l s0 = z2 = 1 , s1 = ( g < 0 ? 0 : RobustLength ( n0 , n1 , z2 ) = 1 ) ;
Rea l s = 0 ;
f o r ( i n t i = 0 ; i < max I t e r a t i o n s ; ++i )
{

s = ( s0 + s1 ) / 2 ;
i f ( s == s0 | | s == s1 ) { break ; }
Rea l r a t i o 0 = n0 /( s + r0 ) , r a t i o 1 = n1 /( s + r1 ) , r a t i o 2 = z2 /( s + 1 ) ;
g = Sqr ( r a t i o 0 ) + Sqr ( r a t i o 1 ) + Sqr ( r a t i o 2 ) = 1 ;
i f ( g > 0) { s0 = s ; } e l s e i f ( g < 0) { s1 = s ; } e l s e { break ; }

}
r e t u r n s ;

}

Rea l D i s t a n c e P o i n t E l l i p s o i d ( Rea l e0 , Rea l e1 , Rea l e2 , Rea l y0 , Rea l y1 , Rea l y2 ,
Rea l& x0 , Rea l& x1 , Rea l& x2 )

{
Rea l d i s t a n c e ;
i f ( y2 > 0)
{

i f ( y1 > 0)
{

i f ( y0 > 0)
{

Rea l z0 = y0/e0 , z1 = y1/e1 , z2 = y2/e2 ;
Rea l g = Sqr ( z0 ) + Sqr ( z1 ) + Sqr ( z2 ) = 1 ;
i f ( g != 0)
{

Rea l r0 = Sqr ( e0/e2 ) , r1 = Sqr ( e1/e2 ) ;
Rea l s ba r = GetRoot ( r0 , r1 , z0 , z1 , z2 , g ) ;
x0 = r0 *y0 /( sba r + r0 ) ; x1 = r1 *y1 /( sba r + r1 ) ; x2 = y2 /( sba r + 1 ) ;
d i s t a n c e = s q r t ( Sqr ( x0 = y0 ) + Sqr ( x1 = y1 ) + Sqr ( x2 = y2 ) ) ;

}
e l s e
{

x0 = y0 ; x1 = y1 ; x2 = y2 ; d i s t a n c e = 0 ;
}

}
e l s e // y0 == 0
{

x0 = 0 ; d i s t a n c e = D i s t a n c e P o i n t E l l i p s e ( e1 , e2 , y1 , y2 , x1 , x2 ) ;
}

}
e l s e // y1 == 0
{

i f ( y0 > 0)
{

x1 = 0 ; d i s t a n c e = D i s t a n c e P o i n t E l l i p s e ( e0 , e2 , y0 , y2 , x0 , x2 ) ;
}
e l s e // y0 == 0
{

x0 = 0 ; x1 = 0 ; x2 = e2 ; d i s t a n c e = abs ( y2 = e2 ) ;
}

}
}
e l s e // y2 == 0
{

Rea l denom0 = e0* 0 = e2*e2 , denom1 = e1*e1 = e2*e2 , numer0 = e0*y0 , numer1 = e1*y1 ;
boo l computed = f a l s e ;
i f ( numer0 < denom0 && numer1 < denom1 )
{

Rea l xde0 = numer0/denom0 , xde1 = numer1/denom1 ;
Rea l xde0 sq r = xde0*xde0 , xde1sq r = xde1*xde1 ;
Rea l d i s c r = 1 = xde0sq r = xde1sq r ;
i f ( d i s c r > 0)
{

x0 = e0*xde0 ; x1 = e1*xde1 ; x2 = e2* s q r t ( d i s c r ) ;
d i s t a n c e = s q r t ( ( x0 = y0 )* ( x0 = y0 ) + ( x1 = y1 )* ( x1 = y1 ) + x2*x2 ) ;
computed = t rue ;

}
}
i f ( ! computed )
{
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x2 = 0 ; d i s t a n c e = D i s t a n c e P o i n t E l l i p s e ( e0 , e1 , y0 , y1 , x0 , x1 ) ;
}

}
r e t u r n d i s t a n c e ;

}

The function Sqr(t) simply returns t2. The function RobustLength(v0,v1,v2) computes the length of the input
vector V = (v0, v1, v2) by avoiding floating-point overflow that could occur normally when computing v20 +
v21 + v22 . If |vk| = max{|v0|, |v1|, |v2|}, then |V| = |vk||V/vk|.

The code calls the point-ellipse distance function when the point-ellipsoid query reduces to a 2D problem.
As we will see in the last section of this document, the recursion on dimension is not necessary.

4 Distance from a Point to a Hyperellipsoid

A general hyperellipsoid in n dimensions is represented by a center point C, an orthonormal set of axis-
direction vectors {Ui}n−1i=0 , and associated extents ei with ej ≥ ej+1 > 0 for all j. The hyperellipsoid points
are

P = C +

n−1∑
i=0

xiUi (37)

where
n−1∑
i=0

(
xi
ei

)2

= 1 (38)

As with an ellipse or an ellipsoid, special cases occur when some of the extents are equal. The implementation
handles these correctly, so these are not required to have special code to deal with them. The orthonormality
of the axis directions and Equation (37) imply xi = Ui · (P−C). Substituting this into Equation (38), we
obtain

(P−C)
T
M (P−C) = 1 (39)

where M = RDRT, R is an orthogonal matrix whose columns are the Ui vectors, and D is a diagonal matrix
whose diagonal entries are the 1/e2i values.

The problem is to compute the distance from a point Q to the hyperellipsoid. It is sufficient to solve this
problem in the coordinate system of the hyperellipsoid; that is, represent Q = C+

∑n−1
i=0 yiUi. The distance

from Q to the closest point P on the hyperellipsoid is the same as the distance from Y = (y0, . . . , yn−1) to
the closest point X = (x0, . . . , xn−1) on the standard hyperellipsoid of Equation (38).

We may additionally use symmetry to simplify the construction. It is sufficient to consider the case when
yi ≥ 0 for all i.

4.1 The Closest Point’s Normal is Directed Toward the Query Point

A parameterization of the standard hyperellipsoid involves n− 1 parameters Θ = (θ0, . . . , θn−2), say, X(Θ).
The actual form of the components can use a generalization of spherical coordinates. The squared distance
from Y to any point on the hyperellipsoid is

F (Θ) = |X(Θ)−Y|2 (40)
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This is a nonnegative differentiable function that is periodic in each of its independent variables; it must
have a global minimum occurring at parameters for which the first-order partial derivatives are zero,

∂F

∂θi
= 2(X(Θ)−Y) · ∂X

∂θi
= 0 (41)

for all i. For the derivatives to be zero, the vector (X(Θ)−Y) must be perpendicular to the tangent vectors
∂X/∂θi. This implies the vector from Y to the closest hyperellipsoid point X must be normal to the surface
at X. Using the implicit form of the ellipsoid, namely, G(X) = XTDX − 1, half the gradient of G(X) is a
normal vector to the hyperellipsoid at X, so we have Y −X = t∇G(X)/2 = tDX for some scalar t, or

yi = xi

(
1 +

t

e2i

)
(42)

for all i. If Y is outside the hyperellipsoid, it is necessary that t > 0. If Y is inside the hyperellipsoid, it is
necessary that t < 0. If Y is already on the hyperellipsoid, then t = 0 and the distance is zero.

4.2 The Key Observations

In the point-ellipse and point-ellipsoid distance algorithms, an important observation is that the main branch-
ing depends on whether the last component of Y is positive or zero.

� When yn−1 > 0, notice that whenever yi = 0 for any i < n − 1, the corresponding closest point has
component xi = 0.

� When yn−1 = 0, notice that two cases occur. The projection of Y onto the coordinate hyperplane
yn−1 = 0 is either inside or outside a special hyperellipsoid living in n − 1 dimensions (the original
hyperellipsoid lives in n dimensions). If inside the special hyperellipsoid, we can compute the corre-

sponding xi directly from Equation (42), and then compute xn−1 =
√

1−
∑n−2

i=0 (xi/ei)2. If outside the

special hyperellipsoid, we have the recursion in dimension—the query reduces to point-hyperellipsoid
within the hyperplane yn−1 = 0.

This suggests that we should compute a vector Y′ from Y by storing all the positive components, construct
a vector e′ that stores the extents corresponding to those positive components, and then reduce the problem
either to a bisection in a smaller-dimensional space or to a direct computation of the components in a
smaller-dimensional space.

Let there be p positive components of Y located at the indices i0 through ip−1. If yn−1 > 0, then ip−1 = n−1.
Construct Y′ = (yi0 , . . . , yip−1

). Let e′ = (ei0 , . . . , eip−1
) and X′ = (xi0 , . . . , xip−1

). The function to bisect is

F (t) =

p−1∑
j=0

(
eijyij
t+ e2ij

)2

− 1 (43)

for t ∈ (−e2ip−1
,+∞). The pseudocode is shown in Listing 5.

Listing 5. Pseudocode for computing the distance from a point to a hyperellipsoid. The extent vector
must have nonincreasing components and the query point must have nonnegative components.
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c o n s t r u c t Y ’ and e ’ ;
s e t X[ i ] = 0 whenever Y[ i ] = 0 ;
i f ( y [ n=1] > 0)
{

Compute the un ique r oo t t b a r o f F( t ) ; // p = n
X ’ [ j ] = Sqr ( e ’ [ j ] )*Y ’ [ j ] / ( t b a r + Sqr ( e ’ [ j ] ) ) f o r a l l j < p ;
d i s t a n c e = Length (X ’ = Y ’ ) ;

}
e l s e // y [ n=1] == 0
{

a [ j ] = ( Sqr ( e ’ [ j ] ) = Sqr ( e [ n=1]))/ e ’ [ j ] f o r a l l j ;
Let A = d iag ( a [ 0 ] , . . . ) ;
i f Y ’ i s i n the h y p e r e l l i p s o i d Transpose (Y ’ )*A*Y ’ = 1 then
{

X ’ [ j ] = e ’ [ j ]*Y ’ [ j ] / a [ j ] f o r a l l j ;
X ’ [ l a s t ] = X[ n=1] = e [ n=1]* s q r t (1 = sum j Sqr (X ’ [ j ] / e ’ [ j ] ) ) ;
d i s t a n c e = Length (X ’ = Y ’ ) ;

}
e l s e
{

X[ n=1] = 0 ;
Compute the un ique r oo t t ba r o f F( t ) ; // p < n
X ’ [ j ] = Sqr ( e ’ [ j ] )*Y ’ [ j ] / ( t b a r + Sqr ( e ’ [ j ] ) ) f o r a l l j < p ;
d i s t a n c e = Length (X ’ = Y ’ ) ;

}
}
copy X ’ components to the c o r r e c t l o c a t i o n s i n X ;

4.3 A Robust Implementation

An implementation that uses the robust bisection method is found in

Vector.h
Hyperellipsoid.h
DistPointHyperellipsoid.h

The code is general in that it includes transforming the query point to satisfy the preconditions of the
point-hyperellipsoid queries, executing those queries, and then transforming the result back to the original
coordinate system.

The code uses templates whose parameters are the dimension and the floating-point type. Comments in the
query header file show how you set up the queries for 2D and for 3D.
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