Distance Between Two Ellipses in 3D

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: June 30, 1999
Last Modified: March 1, 2008

Contents

1 Introduction 2

2 Solution as Polynomial System 2

3 Solution using Trigonometric Approach 4

4 Numerical Solution 5

1 Introduction

An ellipse in 3D is represented by a center \mathbf{C}, unit-length axes \mathbf{U} and \mathbf{V} with corresponding axis lengths a and b, and a plane containing the ellipse, $\mathbf{N} \cdot(\mathbf{X}-\mathbf{C})=0$ where \mathbf{N} is a unit length normal to the plane. The vectors \mathbf{U}, \mathbf{V}, and \mathbf{N} form a right-handed orthonormal coordinate system (the matrix with these vectors as columns is orthonormal with determinant 1). The ellipse is parameterized as

$$
\mathbf{X}=\mathbf{C}+a \cos (\theta) \mathbf{U}+b \sin (\theta) \mathbf{V}
$$

for angles $\theta \in[0,2 \pi)$. The ellipse is also defined by the two polynomial equations

$$
\begin{aligned}
& \mathbf{N} \cdot(\mathbf{X}-\mathbf{C})=0 \\
& (\mathbf{X}-\mathbf{C})^{\top}\left(\frac{\mathbf{U} \mathbf{U}^{\top}}{a^{2}}+\frac{\mathbf{V} \mathbf{V}^{\top}}{b^{2}}\right)(\mathbf{X}-\mathbf{C})=1
\end{aligned}
$$

where the last equation is written as a quadratic form. The first equation defines a plane and the second equation defines an ellipsoid. The intersection of plane and ellipsoid is an ellipse.

2 Solution as Polynomial System

The two ellipses are $\mathbf{N}_{0} \cdot\left(\mathbf{X}-\mathbf{C}_{0}\right)=0$ and $\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top} A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)=1$ where $A_{0}=\mathbf{U}_{0} \mathbf{U}_{0}^{\top} / a_{0}^{2}+\mathbf{V}_{0} \mathbf{V}_{0}^{\top} / b_{0}^{2}$ and $\mathbf{N}_{1} \cdot\left(\mathbf{Y}-\mathbf{C}_{1}\right)=0$ and $\left(\mathbf{Y}-\mathbf{C}_{1}\right)^{\top} A_{1}\left(\mathbf{Y}-\mathbf{C}_{1}\right)=1$ where $A_{1}=\mathbf{U}_{1} \mathbf{U}_{1}^{\top} / a_{1}^{2}+\mathbf{V}_{1} \mathbf{V}_{1}^{\top} / b_{1}^{2}$.
The problem is to minimize the squared distance $|\mathbf{Y}-\mathbf{Y}|^{2}$ subject to the four constraints mentioned above. The problem can be solved with the method of Lagrange multipliers. Introduce four new parameters, α, β, γ, and δ and minimize

$$
\begin{aligned}
F(\mathbf{X}, \mathbf{Y} ; \alpha, \beta, \gamma, \delta)= & |\mathbf{X}-\mathbf{Y}|^{2}+\alpha\left(\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top} A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)-1\right)+\beta\left(\mathbf{N}_{0} \cdot\left(\mathbf{X}-\mathbf{C}_{0}\right)-0\right) \\
& +\gamma\left(\left(\mathbf{Y}-\mathbf{C}_{1}\right)^{\top} A_{1}\left(\mathbf{Y}-\mathbf{C}_{1}\right)-1\right)+\delta\left(\mathbf{N}_{1} \cdot\left(\mathbf{Y}-\mathbf{C}_{1}\right)-0\right)
\end{aligned}
$$

Taking derivatives yields

$$
\begin{aligned}
F_{\mathbf{X}} & =2(\mathbf{X}-\mathbf{Y})+2 \alpha A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)+\beta \mathbf{N}_{0} \\
F_{\mathbf{Y}} & =-2(\mathbf{X}-\mathbf{Y})+2 \gamma A_{1}\left(\mathbf{Y}-\mathbf{C}_{1}\right)+\delta \mathbf{N}_{1} \\
F_{\alpha} & =\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top} A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)-1 \\
F_{\beta} & =\mathbf{N}_{0} \cdot\left(\mathbf{X}-\mathbf{C}_{0}\right) \\
F_{\gamma} & =\left(\mathbf{Y}-\mathbf{C}_{1}\right)^{\top} A_{1}\left(\mathbf{Y}-\mathbf{C}_{1}\right)-1 \\
F_{\delta} & =\mathbf{N}_{1} \cdot\left(\mathbf{Y}-\mathbf{C}_{1}\right)
\end{aligned}
$$

Setting the last four equations to zero yields the four original constraints. Setting the first equation to the zero vector and multiplying by $\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top}$ yields

$$
\alpha=-2\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top}(\mathbf{X}-\mathbf{Y})
$$

Setting the first equation to the zero vector and multiplying by \mathbf{N}_{0}^{\top} yields

$$
\beta=-2 \mathbf{N}_{0}^{\top}(\mathbf{X}-\mathbf{Y})
$$

Similar manipulations of the second equation yield

$$
\gamma=2\left(\mathbf{Y}-\mathbf{C}_{1}\right)^{\top}(\mathbf{X}-\mathbf{Y})
$$

and

$$
\delta=2 \mathbf{N}_{1}^{\top}(\mathbf{X}-\mathbf{Y})
$$

The first two derivative equations become

$$
\begin{aligned}
& M_{0}(\mathbf{X}-\mathbf{Y})=\left(\mathbf{N}_{0} \mathbf{N}_{0}^{\top}+A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top}-I\right)(\mathbf{X}-\mathbf{Y})=\mathbf{0} \\
& M_{1}(\mathbf{X}-\mathbf{Y})=\left(\mathbf{N}_{1} \mathbf{N}_{1}^{\top}+A_{1}\left(\mathbf{Y}-\mathbf{C}_{1}\right)\left(\mathbf{Y}-\mathbf{C}_{1}\right)^{\top}-I\right)(\mathbf{X}-\mathbf{Y})=\mathbf{0}
\end{aligned}
$$

Observe that $M_{0} \mathbf{N}_{0}=\mathbf{0}, M_{0} A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)=\mathbf{0}$, and $M_{0}\left(\mathbf{N}_{0} \times\left(\mathbf{X}-\mathbf{C}_{0}\right)\right)=-\mathbf{N}_{0} \times\left(\mathbf{X}-\mathbf{C}_{0}\right)$. Therefore, $M_{0}=$ $-\mathbf{W}_{0} \mathbf{W}_{0}^{\top} /\left|\mathbf{W}_{0}\right|^{2}$ where $\mathbf{W}_{0}=\mathbf{N}_{0} \times\left(\mathbf{X}-\mathbf{C}_{0}\right)$. Similarly, $M_{1}=-\mathbf{W}_{1} \mathbf{W}_{1}^{\top} /\left|\mathbf{W}_{1}\right|^{2}$ where $\mathbf{W}_{1}=\mathbf{N}_{1} \times\left(\mathbf{Y}-\mathbf{C}_{1}\right)$. The previous displayed equations are equivalent to $\mathbf{W}_{0}^{\top}(\mathbf{X}-\mathbf{Y})=0$ and $\mathbf{W}_{1}^{\top}(\mathbf{X}-\mathbf{Y})=0$.

The points $\mathbf{X}=\left(x_{0}, x_{1}, x_{2}\right)$ and $\mathbf{Y}=\left(y_{0}, y_{1}, y_{2}\right)$ that attain minimum distance between the two ellipses are solutions to the six quadratic equations in six unknowns,

$$
\begin{aligned}
p_{0}\left(x_{0}, x_{1}, x_{2}\right) & =\mathbf{N}_{0} \cdot\left(\mathbf{X}-\mathbf{C}_{0}\right)=0, \\
p_{1}\left(x_{0}, x_{1}, x_{2}\right) & =\left(\mathbf{X}-\mathbf{C}_{0}\right)^{\top} A_{0}\left(\mathbf{X}-\mathbf{C}_{0}\right)=1, \\
p_{2}\left(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right) & =(\mathbf{X}-\mathbf{Y}) \cdot \mathbf{N}_{0} \times\left(\mathbf{X}-\mathbf{C}_{0}\right)=0, \\
q_{0}\left(y_{0}, y_{1}, y_{2}\right) & =\mathbf{N}_{1} \cdot\left(\mathbf{Y}-\mathbf{C}_{1}\right)=0, \\
q_{1}\left(y_{0}, y_{1}, y_{2}\right) & =\left(\mathbf{Y}-\mathbf{C}_{1}\right)^{\top} A_{1}\left(\mathbf{Y}-\mathbf{C}_{1}\right)=1, \\
q_{2}\left(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right) & =(\mathbf{X}-\mathbf{Y}) \cdot \mathbf{N}_{1} \times\left(\mathbf{Y}-\mathbf{C}_{1}\right)=0 .
\end{aligned}
$$

On a computer algebra system that supports the resultant operation for eliminating polynomial variables, the following set of operations leads to a polynomial in one variable. Let Resultant $[P, Q, z]$ denote the resultant of polynomials P and Q where the variable z is eliminated,

$$
\begin{aligned}
r_{0}\left(x_{0}, x_{1}, y_{0}, y_{1}, y_{2}\right) & =\operatorname{Resultant}\left[p_{0}, p_{2}, x_{2}\right] \\
r_{1}\left(x_{0}, x_{1}\right) & =\operatorname{Resultant}\left[p_{1}, p_{2}, x_{2}\right] \\
r_{2}\left(x_{0}, x_{1}, y_{0}, y_{1}\right) & =\operatorname{Resultant}\left[r_{0}, q_{2}, y_{2}\right] \\
s_{0}\left(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}\right) & =\operatorname{Resultant}\left[q_{0}, q_{2}, y_{2}\right] \\
s_{1}\left(y_{0}, y_{1}\right) & =\operatorname{Resultant}\left[q_{1}, q_{2}, y_{2}\right] \\
s_{2}\left(x_{0}, x_{1}, y_{0}, y_{1}\right) & =\operatorname{Resultant}\left[s_{0}, p_{2}, x_{2}\right] \\
r_{3}\left(x_{0}, y_{0}, x_{1}\right) & =\operatorname{Resultant}\left[r_{2}, r_{1}, x_{1}\right] \\
r_{4}\left(x_{0}, y_{0}\right) & =\operatorname{Resultant}\left[r_{3}, s_{1}, y_{1}\right] \\
s_{3}\left(x_{0}, x_{1}, y_{0}\right) & =\operatorname{Resultant}\left[s_{2}, s_{1}, y_{1}\right] \\
s_{4}\left(x_{0}, y_{0}\right) & =\operatorname{Resultant}\left[s_{3}, r_{1}, x_{1}\right] \\
\phi\left(x_{0}\right) & =\operatorname{Resultant}\left[r_{4}, s_{4}, y_{0}\right]
\end{aligned}
$$

For two circles, the degree of ϕ is 8 . For a circle and an ellipse, the degree of ϕ is 12 . For two ellipses, the degree of ϕ is 16 .

3 Solution using Trigonometric Approach

Let the two ellipses be

$$
\begin{aligned}
& \mathbf{X}=\mathbf{C}_{0}+a_{0} \cos (\theta) \mathbf{U}_{0}+b_{0} \sin (\theta) \mathbf{V}_{0} \\
& \mathbf{Y}=\mathbf{C}_{1}+a_{1} \cos (\phi) \mathbf{U}_{1}+b_{1} \sin (\phi) \mathbf{V}_{1}
\end{aligned}
$$

for $\theta \in[0,2 \pi)$ and $\phi \in[0,2 \pi)$. The squared distance between any two points on the ellipses is $F(\theta, \phi)=$ $|\mathbf{X}(\theta)-\mathbf{Y}(\phi)|^{2}$. The problem is to minimize $F(\theta, \phi)$.
Define $c_{0}=\cos (\theta), s_{0}=\sin (\theta), c_{1}=\cos (\phi)$, and $s_{1}=\sin (\phi)$. Compute derivatives, $F_{\theta}=(\mathbf{X}(\theta)-\mathbf{Y}(\phi)) \cdot \mathbf{X}^{\prime}(\theta)$ and $F_{\phi}=-(\mathbf{X}(\theta)-\mathbf{Y}(\phi)) \cdot \mathbf{Y}^{\prime}(\phi)$. Setting these equal to zero leads to the two polynomial equations in c_{0}, s_{0}, c_{1}, and s_{1}. The two polynomial constraints for the sines and cosines are also listed.

$$
\begin{aligned}
& p_{0}=\left(a_{0}^{2}-b_{0}^{2}\right) s_{0} c_{0}+a_{0}\left(\alpha_{00}+\alpha_{01} s_{1}+\alpha_{02} c_{1}\right) s_{0}+b_{0}\left(\beta_{00}+\beta_{01} s_{1}+\beta_{02} c_{1}\right) c_{0}=0 \\
& p_{1}=\left(a_{1}^{2}-b_{1}^{2}\right) s_{1} c_{1}+a_{1}\left(\alpha_{10}+\alpha_{11} s_{0}+\alpha_{12} c_{0}\right) s_{1}+b_{1}\left(\beta_{10}+\beta_{11} s_{0}+\beta_{12} c_{0}\right) c_{1}=0 \\
& q_{0}=s_{0}^{2}+c_{0}^{2}-1=0 \\
& q_{1}=s_{1}^{2}+c_{1}^{2}-1=0
\end{aligned}
$$

This is a system of four quadratic polynomial equations in four unknowns and can be solved with resultants:

$$
\begin{aligned}
r_{0}\left(s_{0}, s_{1}, c_{1}\right) & =\operatorname{Resultant}\left[p_{0}, q_{0}, c_{0}\right] \\
r_{1}\left(s_{0}, s_{1}, c_{0}\right) & =\operatorname{Resultant}\left[p_{1}, q_{1}, c_{1}\right] \\
r_{2}\left(s_{0}, s_{1}\right) & =\operatorname{Resultant}\left[r_{0}, q_{1}, c_{1}\right] \\
r_{3}\left(s_{0}, s_{1}\right) & =\operatorname{Resultant}\left[r_{1}, q_{0}, c_{0}\right] \\
\phi\left(s_{0}\right) & =\operatorname{Resultant}\left[r_{2}, r_{3}, s_{1}\right]
\end{aligned}
$$

Alternatively, we can use the simple nature of q_{0} and q_{1} to do some of the elimination. Let $p_{0}=\alpha_{0} s_{0}+$ $\beta_{0} c_{0}+\gamma_{0} s_{0} c_{0}$ where α_{0} and β_{0} are linear polynomials in s_{1} and c_{1}. Similarly, $p_{1}=\alpha_{1} s_{1}+\beta_{1} c_{1}+\gamma_{1} s_{1} c_{1}$ where α_{1} and β_{1} are linear polynomials in s_{0} and c_{0}. Solving for c_{0} in $p_{0}=0$ and c_{1} in $p_{1}=0$, squaring, and using the q_{i} constraints leads to

$$
\begin{aligned}
& r_{0}=\left(1-s_{0}^{2}\right)\left(\gamma_{0} s_{0}+\beta_{0}\right)^{2}-\alpha_{0}^{2} s_{0}^{2}=0 \\
& r_{1}=\left(1-s_{1}^{2}\right)\left(\gamma_{1} s_{1}+\beta_{1}\right)^{2}-\alpha_{1}^{2} s_{1}^{2}=0
\end{aligned}
$$

Using the q_{i} constraints, write $r_{i}=r_{i} 0+r_{i} 1 c_{1-i}, i=0,1$, where the $r_{i j}$ are polynomials in s_{0} and s_{1}. The terms $r_{i} 0$ are degree 4 and the terms $r_{i 1}$ is degree 3 . Solving for c_{0} in $r_{1}=0$ and c_{1} in $r_{0}=0$, squaring, and using the q_{i} constraints leads to

$$
\begin{aligned}
& w_{0}=\left(1-s_{1}^{2}\right) r_{01}^{2}-r_{00}^{2}=\sum_{j=0}^{8} w_{0 j} s_{0}^{j}=0 \\
& w_{1}=\left(1-s_{0}^{2}\right) r_{11}^{2}-r_{10}^{2}=\sum_{j=0}^{4} w_{1 j} s_{0}^{j}=0
\end{aligned}
$$

The coefficients $w_{i j}$ are polynomials in s_{1}. The degrees of w_{00} through w_{08} respectively are $4,3,4,3,4,3$, 2,1 , and 0 . The degree of $w_{1 j}$ is $8-j$. Total degree for each of w_{i} is 8 .

The final elimination can be computed using a Bezout determinant, $\phi\left(s_{1}\right)=\operatorname{det}\left[e_{i j}\right]$, where the underlying matrix is $8 x 8$ and the entry is

$$
e_{i j}=\sum_{k=\max (9-i, 9-j)}^{\min (8,17-i-j)} v_{k, 17-i-j-k}
$$

where $v_{i, j}=w_{0 i} w_{1 j}-w_{0 j} w_{1 i}$. If the i or j index is out of range in the w terms, then the term is assumed to be zero. The solutions to $\phi=0$ are the candidate points for s_{1}. For each s_{1}, two c_{1} values are computed using $s_{1}^{2}+c_{1}^{2}=1$. For each s_{1}, the roots of the polynomial $w_{1}\left(s_{0}\right)$ are computed. For each s_{0}, two c_{0} values are computed using $s_{0}^{2}+c_{0}^{2}=1$. Out of all such candidates, $|\mathbf{X}-\mathbf{Y}|^{2}$ can be computed and the minimum value is selected.

4 Numerical Solution

Neither algebraic method above seems reasonable. Each looks very slow to compute and you have the usual numerical problems with polynomials of large degree. I have not implemented the following, but my guess is it is an alternative to consider. Implement a distance calculator for point to ellipse (in 3D). This is a function of a single parameter, say $F(\theta)$ for $\theta \in[0,2 \pi]$. Use a numerical minimizer that does not require derivative calculation (Powell's method for example) and minimize F on the interval $[0,2 \pi]$. The scheme is iterative and hopefully converges rapidly to the solution.

