
Convex Quadratic Programming

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: December 10, 2017
Last Modified: September 11, 2020

Contents

1 Introduction 4

1.1 The Quadratic Programming Problem . 4

1.2 The Linear Complementarity Problem . 5

1.3 The Convex Quadratic Programming Problem . 5

1.4 Eliminating Unconstrained Variables . 5

1.5 Reduction of Dimension for Equality Constraints . 7

2 Lemke’s Method 8

2.1 Terms and Framework . 8

2.2 LCP with a Unique Solution . 9

2.3 LCP with Infinitely Many Solutions . 11

2.4 LCP with No Solution . 13

2.5 LCP with a Cycle . 14

2.6 Avoiding Cycles when Constant Terms are Zero . 14

3 Formulating a Geometric Query as a CQP 17

3.1 Distance Between Oriented Boxes . 17

3.2 Intersection of Triangle and Cylinder . 18

4 Implementation Details 19

4.1 The LCP Solver . 20

4.2 Distance Between Oriented Boxes in 3D . 21

1

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

4.3 Intersection of Triangle and Cylinder in 3D . 23

4.4 Accuracy Problems when using Fixed-Precision Floating-Point Arithmetic 25

4.5 Dealing with Vector Normalization . 26

5 Geometric Primitives 32

5.1 Linear Objects . 32

5.1.1 Lines . 33

5.1.2 Rays . 33

5.1.3 Segments . 33

5.2 Planar Objects . 33

5.2.1 Planes . 33

5.2.2 Triangles . 34

5.2.3 Rectangles . 34

5.2.4 Convex Polygons . 34

5.3 Volumetric Objects . 35

5.3.1 Tetrahedra . 35

5.3.2 Boxes . 35

5.3.3 Convex Polyhedra . 35

5.4 Data Structures for the Primitives . 36

6 Distance Queries 38

6.1 Point to Line . 41

6.2 Point to Ray . 42

6.3 Point to Segment . 42

6.4 Point to Plane . 43

6.5 Point to Triangle . 44

6.6 Point to Rectangle . 45

6.7 Point to Convex Polygon . 46

6.7.1 Convex Polygons in 2D . 46

6.7.2 Convex Polygons in 3D . 47

6.8 Point to Tetrahedron . 48

2

6.9 Point to Box . 49

6.10 Point to Convex Polyhedron . 49

6.11 Line to Line . 50

6.12 Line to Ray . 50

6.13 Line to Segment . 51

6.14 Line to Plane . 51

6.15 Line to Triangle . 52

6.16 Line to Rectangle . 52

6.17 Line to Convex Polygon . 53

6.17.1 Convex Polygons in 2D . 53

6.17.2 Convex Polygons in 3D . 53

6.18 Line to Tetrahedron . 54

6.19 Line to Box . 55

6.20 Line to Convex Polyhedron . 55

3

1 Introduction

This document briefly describes the quadratic programming (QP) problem, a minimization of a quadratic
polynomial on a domain defined by linear inequality constraints. The focus is on the convex quadratic
programming (CQP) problem, where the matrix of the quadratic polynomial is positive semidefinite. Many
geometric algorithms can be formulated as CQPs. A CQP is converted to a Linear Complementarity Problem
(LCP) that can be solved using Lemke’s Method [1].

The general framework for QP is presented first, showing how to convert a QP to an LCP. Lemke’s Method
is presented together with several illustrative examples. An implementation for solving an LCP is discussed
with attention given to accuracy of the results when using floating-point arithmetic. The LCP solver uses only
addition, subtraction, multiplication and division, so assuming the inputs are finite floating-point numbers,
such numbers are rational and the solver can use arbitrary-precision floating-point arithmetic to produce
exact results.

Some CQPs involve geometric primitives whose parameterizations use unit-length vectors. If these vectors
are computed using fixed-precision floating-point arithmetic, numerical rounding errors lead to vectors that
are not unit length when interpreted as exact rational inputs. In this situation, the LCP solver will not
produce the correct theoretical result that is based on real-valued arithmetic. However, in many cases the
concept of real quadratic field in abstract algebra can be used to solve the LCP exactly. If a distance query
is required within this framework, the distance itself is computed only at the very end of the algorithm by
approximating the exact quadratic field result by a fixed-precision floating-point number.

For the sake of notation, the set of n× 1 column vectors with real-valued entries is denoted Rn. The set of
r × c matrices with r rows, c columns, and real-valued entries is denoted Rr×c.

1.1 The Quadratic Programming Problem

The quadratic program (QP) is concisely stated as follows.

Given constants A ∈ Rn×n, b ∈ Rn, c ∈ R, D ∈ Rm×n, e ∈ Rm, and variable x ∈ Rn, minimize
f(x) = 1

2 xTAx + bTx + c subject to the linear inequality constraints x ≥ 0 and Dx ≥ e.

The number of linear inequality constraints is n+m.

The linear inequalities define an intersection of half spaces. The intersection can be empty, in which case
the QP does not have a solution. For a nonempty intersection that is unbounded and with no additional
constraints on A, it is possible the QP has no solution. If the nonempty intersection is a bounded set,
that set is necessarily convex. The polynomial f is continuous and defined on a closed bounded set, which
guarantees that f attains both a minimum and a maximum on the set.

If x ∈ Rn is a local extremum of the QP, then there exists y ∈ Rm such that (x,y) satisfies the Karesh–
Kuhn–Tucker (KKT) conditions

u = b +Ax−DTy ≥ 0, x ≥ 0, xTu = 0,

v = −e +Dx ≥ 0, y ≥ 0, yTv = 0
(1)

The KKT conditions are necessary for the existence of a local extremum. When A is positive semidefinite,
the KKT conditions are also sufficient for the existence of a local extremum.

4

1.2 The Linear Complementarity Problem

The linear complementarity problem (LCP) is concisely stated as

Given constants q ∈ Rk and M ∈ Rk×k, find z ∈ Rk such that z ≥ 0, q + Mz ≥ 0, and
zT(q +Mz) = 0.

Define w = q +Mz. We want z ≥ 0 such that w ≥ 0 and zTw = 0.

Lemke’s Method allows us to compute an LCP solution z if there exists one or to determine that there is no
solution.

1.3 The Convex Quadratic Programming Problem

In the quadratic program, when A is positive semidefinite the problem is a convex quadratic program (CQP).
The CQP can be converted to an LCP by defining

q =

 b

−e

 , M =

 A −DT

D 0

 , z =

 x

y

 , w =

 u

v

 (2)

where k = n+m. The variable names come from the CQP and the KKT conditions. The matrix M is not
symmetric, but it is positive semidefinite because zTMz ≥ 0 for all z. The inequality is guaranteed because
A is positive semidefinite.

Once formulated as an LCP, we may solve the problem using Lemke’s Method to extract the location x and
value f of the local minimum. Observe that the linear programming (LP) problem is a special case of CQP
when A is the zero matrix (which is positive semidefinite).

1.4 Eliminating Unconstrained Variables

The CQP problem has the inequality contraint x ≥ 0 that says all independent variables must be nonnegative.
Some geometric queries involving variables that are unconstrained; that is, they can be any real number.
The corresponding CQP must be modified to eliminate such variables.

For example, consider a CQP in 3D with x = (x0, x1, x2) and whose inequality constraints depend only on
x0 and x1,

x0 ≥ 0, x1 ≥ 0, D

 x0

x1

 ≥ e (3)

where D is m× 2 and e is m× 1. The variable x2 is unconstrained.

For a fixed pair (x0, x1), the function f(x) = xTAx/2 + bTx + c is quadratic in x2. The minimum with
respect to x2 must occur when the derivative with respect to x2 is zero. Let A = [aij] and b = [bj]; then
0 = ∂f/∂x2 = a20x0 + a21x1 + a22x2 + b2 and has solution x2 = −(a20x0 + a21x1 + b2)/a22. The function
to minimize is g(x0, x1) = f(x0, x1,−(a20x0 + a21x1 + b2)/a22) subject to the constraints of equation (3).

5

Using

x = x0


1

0

−a20/a22

+ x1


0

1

−a21/a22

+


0

0

−b2/a22

 = x0u0 + x1u1 + u2 (4)

some algebra will show that g(s, t) = x̃TÃx̃/2 + b̃Tx̃ + c̃, where

Ã =

 uT
0Au0 uT

0Au1

uT
1Au0 uT

qAuq

 , b̃ =

 uT
0Au2

uT
1Au2

 , c̃ =
1

2
uT
2Au2 + bTu2 + c (5)

In general, let xc be the constrained variables and let xu are the unconstrained variables. Partition the
various quantities by

x =

 xc

xu

 , A =

 Acc Acu

Auc Auu

 , b =

 bc

bu

 (6)

where the block elements are of the appropriate sizes. The matrix A is symmetric, so Auc = AT
cu. The

matrix A is also positive definite, so Acc and Auu are positive definite. The quadratic function is

f(xc,xu) = 1
2

[
xT
c xT

u

] Acc Acu

Auc Auu

 xc

xu

+

 bT
c

bT
u

 xc

xu

+ c

= 1
2xT

cAccxc +
(
xT
uAuc + bT

c

)
xc +

(
1
2xT

uAuuxu + bT
uxu + c

)
(7)

The derivative with respect to the unconstrained variables must be zero,

0 =
∂f

∂xu
= Aucxc +Auuxu + bu (8)

The solution is
xu = −A−1uu (Aucxc + bu) (9)

Substituting this back into the quadratic function, we obtain g(xc) = f(xc,xu) and

g(xc) =
1

2
xT
c Ãxc + b̃Txc + c̃ (10)

where

Ã = Acc −AcuA
−1
uuAuc, b̃ = bc −AcuA

−1
uubu, c̃ =

1

2
xT
uAuuxu + bT

uxu + c (11)

We solve the CQP to minimize g = xT
c Ãxc + b̃Txc + c̃ subject to xc ≥ 0 and the problem-specific constraints

D̃xc ≥ ẽ. The solution xc is then substituted into equation (9) to obtain xu.

6

1.5 Reduction of Dimension for Equality Constraints

Sometimes the CQP in an n-dimensional setting involves equality constraints. The dimension of the CQP
can be reduced by eliminating such contraints. For example, consider a CQP in 3D with x = (x0, x1, x2)
with constraints

x0 ≥ 0, x1 ≥ 0, Dx ≥ e, n · x + d = 0 (12)

where D is m× 3, e is m× 1, and n = (n0, n1, n2) with n2 6= 0.

Solve the equality constraint for x2 = −(n0x0 + n1x1 + d)/n2 and substitute it into both the function f(x)
and the inequality constraints Dx ≥ e. The reduction g(x0, x1) = f(x0, x1,−(n0x0 +n1x1 + d)/n2) uses the
same approach that led to equations (4) and (5), except that u0 = (1, 0,−n0/n2), u1 = (0, 1,−n1/n2) and
u2 = (0, 0,−d/n2).

The reduction of the inequality constraint Dx ≥ e is as follows. For D = [Dij] and e = [ei], each inequality
constraint is of the form

ei ≤ Di0x0 +Di1x1 +Di2x2 = Di0x0 +Di1x1 −Di2(n0x0 + n1x1 + d)/n2 (13)

Grouping similar terms, we have

(Di0 −Di2 n0/n2)x0 + (Di1 −Di2 n1/n2)x1 ≥ ei +Di2 d/n2 (14)

Using linear algebra terminology for solving the equality constraint, x2 is a basic variable and x0 and x1 are
free variables.

In general, let the ` equality constraints for the CQP be Fx + v = 0 where F is `× n and v is `× 1. For a
nontrivial problem, it must be that ` < n. Apply row reductions to the linear system of equality constraints
to obtain a coefficient matrix that is in reduced row echelon form. Once in this form it is easy to identify
the basic variables and the free variables of the linear system. If xb is the tuple of basic variables and xf

is the tuple of free variables, then the reduced row echelon form can be solved for xb = Hxf + w for some
matrix H and vector w.

For simplicity, reorder the components of x so that x = (xf ,xb). The general construction for unconstrained
variables starting with equation (6) can be duplicated with renamed quantities xf for xc, xb for xu, Aff for

Auu, Afb for Acu, Abb for Auu, bf for bc and bb for bu. The resulting Ã, b̃ and c̃ are used for the function

to be minimized, g(xf) = xT
f Ãxf/2 + b̃Txf + c̃.

Partition D = [Df Db] such that the number of columns of Df is the number of components of xf and the
number of columns of Db is the number of components of xb. The inequality constraints are

e ≤ Dx =
[
Df Db

] xf

xb

 = Dfxf +Dbxb = Dfxf +Db(Hxf + w) (15)

Grouping similar terms, we have

D̃xf = (Df +DbH)xf ≥ e−Dbw = ẽ (16)

where the first equality defines D̃ and the last equality defines ẽ.

The reduction in dimension leads to minimizing g(xf) = xT
f Ãxf/2+b̃Txf +c̃ subject to xf ≥ 0 and D̃xf ≥ ẽ.

7

2 Lemke’s Method

2.1 Terms and Framework

The standard approach for solving LP is the simplex algorithm using the tableau method. This may also be
used to solve an LCP, but an approach that uses different terminology is Lemke’s Method. The presentation
here follows that of [2]. The equation w = q + Mz is considered to be a dictionary for the basic variables
w defined in terms of the nonbasic variables z. The analogy to a dictionary is that the basic variables are
words in the dictionary defined in terms of the nonbasic variables that are other words in the dictionary. If
q ≥ 0, the dictionary is said to be feasible, in which case the LCP has the trivial solution z = 0 and w = q.

If the dictionary is not feasible, Lemke’s Method is applied. Assuming that z = (z0, . . . , zn−1), the first phase
of the algorithm adds an auxiliary variable zn ≥ 0 by modifying the dictionary to w = q+Mz+zn1, where 1
is the n-tuple whose components are all 1. The i-th equation is selected according to some criterion (described
later) that exchanges zn and wi by solving the equation for zn, which now becomes a basic variable. The
right-hand side of the equation contains a wi term, so wi now becomes a nonbasic variable. The equation for
the now-basic zn is substituted into the other equations to eliminate the right-hand side occurrences of zn.
The equation to solve for zn is selected so that after the substitutions in the other equations, the modified
dictionary is feasible.

The second phase of the algorithm is designed to obtain a dictionary such that the following two conditions
hold:

1. zn is nonbasic.

2. For each i, either zi or wi is nonbasic.

A dictionary that satisfies conditions 1 and 2 is said to be a terminal dictionary. If the dictionary satisfies
only condition 2, it is said to be a balanced dictionary. The first phase produces a balanced dictionary, but
zn is in the dictionary (it is a basic variable), so the dictionary is not terminal. The procedure to reach a
terminal dictionary is iterative. Each iteration is designed so that a nonbasic variable enters the dictionary
and a basic variable leaves the dictionary. The invariant after each iteration is that the dictionary remain
feasible and balanced. To ensure this happens and hopefully to avoid producing the same dictionary twice,
if a variable has just left the dictionary, then its complementary variable must enter the dictionary on the
next iterations: A variable cannot leave/enter on one iteration and enter/leave on the next iteration. Once
zn leaves the dictionary, we have a terminal dictionary. The condition that zi or wi is nonbasic for each
i < n means that either zi = 0 or wi = 0; that is, wTz = 0 and we have solved the LCP.

Two problems can occur during the iterations.

1. The variable complementary to the leaving variable cannot enter the dictionary. In this case, the LCP
does not have a solution.

2. It is possible to encounter a cycle in the dictionaries, which prevents the algorithm from converging to
a solution. When this happens, one of the components of q in the dictionary has become zero. This is
referred to as a degeneracy. The algorithm can be modified by introducting symbolic perturbations of
the components of q to avoid the cycles.

Several examples are presented here to illustrate the algorithm.

8

2.2 LCP with a Unique Solution

Example 1 shows how one selects the variables to exchange in order to obtain a feasible dictionary.

Example 1. Linear Programming problem with a unique solution. Minimize f(x0, x1) = 2x0 − x1 subject
to the constraints x0 ≥ 0, x1 ≥ 0, x0 + x1 ≤ 3 and x0 + 2x1 ≥ 0. The figure shows the domain of f that is
defined by the inequality constraints. The function values at the vertices of the domain are shown in red.

Visually, the minimum must occur at (x0, x1) = (0, 3). The dimension of the LCP is n = 4. The LCP
quantities of interest are

q =


2

−1

3

−2

 , M =


0 0 1 −1

0 0 1 −2

−1 −1 0 0

1 2 0 0

 , z =


x0

x1

y0

y1

 , w =


u0

u1

v0

v1

 (17)

The initial dictionary with auxiliary variable z4 is

w0 = 2 + z2 − z3 + z4

w1 = −1 + z2 − 2z3 + z4

w2 = 3− z0 − z1 + z4

w3 = −2 + z0 + 2z1 + z4

(18)

We need to exchange z4 with one of the wi and then substitute that equation into the others to obtain a
feasible dictionary; that is, choose the exchange equation so that the resulting constants for q are nonnegative.
The coefficients of z4 are positive, so we are limited to examining the two equations with negative constants.
We could solve the second equation, z4 = 1− z2 + 2z3 +w1, but when substituting it in the fourth equation
we obtain w3 = −1 + z0 + 2z1 − z2 + 2z3 + w1, which has a negative constant. The resulting dictionary is
not feasible. Therefore, the exchange equation is the fourth equation in which case z4 = 2− z0 − 2z1 + w3.
The nonbasic variable z4 becomes basic (enters the dictionary) and the basic variable w3 becomes nonbasic

9

(leaves the dictionary). Substituting in the other equations, we have

w0 = 4− z0 − 2z1 + z2 − z3 + w3

w1 = 1− z0 − 2z1 + z2 − 2z3 + w3

w2 = 5− 2z0 − 3z1 + w3

z4 = 2− z0 − 2z1 + w3

(19)

For the initial dictionary, the exchange equation is the one with the minimum q-component.

For the remaining iterations, if vj is the nonbasic variable that is required to enter the dictionary and become
basic (vj is either zj or wj), the exchange equation is the one for which the coefficient of vj is negative and
the nonnegative ratio −qi/(mijvj) is minimum for all i.

The variable w3 left the dictionary, so z3 must now enter the dictionary. Choose the equation that minimizes
the quantity mentioned in the previous paragraph. The first and second equations have negative coefficients
for z3. The ratio for the first equation is 4/1 and the ratio for the second equation is 1/2, so the second
equation is the one to exchange. Solve for z3 and substitute this into the other equations,

w0 = (7/2)− (1/2)z0 − z1 + (1/2)z2 + (1/2)w1 + (1/2)w3

z3 = (1/2)− (1/2)z0 − z1 + (1/2)z2 − (1/2)w1 + (1/2)w3

w2 = 5− 2z0 − 3z1 + w3

z4 = 2− z0 − 2z1 + w3

(20)

The variable w1 left the dictionary, so z1 must now enter the dictionary. All four equations have negative
coefficients for z1 and the ratios are 7/2, 1/2, 5/3 and 1, in order of listing of the equations. The minimum
ratio is 1/2, generated by the second equation. Solve for z1 and subtitute this into the other equations,

w0 = 3 + z3 + w1

z1 = (1/2)− (1/2)z0 − z3 + (1/2)z2 − (1/2)w1 + (1/2)w3

w2 = (7/2)− (1/2)z0 + 3z3 − (3/2)z2 + (3/2)w1 − (1/2)w3

z4 = 1 + 2z3 − z2 + w1

(21)

The variable z3 left the dictionary, so w3 must now enter the dictionary. Only the third equation has a
negative coefficient for w3. Solve for w3 and substitute this into the other equations,

w0 = 3 + z3 + w1

z1 = 4− z0 + 2z3 − z2 + w1 − w2

w3 = 7− z0 + 6z3 − 3z2 + 3w1 − 2w2

z4 = 1 + 2z3 − z2 + w1

(22)

The variable w2 left the dictionary, so z2 must now enter the dictionary. The last 3 equations have a negative
coefficient for z2, so the ratios are 4, 7/3, and 1. The last equation provides the minimum ratio. Solve for

10

z2 and substitute this into the other equations,

w0 = 3 + z3 + w1

z1 = 3− z0 + z4 − w2

w3 = 4− z0 + 3z4 − 2w2

z2 = 1 + 2z3 − z4 + w1

(23)

The auxiliary variable z4 left the dictionary, returning to its initial role as a nonbasic variable. The iterations
terminate here and we have a solution. The variables on the right-hand side of the equation are set to zero:
z0 = 0, z3 = 0, z4 = 0, w1 = 0 and w2 = 0. The variables on the left-hand side are then w0 = 3, z1 = 3,
w3 = 4 and z2 = 0. The original variables that minimize f are (x0, x1) = (z0, z1) = (0, 3).

2.3 LCP with Infinitely Many Solutions

Example 2 shows that the algorithm will select one of the locations at which the minimum occurs when there
are infinitely many such locations.

Example 2. Linear Programming problem with infinitely many solutions. Minimize f(x0, x1) = x0 + x1
subject to the constraints 0 ≤ x0 ≤ 2, 0 ≤ x1 ≤ 2, x0 + x1 ≥ 1 and x0 + x1 ≥ 2. The figure shows the
domain of f that is defined by the inequality constraints. The constraint x0 + x1 ≥ 1 does not contribute to
defining the domain of f ; generally, it is not trivial to identify such contraints. The function values at the
vertices of the domain are shown in red.

The function is constant along the domain edge x0 + x1 = 2, so any pair (x0, x1) on this edge is a minimizer
point.

11

The dimension of the LCP is n = 6. The LCP quantities of interest are

q =



1

1

−1

−2

2

2


, M =



0 0 −1 −1 1 0

0 0 −1 −1 0 1

1 1 0 0 0 0

1 1 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0


, z =



x0

x1

y0

y1

y2

y3


, w =



u0

u1

v0

v1

v2

v3


(24)

The initial dictionary with auxiliary variable z6 is

w0 = 1− z2 − z3 + z4 + z6

w1 = 1− z2 − z3 + z5 + z6

w2 = −1 + z0 + z1 + z6

w3 = −2 + z0 + z1 + z6

w4 = 2− z0 + z6

w5 = 2− z1 + z6

(25)

The fourth equation has minimum q-component (-2). Solve for z6 and substitute this into the other equations,

w0 = 3− z0 − z2 − z3 + z4 + w3

w1 = 3− z0 − z2 − z3 + z5 + w3

w2 = 1− w3

z6 = 2− z0 − z1 + w3

w4 = 4− 2z0 − z1 + w3

w5 = 4− z0 − 2z1 + w3

(26)

The variable w3 left the dictionary, so z3 must now enter the dictionary. The first two equations have a
negative z3 coefficient and the same ratio, so either equation can be chosen. Let’s solve the first equation
for z3 and substitute this into the other equations,

z3 = 3− z0 − z1 − z2 − w0 + z4 + w3

w1 = 0 + w0 − z4 + z5

w2 = 1− w3

z6 = 2− z0 − z1 + w3

w4 = 4− 2z0 − z1 + w3

w5 = 4− z0 − 2z1 + w3

(27)

12

The variable w0 left the dictionary, so z0 must now enter the dictionary. Of the four equations with a
negative z0 coefficient, two of them attain the minimum ratio—the equation with z6 and the equation with
w4, both having ratio 2. Solve the z6-equation for z0 and substitute this into the other equations,

z3 = 1− z2 − w0 + z4 + z6

w1 = 0 + w0 − z4 + z5

w2 = 1− w3

z0 = 2− z6 − z1 + w3

w4 = 0 + z1 + 2z6 − w3

w5 = 2− z1 + z6

(28)

The auxiliary variable z6 has left the dictionary, so we have solved the LCP. The variables on the right-hand
side are set to zero: z1 = 0, z2 = 0, z4 = 0, z5 = 0, z6 = 0, w0 = 0 and w3 = 0. The variables on the
left-hand side are then z3 = 1, w1 = 0, w2 = 1, z0 = 2, w4 = 0 and w5 = 2. The original variables that
minimize f are (x0, x1) = (z0, z1) = (2, 0). As noted, this is only one of infinitely many minimizers for f .

When w0 left the dictionary, we had two choices for the equations leading to the minimum ratio. We chose
the z6-equation for the iteration, which led immediately to a solution (x0, x1) = (2, 0). Had we chosen the
w4-equation, two additional iterations are required for z6 to leave the dictionary. The solution in this case
is still (2, 0).

2.4 LCP with No Solution

Example 3 has no solution because a complementary variable cannot enter the dictionary. It mentions a
general condition that ensures there is no solution in this case.

Example 3. Linear Programming problem with no solution. Minimize f(x0, x1) = 2x0 − x1 for x0 ≥ 0,
x1 ≥ 0 and x0 + x1 ≥ 0. The domain of f is an unbounded convex region in the first quadrant. The
dimension of the LCP is n = 3. The LCP quantities of interest are

q =


2

−1

1

 , M =


0 0 −1

0 0 −1

1 1 0

 , z =


x0

x1

y0

 , w =


u0

u1

v0

 , (29)

The initial dictionary with auxiliary variable z3 is

w0 = 2− z2 + z3

w1 = −1− z2 + z3

w2 = 1 + z0 + z1 + z3

(30)

13

The second equation has minimum q-component. Solve for z3 and substitute this into the other equatoins,

w0 = 3

z3 = 1 + z2 + w1

w2 = 2 + z0 + z1 + z3 + w1

(31)

The variable w1 left the dictionary, so the complementary variable z1 must now enter the dictionary. However,
its coefficient is not negative, so it cannot enter the dictionary. Therefore, the LCP has no solution. This
should be intuitively clear because f(0, x1) = −x1 which has the limit −∞ as x1 → ∞; that is, f is not
bounded below.

2.5 LCP with a Cycle

I have been unable to construct a cycling example that uses the min-ratio algorithm shown in the previous
examples. Searching online for such an example has not been successful. Other pivoting strategies exist for
entering and leaving the dictionary. Example 4 uses an alternate strategy that generates a cycle.

Example 4. Linear Programming problem with a cycle. An example of a LCP with a cycle in the dictionaries
is presented in [3]. The cycle example is for a linear programming problem where the objective function is
tracked along with the LCP equations. The variable that enters the dictionary is the one in the objective
function that has the largest coefficient. The variable that leaves the dictionary is the basic variable with
the smallest index, where the zi variables are assumed to occur before the wi variables in the indexing. The
smallest-index rule is Bland’s rule.

2.6 Avoiding Cycles when Constant Terms are Zero

This section shows how to avoid cycles by perturbing the q-components with powers of a variable ε. The
idea is that when the degeneracy occurs the first time because a component of q becomes zero, add ε to
it, making that component a linear polynomial of ε. The arithmetic operations of the LCP iterations now
involve a symbolic component—manipulating the polynomial itself using addition and scalar multiplication.
If another component of q becomes zero in a later iteration, then add ε2 to it, making that component a
quadratic polynomial of ε. In worst case, all components of q become zero during the iterations and the
final component has εn added to it for an LCP of dimension n. The polynomials are linearly independent
throughout the iterations, so the cycling cannot occur. When the iterations terminate and there is an LCP
solution, set ε to zero and report the solution z and w in the usual manner.

In the GTE implementation of the LCP solver, the code is kept simple by adding the powers of ε to the
components of q even when those components are not zero. The trade-off is that more computations are
required to manipulate the polynomials. Of course, the code can be optimized to reduce computations by
inserting the powers of ε only when needed.

Example 5 illustrates the idea for an LCP where at least one of the q components becomes zero during the
iterations.

14

Example 5. Minimize f(x0, x1) = (x20 + 2x21)/2− (x0 + x1) subject to the constraints x0 ≥ 0, x1 ≥ 0 and
2x0 + x1 ≥ 1. The LCP formulation is the following, where z3 is the auxiliary variable,

w0 = −1 + z0 − 2z2 + z3

w1 = −1 + 2z1 − z2 + z3

w2 = −1 + 2z0 + z1 + z3

(32)

The variable z3 must enter the dictionary via the equation that has the minimum q-component. All compo-
nents attain the minimum, so choose the first equation to solve for z3. The variable w0 exits the dictionary,

z3 = 1− z0 + 2z2 + w0

w1 = 0− z0 + 2z1 + z2 + w0

w2 = 0 + z0 + z1 + 2z2 + w0

(33)

The variable z0 must enter the dictionary. The minimum-ratio term is generated by the second equation, so
w1 must leave the dictionary,

z3 = 1 + w1 − 2z1 + z2

z0 = 0− w1 + 2z1 + z2 + w0

w2 = 0− w1 + 3z1 + 3z2 + 2w0

(34)

The variable z1 must enter the dictionary. The minimum-ratio term is generated by the first equation, so z3
must leave the dictionary,

z1 = (1/2) + (1/2)w1 − (1/2)z3 + (1/2)z2

z0 = 1− z3 + 2z2 + w0

w2 = (3/2) + (1/2)w1 − (3/2)z3 + (9/2)z2 + 2w0

(35)

The auxiliary variable z3 has exited the dictionary and the q coefficients are nonnegative, so we have a
unique solution to the LCP: w = (0, 0, 3/2) and z = (1, 1/2, 0). The CQP solution is (x0, x1) = (1, 1/2).
Observe that ∇f(x0, x1) = (x0 − 1, 2x1 − 1) and the global minimum occurs when (x0 − 1, 2x1 − 1) = (0, 0),
so x0 = 1 and x1 = 1/2. This is the solution we found via the LCP. The minimizer point is in the domain
defined by the inequality constraints.

Although we did not encounter a cycle, we can still perturb the q components by powers of ε. The LCP is

w0 = (−1 + ε) + z0 − 2z2 + z3

w1 = (−1 + ε2) + 2z1 − z2 + z3

w2 = (−1 + ε3) + 2z0 + z1 + z3

(36)

Determining the minimum-ratio now depends on comparisons of polynomials. The less-than operation uses
lexiographical ordering. If a(x) =

∑n
i=0 aix

i and b(x) =
∑n

i=0 bix
i, pseudocode for the less-than operation

is shown next,

15

boo l LessThan (Po l ynomia l a , Po l ynomia l b)
{

f o r (i n t i = 0 ; i <= n ; ++i)
{

i f (a [i] < b [i])
{

r e t u r n t rue ;
}

i f (a [i] > b [i])
{

r e t u r n f a l s e ;
}

}

// At t h i s po in t , a [i] and b [i] a r e equa l f o r a l l i .
r e t u r n f a l s e ;

}

Of the 3 equations in the LCP, (−1 + ε3) < (−1 + ε) and (−1 + ε3) < (−1 + ε2), so the last equation has
the minimum q component. The variable z3 enters the dictionary and the variable w2 leaves the dictionary,

w0 = (ε− ε3)− z0 − z1 − 2z2 + w2

w1 = (ε2 − ε3)− 2z0 + z1 − z2 + w2

z3 = (1− ε3)− 2z0 − z1 + w2

(37)

The variable z2 must enter the dictionary. The first two equations are candidates for the pivoting. The
ratios are, in order, (ε− ε3)/2 and (ε2− ε3). The second ratio is minimum, so w1 must leave the dictionary,

w0 = (ε− 2ε2 + ε3) + 3z0 − 3z1 + 2w1 − w2

z2 = (ε2 − ε3)− 2z0 + z1 − w1 + w2

z3 = (1− ε3)− 2z0 − z1 + w2

(38)

The variable z1 must enter the dictionary. The first and last equations are candidates for the pivoting. The
ratios are, in order, (ε−2ε2 +ε3)/3 and (1−ε3). The first ratio is minimum, so w0 must leave the dictionary,

z1 = ((1/3)ε− (2/3)ε2 + (1/3)ε3) + z0 − (1/3)w0 + (2/3)w1 − (1/3)w2

z2 = ((1/3)ε+ (1/3)ε2 − (2/3)ε3)− z0 − (1/3)w0 − (1/3)w1 + (2/3)w2

z3 = (1− (1/3)ε+ (2/3)ε2 − (4/3)ε3)− 3z0 + (1/3)w0 − (2/3)w1 + (4/3)w2

(39)

The variable z0 must enter the dictionary. The second and third equations are candidates for the pivoting.
The ratios are, in order, ((1/3)ε − (2/3)ε2 + (1/3)ε3) and ((1/3) − (1/9)ε + (2/9)ε2 − (4/9)ε3). The first
ratio is minimum, so z2 must leave the dictionary,

z1 = (0 + (2/3)ε− (1/3)ε2 − (1/3)ε3)− z2 − (2/3)w0 + (1/3)w1 + (1/3)w2

z0 = ((1/3)ε+ (1/3)ε2 − (2/3)ε3)− z2 − (1/3)w0 − (1/3)w1 + (2/3)w2

z3 = (1− (4/3)ε− (1/3)ε2 + (2/3)ε3) + 3z2 + (4/3)w0 + (1/3)w1 − (2/3)w2

(40)

16

The variable w2 must enter the dictionary. The last equation is the only pivoting candidate, so z3 must leave
the dictionary,

z1 = ((1/2)− (1/2)ε2) + (1/2)z2 + (1/2)w1 − (1/2)z3

z0 = (1− ε) + 2z2 + w0 − z3
w2 = ((3/2)− 2ε− (1/2)ε2 + ε3) + (9/2)z2 + 2w0 + (1/2)w1 − (3/2)z3

(41)

The auxiliary variable left the dictionary and the q components with ε = 0 are nonnegative, so we have a
unique solution to the LCP: w = (0, 0, 3/2) and z = (1, 1/2, 0). This is the same solution we found without
the perturbations.

3 Formulating a Geometric Query as a CQP

The typical geometric queries that can be formulated as CQPs are distance between objects and test-
intersection queries between objects. The latter type of query determines whether or not two objects overlap
but does not give information (or gives limited information) about the overlap set.

The first stage for implementing a geometric query is to formulate the corresponding CQP. The second stage
is to solve the CQP as an LCP.

3.1 Distance Between Oriented Boxes

Example 6 shows how to set up the convex quadratic programming algorithm for computing the distance
between two boxes in any dimension.

Example 6. Convex Quadratic Programming problem: Distance between boxes in n-dimensions. A box in
n-dimensions can be parameterized by choosing an n×1 point k as a box corner, a right-handed orthonormal
set of axis directions {uj}n−1j=0 and positive edge lengths {`j}n−1j=0 . A point p in the box is

p(ξ) = k +

n−1∑
j=0

ξjuj = k +Rξ, 0 ≤ ξ ≤ ` (42)

where ξ is an n× 1 vector whose components are the ξj , R is the n× n rotation matrix whose columns are
the uj and ` is an n× 1 vector whose components are the `j .

The goal is to formulate the distance between two boxes as a CQP that can then be solved using an LCP.
Let the box centers be ki, the rotation matrices be Ri and the edge lengths be `i. The parameterized boxes
are

pi(ξi) = ki +Riξi, 0 ≤ ξi ≤ `i (43)

for i ∈ {0, 1}. All components are doubly indexed: pi has components pij , ki has components kij , ui has
components uij , Ri has columns ui, `i has components `ij and ξi has components ξij .

17

Define ∆ = k1 − k0. Half the squared distance between two points, one point from each box, is

f(x) = 1
2 |p0(ξ0)− p1(ξ1)|2

= 1
2 |R0ξ0 −R1ξ1 −∆|2

= 1
2

(
ξT0R

T
0R0ξ0 + ξT1R

T
1R1ξ1 + ∆T∆− 2ξT0R

T
0R1ξ1 − 2∆TR0ξ0 + 2∆TR1ξ1

)
= 1

2

[
ξT0 ξT1

] I −RT
0R1

−RT
1R0 I

 ξ0

ξ1

+
[
−∆TR0 ∆TR1

] ξ0

ξ1

+ 1
2∆T∆

= 1
2xTAx + bTx + c

(44)

where

x =

 ξ0

ξ1

 , A =

 I −RT
0R1

−RT
1R0 I

 , b =

 −RT
0∆

RT
1∆

 , c =
1

2
|∆|2, ` =

 `0

`1

 (45)

and I is the n× n identity matrix. Note that RT
0R0 = RT

1R1 = I because R0 and R1 are rotation matrices.

The inequatity constraints are 0 ≤ x ≤ `. The formal statement of the inequality constraints for the
quadratic program is Dx ≥ e. For the current example,

D =

 −I
−I

 , e =

 −`0
−`1

 (46)

3.2 Intersection of Triangle and Cylinder

Example 7 show how to set up the convex quadratic programming algorithm for testing for intersection
between a triangle and a cylinder in any dimension. The motivation is the 3D problem, but notice that the
specialization of a cylinder to 2D is a rectangle, so the intersection query is for a triangle and rectangle.

Example 7. Convex Quadratic Programming problem: Intersection of a triangle and a finite cylinder. A
nondegenerate (solid) triangle in n-dimensions has vertices vi for i ∈ {0, 1, 2} and linearly independent
edge directions dj = vj+1 − v0 for j ∈ {0, 1}. Define the parameter pair x = (x0, x1). The triangle is
parameterized by

p(x) = v0 + x0d0 + x1d1 = V0 + Ex, x0 ≥ 0, x1 ≥ 0, x0 + x1 ≤ 1 (47)

where E is an n × 2 matrix whose columns are the edge directions. A (solid) infinite cylinder is the set
of points that are within r units of distance from an axis with origin k and unit-length direction u0; r is
the radius of the cylinder. A (solid) finite cylinder is the infinite cylinder truncated by two hyperplanes
u0 · (p − (k ± (h/2)u0)) = 0, keeping only those infinite cylinder points between the two hyperplanes; h is
the height of the finite cylinder. Let {uj}n−1j=0 be a right-handed orthonormal basis for Rn for which the first
vector in the set is the finite cylinder axis direction. The finite cylinder is parameterized by

k + t0u0 +

n−1∑
j=1

tjuj = k +Rt, |t0| ≤ h/2,
n−1∑
j=1

t2j ≤ r2 (48)

18

where t is an n× 1 vector whose components are the tj and R is the n× n rotation matrix whose columns
are the uj .

The triangle and cylinder intersect when there is at least one triangle point within r units of the cylinder
axis and between the two truncating planes. We can formulate this using a CQP that minimizes a squared
distance. Define ∆ = v0 − k. The matrix that projects vectors onto the plane with origin 0 and normal u0

is P = I−u0u
T
0 . The right-hand side of the third equality in the next displayed equation uses two properties

of a projection matrix: PT = P and P2 = P. Half the squared distance between a triangle point and a
cylinder axis point is

f(x) = 1
2 |P (P(x)− k)|2

= 1
2 |P (Ex + ∆)|2

= 1
2 (Ex + ∆)

T P (Ex + ∆)

= 1
2xTETPEx + ∆TPEx + 1

2∆TPx

= 1
2xTAx + bTx + c

(49)

where A = ETPE, b = ETPT∆ = ETP∆ and c = |∆|2/2.

The components of x are nonnegative. The other inequality constraints are

x0 + x1 ≤ 1, h/2 ≥ |t0| = |u0 · (p(x)− k)| = |u0 · (Ex + ∆)| = |uT
0Ex + UT

0∆| (50)

In terms of the formal inequality constraints Dx ≥ e, we have

D =


−1T

uT
0E

−uT
0E

 , e =


−1

−h/2− uT
0∆

−h/2 + uT
0∆

 (51)

where D is a 3× 2 matrix where 1 is a 2× 1 vector whose components are both 1. The vector e is 3× 1.

An LCP solver is used to compute the minimizer x̂ and the corresponding minimum value f̂ = f(x̂). The

minimum squared distance is 2f̂ . The triangle and cylinder intersect whenever 2f̂ ≤ r2.

4 Implementation Details

The GTE source code that uses an LCP solver is designed to allow you to use fixed-precision floating-point
arithmetic (float or double) or arbitrary-precision floating-point arithmetic (via BSRational). See the document
GTE: Arbitrary Precision Arithmetic for details. The latter type allows the LCP solver to produce the exact
result under the assumption that the inputs are error free; that is, the inputs are assumed to be finite
floating-point numbers that, of course, are rational numbers. Any knowledge about numerical rounding
errors in producing the inputs is unknown to the LCP solver, so it cannot take advantage of it.

Various geometric primitives have representations that include unit-length vectors. This is problematic when
using arbitrary-precision floating-point arithmetic because typically those vectors are obtained by dividing
a floating-point vector by its length. The length involves a square root operation, which generally (as a real
number) is irrational and requires a numerical approximation to represent it. A section is included on how to
deal with the normalization symbolically, a concept related to the abstract algebraic topic of real quadratic
fields.

19

https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf

4.1 The LCP Solver

The LCP solver in GTE is a straightforward implementation of the algorithm used in Examples 1, 2 and 3.
The solver also uses the symbolic perturbation described previously to avoid degeneracy and cycles in the
iterations.

Listing 1 shows the public interfaces for the classes used to solve LCPs. The actual source code is found
online at LCPSolver.h.

Listing 1. The LCPSolverShared base class encapsulates the support for setting the maximum number
of iterations used by the LCP solver and for querying the actual number of iteration used. The Result

enumeration is used by derived classes to report the outcome of the solver. The two derived classes include
one that uses std::array when the dimension of the LCP is known at compile time and one that uses std::vector

when the dimension of the LCP is known only at run time.

template <typename Real>
c l a s s LCPSolverShared
{
pro tec ted :

// Abs t r a c t base c l a s s c o n s t r u c t i o n . A v i r t u a l d e s t r u c t o r i s not p r o v i d ed
// because t h e r e a r e no r e q u i r e d s i d e e f f e c t s when d e s t r o y i n g o b j e c t s from
// the d e r i v e d c l a s s e s . The member mMax I t e ra t i ons i s s e t by t h i s c a l l to
// the d e f a u l t v a l u e o f n*n .
LCPSolverShared (i n t n) ;

pub l i c :
// Th e o r e t i c a l l y , when t h e r e i s a s o l u t i o n the a l g o r i t hm must conve rge
// i n a f i n i t e number o f i t e r a t i o n s . The number o f i t e r a t i o n s depends
// on the problem at hand , but we need to guard a g a i n s t an i n f i n i t e l oop
// by l i m i t i n g the number . The imp l ementa t i on u s e s a maximum number o f
// n*n (chosen a r b i t r a r i l y) . You can s e t the number y o u r s e l f , pe rhaps
// when a c a l l to So l v e f a i l s ==i n c r e a s e the number o f i t e r a t i o n s and c a l l
// So l v e aga in .
i n l i n e vo id Se tMax I t e r a t i o n s (i n t max I t e r a t i o n s) ;
i n l i n e i n t Ge tMax I t e r a t i o n s () const ;

// Access the a c t u a l number o f i t e r a t i o n s used i n a c a l l to So l v e .
i n l i n e i n t GetNumI t e ra t i on s () const ;

enum Re su l t
{

HAS TRIVIAL SOLUTION ,
HAS NONTRIVIAL SOLUTION ,
NO SOLUTION ,
FAILED TO CONVERGE ,
INVALID INPUT

} ;
} ;

template <typename Real , i n t n>
c l a s s LCPSolver<Real , n> : pub l i c LCPSolverShared<Real>
{
pub l i c :

// Con s t r u c t i o n . The member mMax I t e ra t i ons i s s e t by t h i s c a l l to the
// d e f a u l t v a l u e o f n*n .
LCPSolver () ;

// I f you want to know s p e c i f i c a l l y why ’ t r u e ’ o r ’ f a l s e ’ was r e tu rned ,
// pas s the add r e s s o f a Re s u l t v a r i a b l e as the l a s t paramete r .
boo l So l v e (s t d : : a r r ay<Real , n> const& q , s td : : a r r ay<s t d : : a r r ay<Real , n>, n> const& M,

s td : : a r r ay<Real , n>& w, s td : : a r r ay<Real , n>& z ,
typename LCPSolverShared<Real > : : R e s u l t * r e s u l t = n u l l p t r) ;

} ;

20

https://www.geometrictools.com/GTE/Mathematics/LCPSolver.h

template <typename Real>
c l a s s LCPSolver<Real> : pub l i c LCPSolverShared<Real>
{
pub l i c :

// Con s t r u c t i o n . The member mMax I t e ra t i ons i s s e t by t h i s c a l l to the
// d e f a u l t v a l u e o f n*n .
LCPSolver (i n t n) ;

// The i npu t q must have n e l ement s and the i npu t M must be an n=by=n
// mat r i x s t o r e d i n row=major o r d e r . The ou tpu t s w and z have n e l ement s .
// I f you want to know s p e c i f i c a l l y why ’ t r u e ’ o r ’ f a l s e ’ was r e tu rned ,
// pas s the add r e s s o f a Re s u l t v a r i a b l e as the l a s t paramete r .
boo l So l v e (s t d : : v e c to r<Real> const& q , s td : : v e c to r<Real> const& M,

s td : : v e c to r<Real>& w, s td : : v e c to r<Real>& z ,
typename LCPSolverShared<Real > : : R e s u l t * r e s u l t = n u l l p t r) ;

} ;

4.2 Distance Between Oriented Boxes in 3D

Example 6 shows the construction of the CQP for computing the distance between two oriented boxes in
n dimensions. Listing 2 shows pseudocode for computing the distance between two oriented boxes in 3
dimensions. The representations of an oriented box in GTE and in Wild Magic use a center point and
extents (half-lengths), so there is a small adjustment to compute the corners and lengths of the boxes.

Listing 2. The listing contains pseudocode for computing the distance between two oriented boxes in 3
dimensions. A box is parameterized by p = c +

∑2
i=0 xiui with |xi| ≤ ei. The point c is the box center and

ei are extents, which are half the edge lengths of the box edges.

template <typename Real>
s t r u c t Box3
{

Point3<Real> c e n t e r ;
Vector3<Real> a x i s [3] ;
Rea l e x t e n t [3] ;

} ;

template <typename Real>
s t r u c t Box3Box3QueryResult
{

// Sp e c i f y the maximum number o f LCP i t e r a t i o n s . The d e f a u l t i n GTE
// i s Nˆ2 f o r an LCP wi th Nx1 v e c t o r q and NxN mat r i x M. The conve rgence
// i s not gua ran teed to occu r w i t h i n Nˆ2 i t e r a t i o n s , so a c o n s e r v a t i v e
// approach i n an a p p l i c a t i o n i s to examine ’ s t a t u s ’ a f t e r the query . I f
// the v a l u e i s FAILED TO CONVERGE , r e p e a t w i th a l a r g e r maxLCPI te ra t i ons
// i f so d e s i r e d .
i n t maxLCPI te ra t i ons ;

// The number o f i t e r a t i o n s used by LCPSolver r e g a r d l e s s o f whether
// or not the query i s s u c c e s s f u l .
i n t numLCPIte ra t ions ;

// The i n f o rma t i o n r e t u r n e d by the LCP s o l v e r about what i t d i s c o v e r e d .
LCPSolver<Real , 12> : : R e s u l t s t a t u s ;

// These members a r e v a l i d on l y when q u e r y I s S u c c e s s f u l i s t r u e ;
// o the rw i s e , they a r e a l l s e t to z e r o .
Rea l d i s t a n c e , s q rD i s t a n c e ;
s t d : : a r r ay<Real , 3> box0Parameter ; // the x i f o r box0
s t d : : a r r ay<Real , 3> box1Parameter ; // the x i f o r box1
Vector3<Real> c l o s e s t P o i n t [2] ; // (P 0 , P 1) wher P 0 i s i n box0 and P 1 i s i n box1

} ;

21

// Set r e s u l t . maxLCPI te ra t i ons to the d e s i r e d v a l u e b e f o r e c a l l i n g t h i s f u n c t i o n .
template <typename Real>
vo id ComputeD i s tanceAndC lose s tPo in t s (Box3<Real> box0 , Box3<Real> box1 ,

Box3Box3QueryResult<Real>& r e s u l t)
{

// Compute the box c o r n e r s and d i f f e r e n c e o f c o r n e r s .
Point3<Real> K0 = box0 . c en t e r , K1 = box1 . c e n t e r ;
f o r (i n t r = 0 ; r < 3 ; ++r)
{

K0 == box0 . e x t e n t [r] * box0 . a x i s [r] ;
K1 == box1 . e x t e n t [r] * box1 . a x i s [r] ;

}
Vector3<Real> De l ta = K1 = K0 ;

// Compute R0ˆT * De l ta and R1ˆT * De l ta .
Vector3<Real> R0TDelta , R1TDelta ;
f o r (i n t r = 0 ; r < 3 ; ++r)
{

R0TDelta [r] = Dot (box0 . a x i s [r] , De l t a) ;
R1TDelta [r] = Dot (box1 . a x i s [r] , De l t a) ;

}

// Compute R0ˆT * R1 .
s t d : : a r r ay<s t d : : a r r ay<Real , 3>, 3> R0TR1 ;
f o r (i n t r = 0 ; r < 3 ; ++r)
{

f o r (i n t c = 0 ; c < 3 ; ++c)
{

R0TR1 [r] [c] = Dot (box0 . a x i s [r] , box1 . a x i s [c]) ;
}

}

// Compute the l e n g t h s from the e x t e n t s (h a l f=l e n g t h s) .
s t d : : a r r ay<Real , 3> l eng th0 , l e ng t h1 ;
f o r (i n t r = 0 ; r < 3 ; ++r)
{

l e n g t h0 [r] = 2 * box0 . e x t e n t [r] ;
l e n g t h1 [r] = 2 * box1 . e x t e n t [r] ;

}

// The LCP has 6 v a r i a b l e s and 6 n o n t r i v i a l i n e q u a l i t y c o n s t r a i n t s .
s t d : : a r r ay<Real , 12> q =
{

=R0TDelta [0] , =R0TDelta [1] , =R0TDelta [2] , R1TDelta [0] , R1TDelta [1] , R1TDelta [2] , // b
l e n g t h0 [0] , l e ng t h0 [1] , l e ng t h0 [2] , l e ng t h1 [0] , l e ng t h1 [1] , l e n g t h1 [2] // =e

} ;

s t d : : a r r ay<s t d : : a r r ay<Real , 12>, 12> M; // {{ A, =DˆT } , { D, 0 }}
{

M[0] = { 1 , 0 , 0 , =R0TR1 [0] [0] , =R0TR1 [0] [1] , =R0TR1 [0] [2] , 1 , 0 , 0 , 0 , 0 , 0 } ;
M[1] = { 0 , 1 , 0 , =R0TR1 [1] [0] , =R0TR1 [1] [1] , =R0TR1 [1] [2] , 0 , 1 , 0 , 0 , 0 , 0 } ;
M[2] = { 0 , 0 , 1 , =R0TR1 [2] [0] , =R0TR1 [2] [1] , =R0TR1 [2] [2] , 0 , 0 , 1 , 0 , 0 , 0 } ;
M[3] = { =R0TR1 [0] [0] , =R0TR1 [1] [0] , =R0TR1 [2] [0] , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 } ;
M[4] = { =R0TR1 [0] [1] , =R0TR1 [1] [1] , =R0TR1 [2] [1] , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 } ;
M[5] = { =R0TR1 [0] [2] , =R0TR1 [1] [2] , =R0TR1 [2] [2] , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 } ;

M[6] = { =1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
M[7] = { 0 , =1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
M[8] = { 0 , 0 , =1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
M[9] = { 0 , 0 , 0 , =1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
M[1 0] = { 0 , 0 , 0 , 0 , =1, 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
M[1 1] = { 0 , 0 , 0 , 0 , 0 , =1, 0 , 0 , 0 , 0 , 0 , 0 } ;

} ;

LCPSolver<Real , 12> l c p ;
l c p . Se tMaxLCPI te ra t i ons (r e s u l t . maxLCPI te ra t i ons) ;
s t d : : a r r ay<Real , 12> w, z ;
i f (l c p . So l v e (q , M, w, z , &r e s u l t . s t a t u s))
{

r e s u l t . c l o s e s t P o i n t [0] = box0 . c e n t e r ;
f o r (i n t i = 0 ; i < 3 ; ++i)
{

22

r e s u l t . box0Parameter [i] = z [i] = box0 . e x t e n t [i] ;
r e s u l t . c l o s e s t P o i n t [0] += r e s u l t . box0Parameter [i] * box0 . a x i s [i] ;

}

r e s u l t . c l o s e s t P o i n t [1] = box1 . c e n t e r ;
f o r (i n t i = 0 , j = 3 ; i < 3 ; ++i , ++j)
{

r e s u l t . box1Parameter [i] = z [j] = box1 . e x t e n t [i] ;
r e s u l t . c l o s e s t P o i n t [1] += r e s u l t . box1Parameter [i] * box1 . a x i s [i] ;

}

Vector3<Real> d i f f = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (d i f f , d i f f) ;
r e s u l t . d i s t a n c e = s q r t (r e s u l t . s q rD i s t a n c e) ;

}
e l s e
{

// I f you r each t h i s case , the v a l u e o f ’ r e s u l t ’ i s one o f
// NO SOLUTION or FAILED TO CONVERGE . The va l u e INVALID INPUT
// occu r s on l y when the LCPSolver i s pas sed s td : : v e c t o r i n p u t s
// whose d imens i on s a r e not c o r r e c t .
f o r (i n t i = 0 ; i < 3 ; ++i)
{

r e s u l t . box0Parameter [i] = 0 ;
r e s u l t . box1Parameter [i] = 0 ;
r e s u l t . c l o s e s t P o i n t [0] [i] = 0 ;
r e s u l t . c l o s e s t P o i n t [1] [i] = 0 ;

}
r e s u l t . d i s t a n c e = 0 ;
r e s u l t . s q rD i s t a n c e = 0 ;

}

r e s u l t . numLCPIte ra t ions = l c p . Ge tNumI t e ra t i on s () ;
}

4.3 Intersection of Triangle and Cylinder in 3D

Example 7 shows the construction of the CQP for testing for intersection of a triangle and a finite cylinder
in n dimensions. Listing 3 shows pseudocode for this query in 3 dimensions.

Listing 3. The listing contains pseudocode for testing for the intersection of a triangle and a finite cylinder
in 3 dimensions.

template <typename Real>
s t r u c t Tr i a n g l e 3
{

Point3<Real> v e r t e x [3] ;
} ;

template <typename Real>
s t r u c t Cy l i n d e r 3
{

Point3<Real> c e n t e r ;
Vector3<Real> d i r e c t i o n ;
Rea l r a d i u s ;
Rea l h e i g h t ;

} ;

template <typename Real>
s t r u c t Tr i a n g l e 3Cy l i n d e r 3Que r yR e s u l t
{

// Sp e c i f y the maximum number o f LCP i t e r a t i o n s . The d e f a u l t i n GTE
// i s Nˆ2 f o r an LCP wi th Nx1 q and NxN M. The conve rgence i s not

23

// gua ran teed to occu r w i t h i n Nˆ2 i t e r a t i o n s , so a c o n s e r v a t i v e approach
// i n an a p p l i c a t i o n i s to examine ’ s t a t u s ’ a f t e r the query . I f the v a l u e
// i s FAILED TO CONVERGE , r e p e a t w i th a l a r g e r maxLCPI te ra t i ons i f so d e s i r e d .
i n t maxLCPI te ra t i ons ;

// The number o f i t e r a t i o n s used by LCPSolver r e g a r d l e s s o f whether
// or not the query i s s u c c e s s f u l .
i n t numLCPIte ra t ions ;

// The i n f o rma t i o n r e t u r n e d by the LCP s o l v e r about what i t d i s c o v e r e d .
LCPSolver<Real , 5> : : R e s u l t s t a t u s ;

// The query i s t e s t= i n t e r s e c t i o n tha t r e t u r n s on l y a Boolean r e s u l t .
boo l i n t e r s e c t s ;

} ;

// Set r e s u l t . maxLCPI te ra t i ons to the d e s i r e d v a l u e b e f o r e c a l l i n g t h i s f u n c t i o n .
template <typename Real>
vo id T e s t I n t e r s e c t i o n (Tr i ang l e3<Real> t r i a n g l e , Cy l i nd e r 3<Real> c y l i n d e r ,

T r i a ng l e 3Cy l i n d e r 3Que r yRe s u l t<Real>& r e s u l t)
{

Vector3<Real> d e l t a = t r i a n g l e . v e r t e x [0] = c y l i n d e r . c e n t e r ;
Vector3<Real> edge0 = t r i a n g l e . v e r t e x [1] = t r i a n g l e . v e r t e x [0] ;
Vector3<Real> edge1 = t r i a n g l e . v e r t e x [2] = t r i a n g l e . v e r t e x [0] ;
Matr ix<Real , 3 , 2> E ;
E [0] [0] = edge0 [0] ; E [0] [1] = edge1 [0] ;
E [1] [0] = edge0 [1] ; E [1] [1] = edge1 [1] ;
E [2] [0] = edge0 [2] ; E [2] [1] = edge1 [2] ;
Matr ix<Real , 3 , 3> P = Matr ix<Real , 3 , 3> : : I d e n t i t y ()

= OuterProduct (c y l i n d e r . d i r e c t i o n , c y l i n d e r . d i r e c t i o n) ;

Matr ix<Real , 2 , 3> ETP = Transpose (E) * P ;
Matr ix<Real , 2 , 2> A = ETP * E ;
Vector2<Real> b = ETP * d e l t a ;
Vector2<Real> U0TE = c y l i n d e r . d i r e c t i o n * E ;
Rea l U0Tdelta = Dot (c y l i n d e r . d i r e c t i o n , d e l t a) ;
Matr ix<Real , 3 , 2> D;
D [0] [0] = =1; D [0] [1] = =1;
D [1] [0] = U0TE [0] ; D [1] [1] = U0TE [1] ;
D [2] [0] = =U0TE [0] ; D [2] [1] = =U0TE [1] ;
Vector3<Real> e ;
e [0] = =1.0;
e [1] = =0.5 * c y l i n d e r . h e i g h t = U0Tdelta ;
e [1] = =0.5 * c y l i n d e r . h e i g h t + U0Tdelta ;

s t d : : a r r ay<Real , 5> q = { b [0] , b [1] , =e [0] , =e [1] , =e [2] } ;
s t d : : a r r ay<s t d : : a r r ay<Real , 5>, 5> M;
{

M[0] = { A [0] [0] , A [0] [1] , =D[0] [0] , =D[1] [0] , =D[2] [0] } ,
M[1] = { A [1] [0] , A [1] [1] , =D[0] [1] , =D[1] [1] , =D[2] [1] } ,

M[2] = { D[0] [0] , D [0] [1] , 0 , 0 , 0 } ,
M[3] = { D[1] [0] , D [1] [1] , 0 , 0 , 0 } ,
M[4] = { D[2] [0] , D [2] [1] , 0 , 0 , 0 }
} ;

LCPSolver<Real , 5> l c p ;
l c p . Se tMaxLCPI te ra t i ons (r e s u l t . maxLCPI te ra t i ons) ;
s t d : : a r r ay<Real , 5> w, z ;
LCPSolver<Real , 5> l c p ;
i f (l c p . So l v e (q , M, w, z , &r e s u l t . s t a t u s))
{

r e s u l t . i n t e r s e c t s = t rue ;
}
e l s e
{

// I f you r each t h i s case , the v a l u e o f ’ r e s u l t ’ i s one o f
// NO SOLUTION or FAILED TO CONVERGE . The va l u e INVALID INPUT
// occu r s on l y when the LCPSolver i s pas sed s td : : v e c t o r i n p u t s
// whose d imens i on s a r e not c o r r e c t .
r e s u l t . i n t e r s e c t s = f a l s e ;

24

}
r e s u l t . numLCPIte ra t ions = l c p . Ge tNumI t e ra t i on s ;

}

4.4 Accuracy Problems when using Fixed-Precision Floating-Point Arithmetic

Although the LCP solver allows for fixed-precision or arbitrary-precision floating-point arithmetic, certain
geometric configurations can produce inaccurate results when using fixed-precision. The problem is that
rounding errors can cause the choices of basic and nonbasic variables in the pivoting of the LCP tableau to
be different from those when using arbitrary-precision arithmetic.

In particular, the function LCPSolverShared<Real>::Solve in LCPSolver.h has a block of code

i f (Augmented (r , d r i v i n g) < (Rea l)0)
{

// exe cu t e when the c o e f f i c i e n t o f the nonba s i c v a r i a b l e i s n e g a t i v e
}

Rounding errors can lead to a misclassification. The arbitrary-precision code will enter the conditional block
when the coefficient is negative—no matter how small the magnitude—but the fixed-precision code will not
when rounding errors cause the computed coefficient to be a small positive number. The opposite can also
happen, where the arbitrary-precision code skips the conditional block but the fixed-precision code enters it.

An example for inaccurate results due to rounding error is shown next when computing the distance between
a triangle and an oriented box in 3D. The LCP solver code is DistTriangle3AlignedBox3.h. Listing 4 shows
a test program that computes the distance using fixed precision and using arbitrary precision.

Listing 4. The listing contains an example for an inaccurate distance calculation because of rounding
errors when using fixed-precision floating-point arithmetic.

i n t main ()
{

Tr i ang l e3<double> t r i a n g l e ;
t r i a n g l e . v [0] = { 0 . 5 , 0 . 5 , 1 . 5 } ;
t r i a n g l e . v [1] = { 0.50000000000000178 , 25 . 5 , 1 . 5 } ;
t r i a n g l e . v [2] = { =0.50000000000000355 , 0 . 5 , 1 . 5 } ;

Al ignedBox3<double> box ;
box . min = { =28.666800635711962 , 12.285771701019407 , =48.666800635711965 } ;
box . max = { =20.476286168365689 , 20.476286168365682 , =40.476286168365689 } ;

DCPQuery<double , T r i ang l e3<double>, Al ignedBox3<double>> query ;
auto r e s u l t = query (t r i a n g l e , box) ;
// r e s u l t . q u e r y I s S u c c e s s f u l = t r u e
// r e s u l t . d i s t a n c e = 47.6918933732887069
// r e s u l t . s q rD i s t a n c e = 2274.5166935291390473
// r e s u l t . t r i a n g l eP a r ame t e r = (0 .0199525116590519 , 0 .4351332588306535 , 0 .5449142295102947)
// r e s u l t . boxParameter = (=22.6653617332430883 , 12.2857717010194065 , =40.4762861683656610)
// r e s u l t . c l o s e s t P o i n t [0] = (=0.0449142295102958 , 11.3783314707663372 , 1 .5000000000000000)
// r e s u l t . c l o s e s t P o i n t [1] = (=22.6653617332430883 , 12.2857717010194065 , =40.4762861683656610)
// r e s u l t . numLCPIte ra t ions = 11

typede f BSRat iona l<UIntegerAP32> Ra t i o n a l ;
T r i ang l e3<Rat i ona l> r t r i a n g l e ;
r t r i a n g l e . v [0] = { 0 . 5 , 0 . 5 , 1 . 5 } ;
r t r i a n g l e . v [1] = { 0.50000000000000178 , 25 . 5 , 1 . 5 } ;
r t r i a n g l e . v [2] = { =0.50000000000000355 , 0 . 5 , 1 . 5 } ;

25

https://www.geometrictools.com/GTE/Mathematics/LCPSolver.h
https://www.geometrictools.com/GTE/Mathematics/DistTriangle3AlignedBox3.h

AlignedBox3<Rat i ona l> rbox ;
rbox . min = { =28.666800635711962 , 12.285771701019407 , =48.666800635711965 } ;
rbox . max = { =20.476286168365689 , 20.476286168365682 , =40.476286168365689 } ;

DCPQuery<Rat i ona l , T r i ang l e3<Rat i ona l >, Al ignedBox3<Rat i ona l>> r qu e r y ;
auto r r e s u l t = rque r y (r t r i a n g l e , rbox) ;
// r r e s u l t . q u e r y I s S u c c e s s f u l = t r u e
// r r e s u l t . d i s t a n c e = 46.6845780373756085
// r r e s u l t . s q rD i s t a n c e = 2179.4498265278130020
// r r e s u l t . t r i a n g l eP a r ame t e r = (0 .0000000000000000 , 0 .4387667833180821 , 0 .5612332166819179)
// r r e s u l t . boxParameter = (=20.4762861683656894 , 12.2857717010194065 , =40.4762861683656894)
// r r e s u l t . c l o s e s t P o i n t [0] = (=0.0612332166819192 , 11.4691695829520519 , 1 .5000000000000000)
// r r e s u l t . c l o s e s t P o i n t [1] = (=20.4762861683656894 , 12.2857717010194065 , =40.4762861683656894)
// r r e s u l t . numLCPIte ra t ions = 7
r e t u r n 0 ;

}

The relative error in the distance is approximately 0.0216. The pairs of closest points are approximately the
same in the y- and z-components, but they differ by a significant amount in the x-component.

The geometric issue is that the plane of the triangle is parallel to a face of the box. A very small rotation of
the plane of the triangle, say, about the center of the triangle, can cause a large change in the closest points.
The closest points can vary greatly with small changes in the triangle vertices.

If you must use fixed-precision floating-point arithmetic, the problems with parallel configurations in the
geometric primitives should be handled differently. In the next major release of the source code (the Ge-
ometric Tools Library), LCP-based algorithms are provided for the queries, but specialized algorithms will
also be provided that try to resolve the accuracy problems with parallel configurations.

4.5 Dealing with Vector Normalization

To motivate the discussion, consider Example 7 analyzed previously for the test-intersection query between
a triangle and a finite cylinder in 3 dimensions. The construction of the matrices and vectors in the CQP
assumes real-valued arithmetic (error-free computations). In particular, the cylinder axis direction is a
unit-length vector u0.

The problem in an implementation is that if the axis direction is computed by normalizing a vector, and
then that direction is passed to the query and treated as a 3-tuple of rational numbers, the length is not
guaranteed to be 1 (due to rounding errors). For example, suppose the cylinder axis is in the direction of
(1, 2, 3). The normalized vector is (1, 2, 3)/

√
14. The normalization code is

Vector3<double> u0 = { 1 . 0 , 2 . 0 , 3 . 0 } ;
double l e n g t h = s q r t (u0 [0] * u0 [0] + u0 [1] * u0 [1] + u0 [2] * u0 [2]) ; // = s q r t (1 4 . 0)
u0 /= l e ng t h ;
// u0 = (0.26726124191242440 , 0 .53452248382484879 , 0 .80178372573727319)

typede f BSRat iona l<UIntegerAP32> Ra t i o n a l ;
Vector3<Rat i ona l> ru0 = { u0 [0] , u0 [1] , u0 [2] } ;
R a t i o n a l rSqrLength = Dot (ru0 , ru0) ;
// rSqrLength . b i a s edExponent = =105
// rSqrLength . b i t s = 0x00000200 0x00000000 0 x000cc8b2 0 x f f 1 0 b 8 0 f
// Moving the b i n a r y po i n t from the r i g h t=most b i t 105 u n i t s to the l e f t ,
// rSqrLength = 1.0ˆ{53}1100110010001011001011111111000100001011100000001111
// where 0ˆ{53} denote s the o c cu r r e n c e o f 53 0=va l u ed b i t s . The re fo r e ,
// rSqrLength = 1 . t where t > 0

Suppose that u0 was normalized from a vector v; that is, u0 = v/|v|. The vector v has rational components
but its length |v| is usually irrational. Replace this expression in the CQP for the triangle-cylinder test-

26

intersection query. The projection matrix is P = I − vvT/|v|2 and can be computed exactly using rational
arithmetic because of the occurrence of the squared distance. The quadratic matrix is A = ETPE which
is also rational because E involves quantities generated by the differences of rational points. The quadratic
vector b = ETP∆, which is also rational. The quadratic scalar c = |∆|2/2 is rational.

Two of the inequality constraints in Dx ≥ e involve the length |v|,

(v/|v|)TEx ≥ −h/2− (v/|v|)T∆, −(v/|v|)TEx ≥ −h/2 + (v/|v|)T∆ (52)

Multiplying the inequalites by the length eliminates the division, but the length term itself cannot be
eliminated,

vTEx ≥ −h|v|/2− vT∆, −vTEx ≥ −h|v|/2 + vT∆ (53)

If |v| is irrational, we can approximate it by a rational number and then execute the LCP solver using
arbitrary-precision floating-point arithmetic. However, the resulting minimizer point x and corresponding
minimum function value f(x) are considered to be approximations.

It is possible to avoid the approximation of the length of a vector that is an input to the LCP solver by using
real quadratic fields. The idea is to introduce a symbolic component to the computations that involves the
vector length as the square root of a rational number. Details for such an approach can be found in GTE:
Arbitrary Precision Arithmetic.

To illustrate the use of real quadratic fields, consider the LCP formulation of the convex quadratic program
for determining whether a triangle and cylinder intersect. The implementations shown next are for double-
precision floating-point arithmetic, for rational arithmetic and for a real quadratic field where d is the rational
squared length of the cylinder axis direction.

Listing 5 shows the source code for the query when the numeric type is double (64-bit floating-point arith-
metic).

Listing 5. The listing uses double-precision arithmetic for executing the LCP solver for triangle-cylinder
intersection. The computations necessarily have rounding errors.

s t d : : a r r ay<double , 2> ExecuteDouble (Tr i ang l e3<double> const& t r i a n g l e , Cy l i nd e r 3<double> const& c y l i n d e r)
{

Vector3<double> d e l t a = t r i a n g l e . v [0] = c y l i n d e r . a x i s . o r i g i n ;
Vector3<double> edge1 = t r i a n g l e . v [1] = t r i a n g l e . v [0] ;
Vector3<double> edge2 = t r i a n g l e . v [2] = t r i a n g l e . v [0] ;
Matr ix <3, 2 , double> E ;
E . Se tCo l (0 , edge1) ;
E . Se tCo l (1 , edge2) ;
Matr ix <3, 3 , double> P = Matr ix <3, 3 , double > : : I d e n t i t y () =

OuterProduct (c y l i n d e r . a x i s . d i r e c t i o n , c y l i n d e r . a x i s . d i r e c t i o n) ;

Matr ix <2, 3 , double> ETP = MultiplyATB (E , P) ;
Matr ix <2, 2 , double> A = ETP * E ;
Vector2<double> b = ETP * d e l t a ;
Vector2<double> u0TE = c y l i n d e r . a x i s . d i r e c t i o n * E ;
double u0Tde l ta = Dot (c y l i n d e r . a x i s . d i r e c t i o n , d e l t a) ;
Matr ix <3, 2 , double> D;
D(0 , 0) = =1.0;
D(0 , 1) = =1.0;
D(1 , 0) = u0TE [0] ;
D(1 , 1) = u0TE [1] ;
D(2 , 0) = =u0TE [0] ;
D(2 , 1) = =u0TE [1] ;
Vector3<double> e ;
e [0] = =1.0;
e [1] = =0.5 * c y l i n d e r . h e i g h t = u0Tde l ta ;

27

https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf
https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf

e [2] = =0.5 * c y l i n d e r . h e i g h t + u0Tde l ta ;

s t d : : a r r ay<double , 5> q = { b [0] , b [1] , =e [0] , =e [1] , =e [2] } ;
s t d : : a r r ay<s t d : : a r r ay<double , 5>, 5> M;
{

M[0] = { A(0 , 0) , A(0 , 1) , =D(0 , 0) , =D(1 , 0) , =D(2 , 0) } ;
M[1] = { A(1 , 0) , A(1 , 1) , =D(0 , 1) , =D(1 , 1) , =D(2 , 1) } ;
M[2] = { D(0 , 0) , D(0 , 1) , 0 . 0 , 0 . 0 , 0 . 0 } ;
M[3] = { D(1 , 0) , D(1 , 1) , 0 . 0 , 0 . 0 , 0 . 0 } ;
M[4] = { D(2 , 0) , D(2 , 1) , 0 . 0 , 0 . 0 , 0 . 0 } ;

}

s t d : : a r r ay<double , 5> w, z ;
LCPSolver<double , 5> l c p ;
l c p . So l v e (q , M, w, z) ;

s t d : : a r r ay<double , 2> r e s u l t = { z [0] , z [1] } ;
r e t u r n r e s u l t ;

}

The returned numbers are the triangle parameters for determining the triangle point closest to the cylinder
axis and that is between the two planes of the cylinder caps.

Listing 6 shows the source code for the query when the numeric type is BSRational<UIntegerAP32> (arbitrary-
precision arithmetic).

Listing 6. The listing uses exact rational arithmetic for executing the LCP solver for triangle-cylinder
intersection. The computations can be inaccurate when the cylinder axis direction is not unit length when
computed as the square root of the sum of squares of rational components.

typede f BSRat iona l<UIntegerAP32> Ra t i o n a l ;

s t d : : a r r ay<Rat i ona l , 2> Exe cu t eRa t i o na l (T r i ang l e3<double> const& inTr i , Cy l i nd e r 3<double> const& inCy l)
{

Tr i ang l e3<Rat i ona l> t r i a n g l e ;
t r i a n g l e . v [0] = { i n T r i . v [0] [0] , i n T r i . v [0] [1] , i n T r i . v [0] [2] } ;
t r i a n g l e . v [1] = { i n T r i . v [1] [0] , i n T r i . v [1] [1] , i n T r i . v [1] [2] } ;
t r i a n g l e . v [2] = { i n T r i . v [2] [0] , i n T r i . v [2] [1] , i n T r i . v [2] [2] } ;

Cy l i nd e r 3<Rat i ona l> c y l i n d e r ;
c y l i n d e r . a x i s . o r i g i n =

{ i nC y l . a x i s . o r i g i n [0] , i nC y l . a x i s . o r i g i n [1] , i nC y l . a x i s . o r i g i n [2] } ;
c y l i n d e r . a x i s . d i r e c t i o n =

{ i nC y l . a x i s . d i r e c t i o n [0] , i nC y l . a x i s . d i r e c t i o n [1] , i nC y l . a x i s . d i r e c t i o n [2] } ;
c y l i n d e r . r a d i u s = i nCy l . r a d i u s ;
c y l i n d e r . h e i g h t = i nCy l . h e i g h t ;

Vector3<Rat i ona l> d e l t a = t r i a n g l e . v [0] = c y l i n d e r . a x i s . o r i g i n ;
Vector3<Rat i ona l> edge1 = t r i a n g l e . v [1] = t r i a n g l e . v [0] ;
Vector3<Rat i ona l> edge2 = t r i a n g l e . v [2] = t r i a n g l e . v [0] ;
Matr ix <3, 2 , Ra t i ona l> E ;
E . Se tCo l (0 , edge1) ;
E . Se tCo l (1 , edge2) ;
Matr ix <3, 3 , Ra t i ona l> P = Matr ix <3, 3 , Ra t i ona l > : : I d e n t i t y () =

OuterProduct (c y l i n d e r . a x i s . d i r e c t i o n , c y l i n d e r . a x i s . d i r e c t i o n) ;

Matr ix <2, 3 , Ra t i ona l> ETP = MultiplyATB (E , P) ;
Matr ix <2, 2 , Ra t i ona l> A = ETP * E ;
Vector2<Rat i ona l> b = ETP * d e l t a ;
Vector2<Rat i ona l> u0TE = c y l i n d e r . a x i s . d i r e c t i o n * E ;
Ra t i o n a l u0Tde l ta = Dot (c y l i n d e r . a x i s . d i r e c t i o n , d e l t a) ;
Matr ix <3, 2 , Ra t i ona l> D;
Ra t i o n a l rNegOne (=1) , rNegHa l f (=0.5) , rZe ro (0) ;
D(0 , 0) = rNegOne ;

28

D(0 , 1) = rNegOne ;
D(1 , 0) = u0TE [0] ;
D(1 , 1) = u0TE [1] ;
D(2 , 0) = =u0TE [0] ;
D(2 , 1) = =u0TE [1] ;
Vector3<Rat i ona l> e ;
e [0] = rNegOne ;
e [1] = rNegHa l f * c y l i n d e r . h e i g h t = u0Tde l ta ;
e [2] = rNegHa l f * c y l i n d e r . h e i g h t + u0Tde l ta ;

s t d : : a r r ay<Rat i ona l , 5> q = { b [0] , b [1] , =e [0] , =e [1] , =e [2] } ;
s t d : : a r r ay<s t d : : a r r ay<Rat i ona l , 5>, 5> M;
{

M[0] = { A(0 , 0) , A(0 , 1) , =D(0 , 0) , =D(1 , 0) , =D(2 , 0) } ;
M[1] = { A(1 , 0) , A(1 , 1) , =D(0 , 1) , =D(1 , 1) , =D(2 , 1) } ;
M[2] = { D(0 , 0) , D(0 , 1) , rZero , rZero , rZe ro } ;
M[3] = { D(1 , 0) , D(1 , 1) , rZero , rZero , rZe ro } ;
M[4] = { D(2 , 0) , D(2 , 1) , rZero , rZero , rZe ro } ;

}

s t d : : a r r ay<Rat i ona l , 5> w, z ;
LCPSolver<Rat i ona l , 5> l c p ;
l c p . So l v e (q , M, w, z) ;

s t d : : a r r ay<Rat i ona l , 2> r e s u l t = { z [0] , z [1] } ;
r e t u r n r e s u l t ;

}

The returned numbers are the triangle parameters for determining the triangle point closest to the cylinder
axis and that is between the two planes of the cylinder caps.

Listing 7 shows the source code for the query when the numeric type is QFElement for a real quadratic field.

Listing 7. The listing uses arithmetic for a real quadratic field when executing the LCP solver for triangle-
cylinder intersection. The computations are exact in the sense of returning parameters of the form x+ y

√
d

where x and y are rational numbers and
√
d is represented symbolically.

typede f BSRat iona l<UIntegerAP32> Ra t i o n a l ;
typede f QFElement<Rat i ona l , 0> QFType ;
Ra t i o n a l QFType : : DSqr ;

s t d : : a r r ay<QFType , 2> ExecuteQFType (Tr i ang l e3<double> const& inTr i , Cy l i nd e r 3<double> const& inCy l)
{

Tr i ang l e3<Rat i ona l> t r i a n g l e ;
t r i a n g l e . v [0] = { i n T r i . v [0] [0] , i n T r i . v [0] [1] , i n T r i . v [0] [2] } ;
t r i a n g l e . v [1] = { i n T r i . v [1] [0] , i n T r i . v [1] [1] , i n T r i . v [1] [2] } ;
t r i a n g l e . v [2] = { i n T r i . v [2] [0] , i n T r i . v [2] [1] , i n T r i . v [2] [2] } ;

Cy l i nd e r 3<Rat i ona l> c y l i n d e r ;
c y l i n d e r . a x i s . o r i g i n =

{ i nC y l . a x i s . o r i g i n [0] , i nC y l . a x i s . o r i g i n [1] , i nC y l . a x i s . o r i g i n [2] } ;
c y l i n d e r . a x i s . d i r e c t i o n =

{ i nC y l . a x i s . d i r e c t i o n [0] , i nC y l . a x i s . d i r e c t i o n [1] , i nC y l . a x i s . d i r e c t i o n [2] } ;
c y l i n d e r . r a d i u s = i nCy l . r a d i u s ;
c y l i n d e r . h e i g h t = i nCy l . h e i g h t ;

QFType : : DSqr = Dot (c y l i n d e r . a x i s . d i r e c t i o n , c y l i n d e r . a x i s . d i r e c t i o n) ;

Vector3<Rat i ona l> d e l t a = t r i a n g l e . v [0] = c y l i n d e r . a x i s . o r i g i n ;
Vector3<Rat i ona l> edge1 = t r i a n g l e . v [1] = t r i a n g l e . v [0] ;
Vector3<Rat i ona l> edge2 = t r i a n g l e . v [2] = t r i a n g l e . v [0] ;
Matr ix <3, 2 , Ra t i ona l> E ;
E . Se tCo l (0 , edge1) ;

29

E . SetCo l (1 , edge2) ;
Matr ix <3, 3 , Ra t i ona l> P = Matr ix <3, 3 , Ra t i ona l > : : I d e n t i t y () =

OuterProduct (c y l i n d e r . a x i s . d i r e c t i o n , c y l i n d e r . a x i s . d i r e c t i o n) / QFType : : DSqr ;

Matr ix <2, 3 , Ra t i ona l> ETP = MultiplyATB (E , P) ;
Matr ix <2, 2 , Ra t i ona l> A = ETP * E ;
Vector2<Rat i ona l> b = ETP * d e l t a ;
Vector2<Rat i ona l> u0TE = c y l i n d e r . a x i s . d i r e c t i o n * E ;
Ra t i o n a l u0Tde l ta = Dot (c y l i n d e r . a x i s . d i r e c t i o n , d e l t a) ;
Matr ix <3, 2 , Ra t i ona l> D;
Ra t i o n a l rNegOne (=1) , rNegHa l f (=0.5) , rZe ro (0) ;
D(0 , 0) = rNegOne ;
D(0 , 1) = rNegOne ;
D(1 , 0) = u0TE [0] ;
D(1 , 1) = u0TE [1] ;
D(2 , 0) = =u0TE [0] ;
D(2 , 1) = =u0TE [1] ;
Vector3<QFType> e ;
e [0] = (Ra t i o n a l)=1.0;
e [1] [0] = =u0Tde l ta ;
e [1] [1] = rNegHa l f * c y l i n d e r . h e i g h t ;
e [2] [0] = u0Tde l ta ;
e [2] [1] = rNegHa l f * c y l i n d e r . h e i g h t ;

s t d : : a r r ay<QFType , 5> q = { b [0] , b [1] , =e [0] , =e [1] , =e [2] } ;
s t d : : a r r ay<s t d : : a r r ay<QFType , 5>, 5> M;
{

M[0] = { A(0 , 0) , A(0 , 1) , =D(0 , 0) , =D(1 , 0) , =D(2 , 0) } ;
M[1] = { A(1 , 0) , A(1 , 1) , =D(0 , 1) , =D(1 , 1) , =D(2 , 1) } ;
M[2] = { D(0 , 0) , D(0 , 1) , rZero , rZero , rZe ro } ;
M[3] = { D(1 , 0) , D(1 , 1) , rZero , rZero , rZe ro } ;
M[4] = { D(2 , 0) , D(2 , 1) , rZero , rZero , rZe ro } ;

}

s t d : : a r r ay<QFType , 5> w, z ;
LCPSolver<QFType , 5> l c p ;
l c p . So l v e (q , M, w, z) ;

s t d : : a r r ay<QFType , 2> r e s u l t = { z [0] , z [1] } ;
r e t u r n r e s u l t ;

}

The returned numbers are the triangle parameters for determining the triangle point closest to the cylinder
axis and that is between the two planes of the cylinder caps.

Notice that most of the quantities in the code are rational numbers. The first introduction of real quadratic
field numbers is in the assignment to the 3-tuple e in the inequality constraints of equation (53); that is, e[1]

and e[2] are elements of Q(
√
d). The call to lcp.Solve will involve arithmetic in the real quadratic field.

Executions of the functions of Listings 5, 6 and 7 are shown in Listing 8. In the comments, the rational
numbers are listed as odd integers times powers of two, a format described in GTE: Arbitrary Precision
Arithmetic.

Listing 8. The listing contains the main function to compare the results of the triangle-cylinder intersection
query for various numeric types.

i n t main ()
{

Tr i ang l e3<double> t r i a n g l e ;
t r i a n g l e . v [0] = { 0 . 5 , =1.0 , 0 . 0 } ;
t r i a n g l e . v [1] = { 3 . 0 , 1 . 0 , 0 . 0 } ;
t r i a n g l e . v [2] = { 0 . 5 , 2 . 0 , 0 . 0 } ;

30

https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf
https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf

Vector3<double> nonUn i tD i r e c t i o n { 1 . 0 , 2 . 0 , 3 . 0 } ;
Cy l i nd e r 3<double> c y l i n d e r ;
c y l i n d e r . a x i s . o r i g i n = { 0 . 0 , 0 . 0 , 0 . 0 } ;
c y l i n d e r . a x i s . d i r e c t i o n = nonUn i tD i r e c t i o n ;
Norma l i ze (c y l i n d e r . a x i s . d i r e c t i o n) ;
c y l i n d e r . r a d i u s = 1 . 0 ;
c y l i n d e r . h e i g h t = 2 . 0 ;

// The po i n t on the t r i a n g l e c l o s e s t to the c y l i n d e r a x i s i s
// V0 + (0)* (V1 = V0) + (11/30)* (V2 = V0) . I n the LCP s o l v e r , we expec t
// tha t z = (0 , 11/30 ,*) . Note tha t 11/30 = 0 . 3 6 6 6 . . . where the 6 r e p e a t s
// ad i n f i n i t um .

s t d : : a r r ay<double , 2> r e s u l t ;
r e s u l t = ExecuteDouble (t r i a n g l e , c y l i n d e r) ;
// r e s u l t = (0.00000000000000000 , 0 .36666666666666670)
// The second component i s an app rox imat i on to 11/30 .

s t d : : a r r ay<Rat i ona l , 2> r r e s u l t ;
r r e s u l t = Exe cu t eRa t i o na l (t r i a n g l e , c y l i n d e r) ;
// r r e s u l t [0] . numerator = 0
// r r e s u l t [0] . denominator = 1
// r r e s u l t [1] . numerator = [0 x0000096DB6DB6DB6DB5D4719DCA15C7F , =108]
// r r e s u l t [1] . denominator = [0 x0000066DB6DB6DB6DB5D4719DCA15C7F , =106]
double temp ;
temp = r r e s u l t [0] ; // 0.00000000000000000
temp = r r e s u l t [1] ; // 0.36666666666666670
// The second component i s an app rox imat i on to 11/30 .

c y l i n d e r . a x i s . d i r e c t i o n = nonUn i tD i r e c t i o n ;
s t d : : a r r ay<QFType , 2> q f r e s u l t ;
q f r e s u l t = ExecuteQFType (t r i a n g l e , c y l i n d e r) ;
// q f r e s u l t [0] [0] . numerator = 0
// q f r e s u l t [0] [0] . denominator = 1
// q f r e s u l t [0] [1] . numerator = 0
// q f r e s u l t [0] [1] . denominator = 1
// q f r e s u l t [0] = 0 + 0 * s q r t (14)
// q f r e s u l t [1] [0] . numerator = [0 x0007C5AB , =20] = 11 * 46305 * 2ˆ{=20}
// q f r e s u l t [1] [0] . denominator = [0 x000A992F , =19] = 30 * 46305 * 2ˆ{=20}
// q f r e s u l t [1] [1] . numerator = 0
// q f r e s u l t [1] [1] . denominator = 1
// q f r e s u l t [1] = 11/30 + 0 * s q r t (14)
// The second component i s e x a c t l y 11/30 .
r e t u r n 0 ;

}

Another slightly more interesting example is shown in Listing 9. The triangle intersects the cylinder and the
plane of one of the cylinder caps.

Listing 9. The triangle point inside the cylinder and closest to the cylinder axis is a point on the plane
that bounds the top of the cylinder.

i n t main ()
{

Vector3<double> nonUn i tD i r e c t i o n { 1 . 0 , 2 . 0 , 3 . 0 } ;
Vector3<double> perp{ =3.0 , 0 . 0 , 1 . 0 } ;

T r i ang l e3<double> t r i a n g l e ;
t r i a n g l e . v [0] = 0.125 * perp + 0 .5 * nonUn i tD i r e c t i o n ;
t r i a n g l e . v [1] = 0 .25 * perp ;
t r i a n g l e . v [2] = perp ;

Cy l i nd e r 3<double> c y l i n d e r ;
c y l i n d e r . a x i s . o r i g i n = { 0 . 0 , 0 . 0 , 0 . 0 } ;
c y l i n d e r . a x i s . d i r e c t i o n = nonUn i tD i r e c t i o n ;
Norma l i ze (c y l i n d e r . a x i s . d i r e c t i o n) ;

31

c y l i n d e r . r a d i u s = 1 . 0 ;
c y l i n d e r . h e i g h t = 2 . 0 ;

// The po i n t on the t r i a n g l e i n s i d e the p l a n e s o f the c y l i n d e r
// caps and c l o s e s t to the c y l i n d e r a x i s i s
// V0 + (1 = (1/7) * s q r t (14))* (V1 = V0) + (0)* (V2 = V0) .

Norma l i ze (c y l i n d e r . a x i s . d i r e c t i o n) ;
s t d : : a r r ay<double , 2> r e s u l t ;
r e s u l t = ExecuteDouble (t r i a n g l e , c y l i n d e r) ;
// r e s u l t = (0.46547751617515137 , 0 .00000000000000000)
// The f i r s t component i s an app rox imat i on to 1=(1/7)* s q r t (1 4) .

s t d : : a r r ay<Rat i ona l , 2> r r e s u l t ;
r r e s u l t = Exe cu t eRa t i o na l (t r i a n g l e , c y l i n d e r) ;
// r r e s u l t [0] . numerator = [0 x001bddd422d07e93 , =53]
// r r e s u l t [0] . denominator = [0 x003bddd422d07e93 , =53]
// r r e s u l t [1] . numerator = 0
// r r e s u l t [1] . denominator = 1
double temp ;
temp = r r e s u l t [0] ; // 0.46547751617515126
temp = r r e s u l t [1] ; // 0.00000000000000000

c y l i n d e r . a x i s . d i r e c t i o n = nonUn i tD i r e c t i o n ;
s t d : : a r r ay<QFType , 2> q f r e s u l t ;
q f r e s u l t = ExecuteQFType (t r i a n g l e , c y l i n d e r) ;
// q f r e s u l t [0] [0] . numerator = [+0x00000031 , =5]
// q f r e s u l t [0] [0] . denominator = [+0x00000031 , =5]
// q f r e s u l t [0] [1] . numerator = [=0x00000007 , =5]
// q f r e s u l t [0] [1] . denominator = [+0x00000031 , =5]
// q f r e s u l t [0] = 1 = (1/7) * s q r t (14)
// q f r e s u l t [1] [0] . numerator = 0
// q f r e s u l t [1] [0] . denominator = 1
// q f r e s u l t [1] [1] . numerator = 0
// q f r e s u l t [1] [1] . denominator = 1
// q f r e s u l t [1] = 0 + 0 * s q r t (14)
// 1 = (1/7)* s q r t (14) i s app r o x ima t e l y 0.46547751617515123063089303824049
r e t u r n 0 ;

}

5 Geometric Primitives

The remainder of the document is about formulating distance queries as CQP problems in 2D and in 3D.
Each of the primitives involved is parameterized in a manner that is suited for the inequality constraints
of the CQP. The 1-dimensional primitives include lines, rays and segments. The 2-dimensional primitives
include planes and objects that live in a plane such as triangles, rectangles and convex polygons. The
3-dimensional primitives are convex polyhedra including tetrahedra and boxes.

5.1 Linear Objects

The linear objects are lines, rays and segments. Each object has a single parameter in its representation.

32

5.1.1 Lines

A line has an origin point p and a direction vector u that is not the zero vector. Usually, u is specified as a
unit-length vector. The parameterization is

p + tu, t ∈ R (54)

The parameter t is unconstrained, so Section 1.4 is applicable when formulating distance queries between
lines and other objects.

5.1.2 Rays

A ray is a subset of a line. It has an origin point p and a direction vector u that is not the zero vector.
Usually, u is specified as a unit-length vector. The parameterization is

p + tu, t ≥ 0 (55)

5.1.3 Segments

A segment is a subset of a line. The classical parameterization uses endpoints p0 = p and p1 = p+u, where
u is not the zero vector (and generally not unit length). The parameterization is

p + tu = (1− t)p0 + tp1, 0 ≤ t ≤ 1 (56)

Other representations are possible. Using the line representation of equation (54), the segment is specified
by an interval [t0, t1] for t0 < t1. Another representation involves choosing a center point p, a unit-length
direction u and a radius r > 0, namely, p + tu with |t| ≤ r.

5.2 Planar Objects

The planar objects are planes or convex polygons contained in the plane, including triangles and rectangles.

5.2.1 Planes

Whether living in 2D or 3D, a plane has an origin point p and two linearly independent direction vectors
u0 and u1. In 2D, the directions are 2-tuples with u0 · u⊥1 6= 0. In 3D, the directions are 3-tuples with
u0 × u1 6= 0. The parameterization is

p + t0u0 + t1u1, t0 ∈ R, t1 ∈ R (57)

Usually the directions u0 and u1 are chosen to be unit length and perpendicular. The parameters t0 and t1
are unconstrained, so Section 1.4 is applicable when formulating distance queries between planes and other
objects in 3D.

33

5.2.2 Triangles

A triangle is defined by a point p and two linearly independent vectors u0 and u1 for the directions of
the edges emanating from p. The triangle vertices are p0 = p, p1 = p + u0 and p2 = p + u1. The
parameterization is

p + t0u0 + t1u1, t0 ≥ 0, t1 ≥ 0, t0 + t1 ≤ 1 (58)

Generally, the edge directions are not unit length.

5.2.3 Rectangles

A rectangle is defined by a point p and two perpendicular vectors u0 and u1 for the directions of the edges
emanating from p. The rectangle vertices are p00 = p, p10 = p + u0, p01 = p + u1 and p11 = p + u0 + u1.
The parameterization is

p + t0u0 + t1u1, 0 ≤ t0 ≤ 1, 0 ≤ t1 ≤ 1 (59)

Sometimes the edge directions are specified by unit-length vectors u0 and u1. The corresponding edge
lengths are `0 and `1. The parameterization is the same as equation (59) but with constraints 0 ≤ ti ≤ `i. A
common representation of a rectangle uses a center point p, two unit-length and perpendicular directions u0

and u1, and radii r0 > 0 and r1 > 0. The parameterization is the same as equation (59) but with constraints
|ti| ≤ ri.

5.2.4 Convex Polygons

A simple parameterization is not possible, although the polygon can be triangulated and then each triangle
processed separately using the parameterization of equation (58). However, when formulating CQP problems,
it is sufficient to define a convex polygon as the intersection of half-spaces. Let the polygon have n ordered
vertices named pi for 0 ≤ i < n.

In 2D, let the vertices be counterclockwise ordered. The edge directions are di = pi+1 − pi with the
understanding that the indices are computed modulo n; that is, pn = p0 and p−1 = pn−1. A normal to the
edge di that points to the polygon interior is ni = −d⊥i , where (u, v)⊥ = (v,−u). The polygon P is defined
by

P = {y ∈ R2 : ni · (y − pi) ≥ 0, 0 ≤ i < n} (60)

In 3D, the vertices are coplanar where the plane has origin p0 and normal direction m. Let the vertices be
counterclockwise ordered to an observer positioned on the side of the plane to which m points and who is
looking in the direction −m at the polygon in the plane. As in 2D, the edge directions are di = pi+1 − pi.
A normal to the edge that lives in the plane and points to the polygon interior is ni = m×di. The polygon
P is defined by

P = {y ∈ R3 : m · (y − p0) = 0, ni · (y − pi) ≥ 0, 0 ≤ i < n} (61)

Whether 2D or 3D, observe that one or more components of y ∈ P can be negative. This prevents us from
choosing x = y as the independent variables for the quadratic function of the CQP. We can remedy this by
translating the polygon to the first quadrant in 2D or to the first octant in 3D. Let µ be the vector with the
largest components for y ≥ µ. We can choose the quadratic function variables as x = y − µ, in which case
x ≥ 0 and the nonnegativity constraints are satisfied. When computing the distance between the polygon
and another object, we must also translate that object by subtracting µ from its points.

34

5.3 Volumetric Objects

The volumetric objects are convex polyhedra in space, including tetrahedra and boxes.

5.3.1 Tetrahedra

A tetrahedron is defined by a point p and three linearly independent vectors u0, u1 and u2 for the directions
of the edges emanating from p. The tetrahedron vertices are p0 = p, p1 = p + u0, p2 = p + u1 and p + u2.
The convention is that the points are ordered so that u0 · ·u1 × u2 > 0. The canonical tetrahedron has
vertices p0 = (0, 0, 0), p1 = (1, 0, 0), p2 = (0, 1, 0) and p3 = (0, 0, 1). The parameterization is

p + t0u0 + t1u1 + t2u2, t0 ≥ 0, t1 ≥ 0, t2 ≥ 0, t0 + t1 + t2 ≤ 1 (62)

Generally, the edge directions are not unit length.

5.3.2 Boxes

A box is defined by a point p and three mutually perpendicular vectors u0, u1 and u2 for the directions
of the edges emanating from p. The box vertices are pi0i1i2 = p + i0u0 + i1u1 + i2u2 for ij ∈ {0, 1} for
j = 0, 1, 2. The convention is that u0 · u1 × u2 > 0. The canonical box has vertices pi0i1i2 = (i0, i1, i2) for
ij ∈ {0, 1} for j = 0, 1, 2. The parameterization is

p + t0u0 + t1u1 + t2u2, 0 ≤ t0 ≤ 1, 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1 (63)

Sometimes the edge directions are specified by unit-length vectors u0, u1 and u2. The corresponding edge
lengths are `0, `1 and `2. The parameterization is the same as equation (63) but with constraints 0 ≤ ti ≤ `i.
A common representation of a box uses a center point p, three unit-length and perpendicular directions u0,
u1 and u2, and radii r0 > 0, r1 > 0 and r2 > 0. The parameterization is the same as equation (63) but with
constraints |ti| ≤ ri.

5.3.3 Convex Polyhedra

A simple parameterization is not possible, although the polyhedron can be tetrahedralized and each tetra-
hedron processed separately using the parameterization of equation (62). However, when formulating CQP
problems, it is sufficient to define a convex polyhedron as the intersection of half-spaces.

Let the polyhedron have m vertices named pi for 0 ≤ i < m. Assume that the polyhedron has n faces
each with normal vector ni for 0 ≤ i < n that points towards the polyhedron interior. The normals
are not necessarily unit length. In the common case that the polyhedron faces are triangles, consider a
face 〈pi0 ,pi1 ,pi2〉 whose vertices are counterclockwise ordered when viewed by an observer outside the
polyhedron. An inner-pointing normal vector is ni0 = (pi2 −pi0)× (pi1 −pi0). The polyhedron P is defined
by

P = {y ∈ R3 : ni · (y − pji) ≥ 0, 0 ≤ i < n} (64)

where pji is a point on the ith face. Generally, for a face that is a convex polygon, choose any three
noncollinear points of the face and compute the normal vector as shown for a triangle.

35

Observe that one or more components of y ∈ P can be negative. This prevents us from choosing x = y
as the independent variables for the quadratic function of the CQP. We can remedy this by translating the
polyhedron to the first octant in 3D. Let µ be the vector with the largest components for y ≥ µ. We can
choose the quadratic function variables as x = y−µ, in which case x ≥ 0 and the nonnegativity constraints
are satisfied. When computing the distance between the polyhedron and another object, we must also
translate that object by subtracting µ from its points.

5.4 Data Structures for the Primitives

The linear primitives all have an origin p and a direction u. The planar primitives, not including convex
polygons, have an origin p and two directions u0 and u. The volumetric primitives, not including convex
polyhedra, have an origin p and three directions u0, u1 and u3. The data structures used in the pseudocode
for distance queries are shown in Listing 10 and use C++ template notation. In actual GTE code, the Real

type can be float or double, although floating-point rounding errors have the potential to cause the LCP solver
to generate inaccurate information. The Real type can also represent an arbitrary-precision number system
for exact computation as mentioned previously in this document.

Listing 10. The data structures used to represent geometric primitives are listed here.

// l i n e a r p r i m i t i v e s
template <typename Real , i n t N> s t r u c t L ine { Point<Real , N> p ; Vector<Real , N> u ; }
template <typename Real , i n t N> s t r u c t Ray { Point<Real , N> p ; Vector<Real , N> u ; }
template <typename Real , i n t N> s t r u c t Segment { Point<Real , N> p ; Vector<Real , N> u ; }

// p l a n a r p r i m i t i v e s not i n c l u d i n g convex po l ygons
template <typename Real , i n t N> s t r u c t Plane { Point<Real , N> p ; Vector<Real , N> u0 , u1 ; }
template <typename Real , i n t N> s t r u c t Tr i a n g l e { Point<Real , N> p ; Vector<Real , N> u0 , u1 ; }
template <typename Real , i n t N> s t r u c t Rec tang l e { Point<Real , N> p ; Vector<Real , N> u0 , u1 ; }

// v o l ume t r i c p r i m i t i v e s not i n c l u d i n g convex po l yh ed r a
template <typename Real , i n t N> s t r u c t Tet rahed ra { Point<Real , N> p ; Vector<Real , N> u0 , u1 , u2 ; }
template <typename Real , i n t N> s t r u c t Box { Point<Real , N> p ; Vector<Real , N> u0 , u1 , u2 ; }

Although each class of primitives (such as linear primitives) has the same form for the structure, they vary
based on constraints for the coefficients of the u-vectors.

Listing 11 contains data structures for convex polygons with sufficient information to support the distance
queries.

Listing 11. The data structures for convex polygons living in R2 or R3 are listed here.

template <typename Real> s t r u c t ConvexPolygon2
{

s t d : : v e c to r<Point<Real , 2>> p o i n t s ;
s t d : : v e c to r<Vector<Real , 2>> norma l s ;
Point<Real , 2> minimum ;

}

template <typename Real> s t r u c t ConvexPolygon3
{

s t d : : v e c to r<Point<Real , 3>> p o i n t s ;
s t d : : v e c to r<Vector<Real , 3>> norma l s ;
Point<Real , 3> minimum ;
Vector<Real , 3> planeNormal ;
s t d : : a r r ay<i n t , 3> permute , invPermute ;

}

36

The points array stores the vertices of the polygon. The vertices are ordered, and it does not matter whether
that ordering is clockwise or counterclockwise. The distance query depends only on having normals that are
directed to the polygon interior. The normals array has the same number of elements as the points array. The
vector normal[i] is perpendicular to the edge with points[i+1] - points[i] and must be directed to the interior
of the polygon. The minimum point has components that store the minimum values for the vertices. This
member supports translation of the convex polygon to the first quadrant for convex polygons in 2D or to
the first octant for convex polygons in 3D.

For convex polygons living in 3-dimensional space, we need to know the plane that contains the polygon.
The normal for that plane is planeNormal. The vertex point[0] is chosen to be the plane origin. The vector
normal[i] is perpendicular to both the edge direction points[i+1] - points[i] and the plane normal planeNormal; it
must be directed to the interior of the polygon. The 3-tuple permute stores a permutation of {0, 1, 2}, call
it {i0, i1, i2}, so that the plane normal has its maximum absolute component at index i2; thus, if the plane
normal is m = (m0,m1,m2), then |mi2 | = max{|m0|, |m1|, |m2|}. The 3-tuple invPermute is the inverse of
the permutation. Table 1 shows the permutations and their inverses.

Table 1. The permutations and their inverse.

permute (0, 1, 2) (0, 2, 1) (2, 0, 1) (1, 0, 2) (1, 2, 0) (2, 1, 0)

invPermute (0, 1, 2) (0, 2, 1) (1, 2, 0) (1, 0, 2) (2, 0, 1) (2, 1, 0)

Convex polyhedra are assumed to have triangle faces. Listing 12 contains a data structure with sufficient
information to support the distance queries.

Listing 12. The data structure for convex polyhedra living in R3 is listed here.

template <typename Real> s t r u c t ConvexPolyhedron
{

s t d : : v e c to r<Point<Real , 3>> p o i n t s ;
s t d : : v e c to r<s t d : : a r r ay<i n t , 3>> t r i a n g l e s ;
s t d : : v e c to r<Vector<Real , 3>> norma l s ;
Point<Real , 3> minimum ;

}

The points array stores the vertices of the polygon. The triangles stores triples of indices that are relative to
the points array. For example, face i of the polygon has triple triangles[i] and the vertices that form the face
are points[triangles[i][0]], points[triangles[i][1]] and points[triangles[i][2]]. The normals array has the same number
of elements as the triangles array. The vector normal[i] is perpendicular to the triangle face determined by the
triangle[i] triple. The minimum point has components that store the minimum values for the vertices. This
member supports translation of the convex polyhedron to the first octant in order to satisfy the nonnegativity
constraints.

37

6 Distance Queries

Each distance query is formulated as a CQP. Alternatively, it is possible to formulate a query in a feature-
based manner by decomposing the objects into vertices and edges, computing the distance queries for those
features, and then selecting the feature pair that leads to the object-object distance, but this style of query
is not discussed in the document.

The CQP formulations use the object definitions presented in Section 5. The input variable of the CQP is
x = (x0, . . . , xn−1) of the appropriate dimension n. All the queries are formulated as the minimization of
the quadratic function f subject to inequality constraints, namely,

f(x) =
1

2
xTAx + bTx + c, x ≥ 0, Dx ≥ e (65)

Each subsection has a construction for A, b, c, D and e with the appropriate selection of parameters x
depending on the types of primitives of the query.

The pseudocode for a distance query is shown in Listing 13. The squared distance is computed so that exact
arithmetic can be supported. If you need the distance, compute the square root of the squared distance
using whatever support is required for sqrt of your numeric type.

Listing 13. The listing contains pseudocode for a distance query using an LCP solver. The number of
components of x and the number of inequality constraints depends on the pair of objects participating in
the query.

template <typename Real , i n t N>
s t r u c t QueryResu l t
{

QueryResu l t (i n t numXComponents) : x (numXComponents) {}

// The squa red d i s t a n c e between ob j e c t 0 and ob j e c t 1 .
Rea l s q rD i s t a n c e ;

// The pa ramete r s x t ha t min im ize f (x) , the ha l f=squared=d i s t a n c e
// f u n c t i o n .
Vector<Real> x ; // x has numXComponents e l ement s

// A p a i r o f c l o s e s t p o i n t s t ha t g en e r a t e the squa red d i s t a n c e
// between ob j e c t 0 and ob j e c t 1 . The c l o s e s t p o i n t o f o b j e c t 0 i s
// c l o s e s t P o i n t [0] and the c l o s e s t p o i n t o f o b j e c t 1 i s c l o s e s t P o i n t [1] .
Point<Real , N> c l o s e s t P o i n t [2] ;

} ;

template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Object0Type<Real> ob j e c t0 , Object1Type<Real> ob j e c t 1)
{

// P r ep r o c e s s o b j e c t data to suppo r t n o n n e g a t i v i t y c o n s t r a i n t s . Th i s
// s t ep a lways a p p l i e s to convex po l ygons and convex po l yh ed r a .

// Compute the c o e f f i c i e n t s o f the q u ad r a t i c f u n c t i o n f (x) .
i n t numXComponents ; // depends on t yp e s o f the i n pu t o b j e c t s
Matr ix<Real> A(numXComponents , numXComponents) ; // . . . a s s i g n A e l ement s
Vector<Real> b (numXComponents) ; // . . . a s s i g n b e l ement s
Rea l c ; // . . . a s s i g n c v a l u e

// Compute the i n e q u a l i t y c o n s t r a i n t c o e f f i c i e n t s .
Matr ix<Real> D(numXComponents , numConst ra in t s) ; // . . . a s s i g n D e l ement s
Vector<Real> e (numConst ra in t s) ; // . . . a s s i g n e e l ement s

// Compute the LCP i n p u t s .

38

i n t l c p S i z e = numXComponents + numConst ra in t s ;
Vector<Real> q (l c p S i z e) ; // = { b , =e }
Matr ix<Real> M(l c pS i z e , l c p S i z e) ; // = {{A, =Transpose (D)} , {D, 0}}

// So l v e the LCP and e x t r a c t the x=p o r t i o n from z = { x , y } .
Vector<Real> w(l c p S i z e) , z (l c p S i z e) ;
LCPSolver<Real> LCP(q , M, w, z) ;
Vector<Real> x (numXComponents) ;
f o r (i n t i = 0 ; i < numXComponents ; ++i)
{

x [i] = z [i] ;
}

// Report the query r e s u l t s to the c a l l e r . NOTE: I n theory , the
// squa red d i s t a n c e i s nonnega t i v e . I n p r a c t i c e when u s i n g f l o a t i n g=po i n t
// a r i t hm e t i c f o r o b j e c t s t ha t a r e v e r y c l o s e toge the r , r ound ing e r r o r s
// can cause s q rD i s t a n c e to be a sma l l n e g a t i v e number . I t i s b e t t e r
// i n p r a c t i c e to compute s q rD i s t a n c e as the squa red l e n g t h o f the
// d i f f e r e n c e o f the c l o s e s t p o i n t s .
QueryResu l t<Real , N> r e s u l t (numXComponents) ;
r e s u l t . x = x ;
r e s u l t . s q rD i s t a n c e = Dot (x , A * x) + 2 * Dot (b , x) + 2 * c ;

// Compute the c l o s e s t p o i n t s from x u s i n g the p a r ame t e r i z a t i o n s o f
// the t yp e s Object0Type and Object1Type . Po s t p r o c e s s the c l o s e s t
// p o i n t s to undo , i f n e c e s s a r y , any ad ju s tment s made du r i n g
// p r e p r o c e s s i n g .
r e s u l t . c l o s e s t P o i n t [0] ; // . . . a s s i g n the N=t u p l e
r e s u l t . c l o s e s t P o i n t [1] ; // . . . a s s i g n the N=t u p l e

r e t u r n r e s u l t ;
}

When using fixed-precision floating-point arithmetic, it is better in practice to compute result.sqrDistance by
constructing the closest points first and then computing the squared length of the difference. This avoids
the computed value for xTAx + 2bTx + 2c from being slightly negative caused by rounding errors when the
objects are nearly touching or slight overlapping (distance nearly zero). This approach allows you to skip
the numerical computation of c.

A common subroutine in the queries for any pair of objects is the conversion of A, b, D and e to the LCP
inputs q and M . Moreover, the LCP solver returns a vector z whose first several rows stores the output x.

The DoQuery implementation of Listing 13 may then be refactored and converted to that of Listing 14.

Listing 14. The listing contains refactored pseudocode for a distance query using an LCP solver.

template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Object0Type<Real> ob j e c t0 , Object1Type<Real> ob j e c t 1)
{

// P r ep r o c e s s o b j e c t data to suppo r t n o n n e g a t i v i t y c o n s t r a i n t s . Th i s
// s t ep a lways a p p l i e s to convex po l ygons and convex po l yh ed r a .

// Compute the c o e f f i c i e n t s o f the q u ad r a t i c f u n c t i o n f (x) .
i n t numXComponents ; // depends on t yp e s o f the i n pu t o b j e c t s
Matr ix<Real> A(numXComponents , numXComponents) ; // . . . a s s i g n A e l ement s
Vector<Real> b (numXComponents) ; // . . . a s s i g n b e l ement s

// Compute the i n e q u a l i t y c o n s t r a i n t c o e f f i c i e n t s .
Matr ix<Real> D(numXComponents , numConst ra in t s) ; // . . . a s s i g n D e l ement s
Vector<Real> e (numConst ra in t s) ; // . . . a s s i g n e e l ement s

// Set up the LCP and s o l v e i t f o r v e c t o r x . The numXComponents and

39

// numConst ra in t s v a l u e s a r e i s a c c e s s i b l e to ComputeMinimizer from the
// i n p u t s . I n q u e r i e s w i thout i n e q u a l i t y c o n s t r a i n t s , ComputeMinimizer
// does not have D or e i n p u t s .
QueryResu l t<Real , N> r e s u l t (numXComponents) ;
r e s u l t . x = ComputeMinimizer (A, b , D, e) ;

// Compute the c l o s e s t p o i n t s from x u s i n g the p a r ame t e r i z a t i o n s o f
// the t yp e s Object0Type and Object1Type . Po s t p r o c e s s the c l o s e s t
// p o i n t s to undo , i f n e c e s s a r y , any ad ju s tment s made du r i n g
// p r e p r o c e s s i n g .
r e s u l t . c l o s e s t P o i n t [0] ; // . . . a s s i g n the N=t u p l e
r e s u l t . c l o s e s t P o i n t [1] ; // . . . a s s i g n the N=t u p l e
Vector<Real> d i f f = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (d i f f , d i f f) ;

r e t u r n r e s u l t ;
}

// The m in im i z e r f u n c t i o n when the CQP has i n e q u a l i t y c o n s t r a i n t s .
template <typename Real>
Vector<Real> ComputeMinimizer (Matr ix<Real> A, Vector<Real> b , Matr ix<Real> D, Vector<Real> e)
{

// Compute the LCP i n p u t s .
i n t numXComponents = b . s i z e () ;
i n t numConst ra in t s = e . s i z e () ;

Vector<Real> q (l c p S i z e) ; // = { b , =e }
f o r (i n t r = 0 ; r < numXComponents ; ++r)
{

q [r] = b [r] ;
}
f o r (i n t r = 0 ; r < numCons t ra in t s ; ++r)
{

q [r + numXComponents] = =e [r] ;
}

Matr ix<Real> M(l c pS i z e , l c p S i z e) ; // = {{A, =Transpose (D)} , {D, 0}}
f o r (i n t r = 0 ; r < numXComponents ; ++r)
{

f o r (i n t c = 0 ; c < numXComponents ; ++c)
{

M[r] [c] = A[r] [c] ;
}

f o r (i n t c = 0 ; c < numCons t ra in t s ; ++c)
{

M[r] [c + numXComponents] = =D[c] [r] ;
}

}
f o r (i n t r = 0 ; r < numCons t ra in t s ; ++r)
{

f o r (i n t c = 0 ; c < numXComponents ; ++c)
{

M[r + numXComponents] [c] = D[r] [c] ;
}

f o r (i n t c = 0 ; c < numCons t ra in t s ; ++c)
{

M[r + numXComponents] [c + numXComponents] = 0 ;
}

}

// So l v e the LCP and e x t r a c t the x=p o r t i o n from z = { x , y } .
i n t l c p S i z e = numXComponents + numConst ra in t s ;
Vector<Real> w(l c p S i z e) , z (l c p S i z e) ;
LCPSolver<Real> LCP(q , M, w, z) ;
Vector<Real> x (numXComponents) ;
f o r (i n t i = 0 ; i < numXComponents ; ++i)
{

x [i] = z [i] ;
}

40

r e t u r n x ;
}

// The m in im i z e r f u n c t i o n when the CQP has no i n e q u a l i t y c o n s t r a i n t s . The LCP
// s o l v e r s t i l l i n v o l v e s the n o n n e g a t i v i t y c o n s t r a i n t s (i n t e r n a l l y) .
template <typename Real>
Vector<Real> ComputeMinimizer (Matr ix<Real> A, Vector<Real> b)
{

// With no i n e q u a l i t y c o n s t r a i n t s , q = b and M = A. So l v e the LCP ;
// the z v e c t o r i s the s o l u t i o n x .
Vector<Real> w(b . s i z e ()) , z (b . s i z e ()) ;
LCPSolver<Real> LCP(q , M, w, z) ;
r e t u r n z ;

}

Naturally, the implementation for a specific pair of object types can be optimized to avoid filling in A, b, D
and e only to use these to fill in q and M . The pseudocode in this document does not use such optimizations
to ensure that the readability and structure of the pseudocode is understandable at a high level.

6.1 Point to Line

The point is s and the line is p + x0u. The dimension of the CQP is 1, so x = (x0). Define ∆ = p− s. Half
the squared distance between a line point and the point is

f(x) =
1

2
|x0u + p− s|2 =

1

2
|x0u + ∆|2 =

1

2
xTAx + bTx + c (66)

The quadratic coefficients are

A =
[
|u|2

]
, b =

[
u ·∆

]
, c =

1

2
|∆|2 (67)

There are no constrained variables, so the nonnegativity constraint does not exist and D and e do not exist.

The variable x0 is unconstrained, so we can eliminate it according to Section 1.4 by solving df/dx0 = 0. The
solution is the parameter of the point that minimizes the distance,

x0 = −u ·∆/|u|2 (68)

Listing 15 contains pseudocode for the distance query.

Listing 15. The listing contains pseudocode for the point-line distance query. The number of x-components
is 1 and the number of inequality constraints is 0.

template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Point<Real , N> po in t , L ine<Real , N> l i n e)
{

Vector<Real , N> d e l t a = l i n e . p = po i n t ;
Rea l A00 = Dot (ray . u , r ay . u) ;
Rea l b0 = Dot (ray . u , d e l t a) ;

QueryResu l t<Real , N> r e s u l t (1) ;
r e s u l t . x [0] = =b0 / A00 ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = l i n e . p + r e s u l t . x [0] * l i n e . u ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

41

6.2 Point to Ray

The point is s and the ray is p + x0u where x0 ≥ 0. Half the squared distance between a ray point and the
point is given by equation (66) and the quadratic coefficients are given by equation (67).

The nonnegativity constraint x0 ≥ 0 is summarized by x ≥ 0. There are no inequality constraints of the
form Dx ≥ e, so D and e do not exist. The LCP coefficients are therefore q = b and M = A.

Listing 16 contains pseudocode for the distance query.

Listing 16. The listing contains pseudocode for the point-ray distance query. The number of x-components
is 1 and the number of inequality constraints is 0.

template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Point<Real , N> po in t , Ray<Real , N> r ay)
{

Vector<Real , N> d e l t a = ray . p = po i n t ;

Matr ix<Real> A(1 , 1) ;
Vector<Real> b (1) ;
A [0] [0] = Dot (r ay . u , r ay . u) ;
b [0] = Dot (ray . u , d e l t a) ;

QueryResu l t<Real , N> r e s u l t (1) ;
r e s u l t . x = ComputeMinimizer (A, b) ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = ray . p + r e s u l t . x [0] * r ay . u ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

Use of the general LCP solver is not necessary. You can implement the algorithm manually and inline it for
performance.

6.3 Point to Segment

The point is s and the segment is p0 + x0u where x0 ∈ [0, 1]. Half the squared distance between a segment
point and the point is given by equation (66) and the quadratic coefficients are given by equation (67).

The nonnegativity constraint x0 ≥ 0 is summarized by x ≥ 0. The inequality constraint x0 ≤ 1 is summarized
by Dx ≥ e where

D =
[
−1

]
, e =

[
−1

]
(69)

Listing 17 contains pseudocode for the distance query.

Listing 17. The listing contains pseudocode for the point-segment distance query. The number of x-
components is 1 and the number of inequality constraints is 1, so the LCP size is 2.

42

template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Point<Real , N> po in t , Segment<Real , N> segment)
{

Vector<Real , N> d e l t a = segment . p = po i n t ;

Matr ix<Real> A(1 , 1) , D(1 , 1) ;
Vector<Real> b (1) , e (1) ;
A [0] [0] = Dot (r ay . u , r ay . u) ;
b [0] = Dot (ray . u , d e l t a) ;
D [0] [0] = =1;
e [0] = =1;

QueryResu l t<Real , N> r e s u l t (1) ;
r e s u l t . x = ComputeMinimizer (A, b , D, e) ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = segment . p + r e s u l t . x [0] * segment . u ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

Use of the general LCP solver is not necessary. You can implement the algorithm manually and inline it for
performance.

6.4 Point to Plane

The 2D query has the trivial solution of distance zero because the point is already in the plane, so consider
the query for 3D. The point is s and the plane is p + x0u0 + x1u1, where u0 and u1 are not necessarily
unit length or perpendicular. The dimension of the CQP is 2, so x = (x0, x1). Define ∆ = p− s. Half the
squared distance between a plane point and the point is

f(x) =
1

2
|x0u0 + x1u1 + p− s|2 =

1

2
|x0u0 + x1u1 + ∆|2 =

1

2
xTAx + bTx + c (70)

The quadratic coefficients are

A =

 u0 · u0 u0 · u1

u1 · u0 u1 · u1

 , b =

 u0 ·∆

u1 ·∆

 , c =
1

2
|∆|2 (71)

There are no constrained variables, so the nonnegativity constraint does not exist and D and e do not exist.

The variables x0 and x1 are unconstrained, so we can eliminate them according to Section 1.4 by solving
∇f(x0, x1) = (0, 0). The solution is the parameter pair that minimizes the distance, x0

x1

 =
1

|u0|2|u1|2 − (u0 · u1)2

 (u0 · u1)(u1 ·∆)− (u1 · u1)(u0 ·∆)

(u0 · u1)(u0 ·∆)− (u0 · u0)(u1 ·∆)

 (72)

Observe (in 3D) that |u0|2|u1|2 − (u0 · u1)2 = |u0 × u1|2, which is not zero because u0 and u1 are linearly
independent. Similar cross product identities lead to x0

x1

 =
1

|u0 × u1|2

 (u0 × u1) · (u1 ×∆)

−(u0 × u1) · (u0 ×∆)

 (73)

43

Listing 18 contains pseudocode for the distance query.

Listing 18. The listing contains pseudocode for the point-plane distance query in 3D. The dimension N

is specialized to 3 in the listing.

template <typename Real>
QueryResu l t<Real , 3>
DoQuery (Point<Real , 3> po in t , Plane<Real , 3> p l ane)
{

Vector<Real , 3> d e l t a = p l ane . p = po i n t ;
Vector<Real , 3> u0xu1 = Cros s (p l ane . u0 , p l ane . u1) ;
Vector<Real , 3> u0xDe l ta = Cros s (p l ane . u0 , d e l t a) ;
Vector<Real , 3> u1xDe l ta = Cros s (p l ane . u1 , d e l t a) ;
Rea l dot0 = Dot (u0xu1 , u0xu1) ;
Rea l dot1 = Dot (u0xu1 , u0xDe l ta) ;
Rea l dot2 = Dot (u0xu1 , u1xDe l ta) ;

QueryResu l t<Real , 3> r e s u l t (2) ;
r e s u l t . x [0] = dot1 / dot0 ;
r e s u l t . x [1] = =dot2 / dot0 ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = p l ane . p + r e s u l t . x [0] * p l ane . u0 + r e s u l t . x [1] * p l ane . u1 ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

6.5 Point to Triangle

The point is s and the triangle is p + x0u0 + x1u1 where x0 ≥ 0, x1 ≥ 0 and x0 + x1 ≤ 1. Half the squared
distance between a triangle point and the point is given by equation (70). The quadratic coefficients are
given by equation (71).

The nonnegativity constraints x0 ≥ 0 and x1 ≥ 0 are summarized by x ≥ 0. The inequality constraint
x0 + x1 ≤ 1 is summarized by Dx ≥ e where

D =
[
−1 −1

]
, e =

[
−1

]
(74)

Listing 19 contains pseudocode for the distance query.

Listing 19. The listing contains pseudocode for the point-triangle distance query. The number of x-
components is 2 and the number of inequality constraints is 1, so the LCP size is 3.

template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Point<Real , N> po in t , T r i ang l e<Real , N> t r i a n g l e)
{

Vector<Real , N> d e l t a = t r i a n g l e . p = po i n t ;

Matr ix<Real> A(2 , 2) , D(1 , 2) ;
Vector<Real> b (2) , e (1) ;
A [0] [0] = Dot (t r i a n g l e . u0 , t r i a n g l e . u0) ;
A [0] [1] = Dot (t r i a n g l e . u0 , t r i a n g l e . u1) ;
A [1] [0] = A [0] [1] ;
A [1] [1] = Dot (t r i a n g l e . u1 , t r i a n g l e . u1) ;
b [0] = Dot (t r i a n g l e . u0 , d e l t a) ;

44

b [1] = Dot (t r i a n g l e . u1 , d e l t a) ;
D [0] [0] = =1;
D [0] [1] = =1;
e [0] = =1;

QueryResu l t<Real , N> r e s u l t (2) ;
r e s u l t . x = ComputeMinimizer (A, b , D, e) ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = t r i a n g l e . p + r e s u l t . x [0] * t r i a n g l e . u0 + r e s u l t . x [1] * t r i a n g l e . u1 ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

6.6 Point to Rectangle

The point is s and the rectangle is p + x0u0 + x1u1 where u0 · u1 = 0, x0 ∈ [0, 1] and x1 ∈ [0, 1]. Half
the squared distance between a rectangle point and the point is given by equation (70). The quadratic
coefficients are given by equation (71).

The nonnegativity constraints x0 ≥ 0 and x1 ≥ 0 are summarized by x ≥ 0. The inequality constraints
x0 ≤ 1 and x1 ≤ 1 are summarized by Dx ≥ e where

D =

 −1 0

0 −1

 , e =

 −1

−1

 (75)

Listing 20 contains pseudocode for the distance query.

Listing 20. The listing contains pseudocode for the point-rectangle distance query. The number of
x-components is 2 and the number of inequality constraints is 2, so the LCP size is 4.
template <typename Real , i n t N>
QueryResu l t<Real , N>
DoQuery (Point<Real , N> po in t , Rectang le<Real , N> r e c t a n g l e)
{

Vector<Real , N> d e l t a = r e c t a n g l e . p = po i n t ;

Matr ix<Real> A(2 , 2) , D(2 , 2) ;
Vector<Real> b (2) , e (2) ;
A [0] [0] = Dot (r e c t a n g l e . u0 , r e c t a n g l e . u0) ;
A [0] [1] = 0 ;
A [1] [0] = 0 ;
A [1] [1] = Dot (r e c t a n g l e . u1 , r e c t a n g l e . u1) ;
b [0] = Dot (r e c t a n g l e . u0 , d e l t a) ;
b [1] = Dot (r e c t a n g l e . u1 , d e l t a) ;
D [0] [0] = =1;
D [0] [1] = 0 ;
D [1] [0] = 0 ;
D [1] [1] = =1;
e [0] = =1;
e [1] = =1;

QueryResu l t<Real , N> r e s u l t ;
r e s u l t . x = ComputeMinimizer (A, b , D, e) ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = r e c t a n g l e . p + r e s u l t . x [0] * r e c t a n g l e . u0 + r e s u l t . x [1] * r e c t a n g l e . u1 ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

45

6.7 Point to Convex Polygon

6.7.1 Convex Polygons in 2D

In 2D the point is s and the convex polygon contains points y defined by equation (60). In order to satisfy
nonnegativity constraints, the polygon must be translated to the first quadrant by choosing x = y − µ ≥ 0
according to the description in Section 5.2.4. The point must be translated accordingly. Define ∆ = µ− s.
The dimension of the CQP is 2, so x = (x0, x1). Half the squared distance between a convex polygon point
and the point is

f(x) =
1

2
|y − s|2 =

1

2
|x + ∆|2 =

1

2
xTAx + bTx + c (76)

The quadratic coefficients are

A =

 1 0

0 1

 , b = ∆, c =
1

2
|∆|2 (77)

The inequality constraints are Dx ≥ e where D is ` × 2 and e is ` × 1 when the polygon has ` edges (and
vertices). The matrices are

D =


nT
0

...

nT
`−1

 , e =


nT
0 (p0 − µ)

...

nT
`−1(p`−1 − µ)

 (78)

The vertices of the polygon have been translated by µ. The CQP is solved for x from which we can extract
y = x + µ for the closest point to s. Listing 21 contains pseudocode for the distance query.

Listing 21. The listing contains pseudocode for the point-convex polygon distance query in 2D. The
number of x-components is 2 and the number of inequality constraints is `, so the LCP size is `+ 2.

template <typename Real>
QueryResu l t<Real , 2>
DoQuery (Point<Real , 2> po in t , ConvexPolygon2<Real> po lygon)
{

Vector<Real , 2> d e l t a = po lygon . minimum = po i n t ;

i n t L = po lygon . norma l s . s i z e () ;
Matr ix<Real> A(2 , 2) , D(L , 2) ;
Vector<Real> b (2) , e (L) ;
A [0] [0] = 1 ;
A [0] [1] = 0 ;
A [1] [0] = A [0] [1] ;
A [1] [1] = 1 ;
b [0] = d e l t a [0] ;
b [1] = d e l t a [1] ;
f o r (i n t j = 0 ; j < L ; ++j)
{

D[j] [0] = po lygon . norma l s [j] [0] ;
D[j] [1] = po lygon . norma l s [j] [1] ;
e [j] = Dot (po lygon . norma l s [j] , po lygon . p o i n t s [j] = po lygon . minimum) ;

}

QueryResu l t<Real , N> r e s u l t (2) ;
r e s u l t . x = ComputeMinimizer (A, b , D, e) ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . x + po lygon . minimum ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;

46

r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

6.7.2 Convex Polygons in 3D

In 3D the point is s and the convex polygon contains points y defined by equation (61). In order to satisfy
the nonnegativity constraints, the polygon must be translated by choosing x = y − µ ≥ 0 according to
the desription in Section 5.2.4. The point must be translated accordingly. Define ∆ = µ − s. Half the
squared distance between a convex polygon point and the point is provided by equation (76) except that x
is a 3-tuple.

We have an equality constraint, m · (x−p0) = 0, that defines the plane containing the convex polygon. The
point p0 is the first point in the list of polygon vertices and m is a plane normal. Let m = (m0,m1,m2)
and ∆ = (∆0,∆1,∆2). Choose a permutation (i0, i1, i2) ∈ {(0, 1, 2), (2, 0, 1), (1, 2, 0)} for which |mi2 | =
max{|m0|, |m1|, |m2|}. The plane equation can be solved for

xi2 =
m · p0 −mi0xi0 −mi1xi1

mi2

= α0xi0 + α1xi1 + α2 (79)

where the last equality defines the scalars αi.

Substitute xi2 into f(x) of equation (76). Define x̃ = (xi0 , xi1). The quadratic equation is

f̃(x̃) =
1

2
x̃TÃx̃ + b̃Tx̃ + c̃ (80)

where

Ã =

 1 + α2
0 α0α1

α0α1 1 + α2
1

 , b̃ =

 ∆i0 + α0(∆i2 + α2)

∆i1 + α1(∆i2 + α2)

 , c̃ =
1

2
|∆|2 + α2∆i2 +

1

2
α2
2 (81)

Substitute xi2 into the inequality constraints Dx ≥ e. If nj = (n
(j)
0 , n

(j)
1 , n

(j)
2), then the constraints nT

j x ≥
nT
j (pj − µ) become D̃x̃ ≥ ẽ where

D̃ =


n
(0)
i0

+ α0n
(0)
i2

n
(0)
i1

+ α1n
(0)
i2

...
...

n
(n−1)
i0

+ α0n
(n−1)
i2

n
(`−1)
i1

+ α1n
(`−1)
i2

 , ẽ =


nT
0 (p0 − µ)− α2n

(0)
i2

...

nT
`−1(p`−1 − µ)− α2n

(`−1)
i2

 (82)

The CQP is solved for x̃ from which we can compute x and then y = x +µ. Listing 22 contains pseudocode
for the distance query.

Listing 22. The listing contains pseudocode for the point-convex polygon distance query in 3D. The
number of x̃-components is 2 and the number of inequality constraints is `, so the LCP size is `+ 2.

47

template <typename Real>
QueryResu l t<Real , 3>
DoQuery (Point<Real , 3> po in t , ConvexPolygon3<Real> po lygon)
{

Vector<Real , 3> d e l t a = po lygon . minimum = po i n t ;
i n t i 0 = po lygon . permute [0] , i 1 = po lygon . permute [1] , i 2 = po lygon . permute [2] ;
Rea l a lpha0 = =po lygon . p laneNormal [i 0] / po lygon . p laneNormal [i 2] ;
Rea l a lpha1 = =po lygon . p laneNormal [i 1] / po lygon . p laneNormal [i 2] ;
Rea l a lpha2 = Dot (po lygon . planeNormal , po lygon . p o i n t s [0]) / po lygon . p laneNormal [i 2] ;

i n t L = po lygon . norma l s . s i z e () ;
Matr ix<Real> A(2 , 2) , D(L , 2) ;
Vector<Real> b (2) , e (L) ;
A [0] [0] = 1 + a lpha0 * a lpha0 ;
A [0] [1] = a lpha0 * a lpha1 ;
A [1] [0] = A [0] [1] ;
A [1] [1] = 1 + a lpha1 * a lpha1 ;
b [0] = d e l t a [i 0] + a lpha0 * (d e l t a [i 2] + a lpha2) ;
b [1] = d e l t a [i 1] + a lpha1 * (d e l t a [i 2] + a lpha2) ;
f o r (i n t j = 0 ; j < L ; ++j)
{

D[j] [0] = po lygon . norma l s [j] [i 0] + a lpha0 * po lygon . norma l s [j] [i 2] ;
D[j] [1] = po lygon . norma l s [j] [i 1] + a lpha1 * po lygon . norma l s [j] [i 2] ;
Rea l dot = Dot (po lygon . norma l s [j] , po l ygon . p o i n t s [j] = po lygon . minimum) ;
e [j] = dot = a lpha2 * po lygon . norma l s [j] [i 2] ;

}

QueryResu l t<Real , N> r e s u l t (2) ;
r e s u l t . x = ComputeMinimizer (A, b , D, e) ; // (x [i 0] , x [i 1])
Vector<Real , 3> x ; // (x [0] , x [1] , x [2])
x [0] = r e s u l t . x [po lygon . invPermute [i 0]] ;
x [1] = r e s u l t . x [po lygon . invPermute [i 1]] ;
x [2] = r e s u l t . x [po lygon . invPermute [i 2]] ;
r e s u l t . c l o s e s t P o i n t [0] = po i n t ;
r e s u l t . c l o s e s t P o i n t [1] = x + po lygon . minimum ;
d e l t a = r e s u l t . c l o s e s t P o i n t [1] = r e s u l t . c l o s e s t P o i n t [0] ;
r e s u l t . s q rD i s t a n c e = Dot (de l t a , d e l t a) ;
r e t u r n r e s u l t ;

}

6.8 Point to Tetrahedron

The point is s and the tetrahedron is p+x0u0+x1u1+x2u2 with x0 ≥ 0, x1 ≥ 0, x2 ≥ 0 and x0+x1+x2 ≤ 1.
The dimension of the CQP is 3, so x = (x0, x1, x2). Define ∆ = p− s. Half the squared distance between a
tetrahedron point and the point is

f(x) =
1

2
|x0u0 + x1u1 + x2u2 + p− s|2 =

1

2
|x0u0 + x1u1 + x2u2 + ∆|2 =

1

2
xTAx + bTx + c (83)

The quadratic coefficients are

A =


u0 · u0 u0 · u1 u0 · u2

u1 · u0 u1 · u1 u1 · u2

u2 · u0 u2 · u1 u2 · u2

 , b =


u0 ·∆

u1 ·∆

u2 ·∆

 , c =
1

2
|∆|2 (84)

The nonnegativity constraints x0 ≥ 0, x1 ≥ 0 and x2 ≥ 0 are summarized by x ≥ 0. The inequality
constraint x0 + x1 + x2 ≤ 0 is summarized by Dx ≥ e where

D =
[
−1 −1 −1

]
, e =

[
−1

]
(85)

48

6.9 Point to Box

The point is s and the box is p + x0u0 + x1u1 + x2u2 with x0 ∈ [0, 1], x1 ∈ [0, 1] and x2 ∈ [0, 1]. Half the
squared distance between a box point and the point is given by equation (83). The quadratic coefficients are
given by equation (84).

The nonnegativity constraints x0 ≥ 0, x1 ≥ 0 and x2 ≥ 0 are summarized by x ≥ 0. The inequality
constraints x0 ≤ 1, x1 ≤ 1 and x2 ≤ 1 are summzrized by Dx ≥ e where

D =


−1 0 0

0 −1 0

0 0 −1

 , e =


−1

−1

−1

 (86)

6.10 Point to Convex Polyhedron

The point is s and the convex polyhedron contains points x defined by equation 64. The dimension of the
CQP is 3, so x = (x0, x1, x2). Half the squared distance between a convex polyhedron point and the point is

f(x) =
1

2
|x− s|2 =

1

2
xTAx + bTx + c (87)

The quadratic coefficients are

A =


1 0 0

0 1 0

0 0 1

 , b = −s, c =
1

2
|s|2 (88)

The inequality constraints are Dx ≥ e where D is n × 3 and e is n × 1 when the polyhedron has ` faces.
The matrices are

D =


nT
0

...

nT
`−1

 , e =


nT
0p0

...

nT
`−1pn−1

 (89)

We have a technical problem to resolve. In the definition for a convex polyhedron, it is not necessary that
x ≥ 0; that is, not all the vertices are necessarily in the first octant. To formulate the CQP, we need
to translate the vertices to the first octant. Do so by computing an axis-aligned bounding box for the
polyhedron, say, [µmin,µmax]. Subtract the minimum point from the polygon vertices and from the query
point, y = x− µmin and r = s− µmin; then

f(x) =
1

2
|x− s|2 =

1

2
|y − r|2 = g(y) (90)

where the last equality defines the quadratic function g. The nonnegativity constraints y ≥ 0 are now
feasible because the translated vertices are in the first quadrant. The inequality constraints Dx ≥ e become
Dy ≥ e−Dµmin = h, where the last equality defines the vector h. The quadratic coefficients for g(y) are

A = I, b = −r, c =
1

2
|r|2 (91)

49

where I is the 3× 3 identity matrix. The nonnegativity constraints are y ≥ 0 and the inequality constraints
are Dy ≥ h.

The CQP is solved for y from which we can extract x = y + µmin for the closest point to s. The distance
can be computed either from f(x) or g(y).

6.11 Line to Line

The lines are pi + xiui for i = 0, 1. The dimension of the CQP is 2, so x = (x0, x1). Define ∆ = p0 − p1.
Half the squared distance between a point on one line and a point on the other line is

f(x) =
1

2
|(p0 + x0u0)− (p1 + x1u1)|2 =

1

2
|x0u0 − x1u1 + ∆|2 =

1

2
xTAx + bTx + c (92)

The quadratic coefficients are

A =

 u0 · u0 −u0 · u1

−u1 · u0 u1 · u1

 , b =

 u0 ·∆

−u1 ·∆

 , c =
1

2
|∆|2 (93)

There are no constrained variables, so the nonnegativity constraint does not exist and D and e do not exist.

Both x0 and x1 are unconstrained, so we can eliminate them according to Section 1.4. There are no
constrained variables, so (0, 0) = ∇f(x0, x1) = Ax + b provides the parameters of the points that minimize
the distance,  u0 · u0 −u0 · u1

−u1 · u0 u1 · u1

 x0

x1

 =

 −u0 ·∆

u1 ·∆

 (94)

The linear system is invertible if and only if u0 and u1 are not parallel. If they are parallel, there are
infinitely many pairs of closest points—any such pair may be used to compute the line-line distance. The
simplest pair to choose is the line origin p1 and its projection onto the other line. Let p1 = p0 + y0u0 + u⊥0
where u⊥0 is a vector perpendicular to u0. The closest point is p′1 = u0 + y0u0, where y0 = −∆ · u0/|u0|2.
The distance is |p′1 − p1|.

6.12 Line to Ray

The ray is p0 + x0u0 for x0 ≥ 0 and the line is p1 + x1u1. The dimension of the CQP is 2, so x = (x0, x1).
Half the squared distance between a ray point and a line point is given by equation (92). The variable x1 is
unconstrained, so we can eliminate it according to Section 1.4. Solve ∂f/∂x1 = 0 to obtain

x1 =
x0u0 · u1 + u0 ·∆

|u1|2
= α0x0 + α1 (95)

where the last equality defines the scalars αi. Define x̃ = (x0), g(x̃) = f(x) and substitute the x1-equation
into equation (92) to obtain

g(x̃) = 1
2 |x0(u0 − α0u1) + (∆− α1u1)|2

= 1
2

∣∣∣x0ũ0 + ∆̃
∣∣∣2

= 1
2 x̃TÃx̃ + b̃Tx̃ + c̃

(96)

50

where the second equality defines ũ0 and ∆̃ and the third equality defines the quadratic coefficients,

Ã =
[

ũ0 · ũ0

]
, b̃ =

[
ũ0 · ∆̃

]
, c̃ =

1

2
|∆̃|2 (97)

Observe that all 3 quantities are scalars.

The nonnegativity constraint x0 ≥ 0 is summarized by x̃ ≥ 0. There are no other inequality constraints.

6.13 Line to Segment

The segment is p0 +x0u0 for x1 ∈ [0, 1] and the line is p1 +x1u1. The conversion to a CQP with elimination
of x1 is identical to that of the line-ray distance query except that we now have an inequality constraint
D̃x̃ ≥ ẽ where

D̃ =
[
−1

]
, ẽ =

[
−1

]
(98)

6.14 Line to Plane

The 2D query has the trivial solution of distance zero because the line is already in the plane, so consider the
query for 3D. The plane is p0 + x0u0 + x1u1, where u0 and u1 are linearly independent but not necessarily
unit length or perpendiculat. The line is p1 + x2u2. The dimension of the CQP is 3, so x = (x0, x1, x2).
Define ∆ = p0 − p1. Half the squared distance between a plane point and a line point is

f(x) = 1
2 |(x0u0 + x1u1 + p0)− (x2u2 + p1)|2

= 1
2 |x0u0 + x1u1 − x2u2 + ∆|2

= 1
2xTAx + bTx + c

(99)

The quadratic coefficients are

A =


u0 · u0 u0 · u1 −u0 · u2

u1 · u0 u1 · u1 −u1 · u2

−u2 · u0 −u2 · u1 u2 · u2

 , b =


u0 ·∆

u1 ·∆

−u2 ·∆

 , c =
1

2
|∆|2 (100)

All three variables are unconstrained, so we eliminate all variables using the method in Section 1.4. We
need to solve 0 = ∇f(x) = Ax + b. By assumption, u0 and u1 are linearly independent. The matrix A is
invertible when u0, u1 and u2 are linearly independent. This happens geometrically when the line is not
parallel to the plane. The solution x = −A−1b is the point of intersection of the line with the plane, in
which case the distance is 0. If J = [u0 u1 − u2], then A = JTJ , b = JT∆ and f(x) = |Jx + ∆|2/2. We
can instead solve Jx + ∆ = 0 for x = −J−1∆.

If A is not invertible, then u2 is a linear combination of u0 and u1. The line is parallel to—or coincident
with—the plane. Infinitely many pairs of points achieve the minimum. The solution space to Ax = −b is
1-dimensional, so any solution in this space generates a pair that achieves the minimum. The simplest pair

51

to choose is the line origin p1 and its perpendicular projection onto the plane. Let p1 = p0 + y0u0 + y1u1 +
y2u0 × u1. Dotting the equation with u0 × u1 leads to

y2 =
−∆ · u0 × u1

|u0 × u1|2
(101)

The projection onto the plane is p′1 = p1 − y2u0 × u1, which is the closest plane point to p1. The distance
is |p′1 − p1|.

6.15 Line to Triangle

The triangle is p0 +x0u0 +x1u1 for x0 ≥ 0, x1 ≥ 0 and x0 +x1 ≤ 1 and the line is p1 +x2u2. The dimension
of the CQP is 3, so x = (x0, x1, x2). Define ∆ = p0 − p1. Half the squared distance between a triangle
point and a line point is provided by equation (99). The quadratic coefficients are provided by equation
(100). The variable x2 is unconstrained, so we can eliminate it according to Section 1.4. Solve ∂f/∂x2 = 0
to obtain

x2 =
x0u0 · u2 + x1u1 · u2 + ∆ · u2

|u2|2
= x0α0 + x1α1 + α2 (102)

where the last equality defines the αi. Define x̃ = (x0, x1), g(x̃) = f(x) and substitute the x2-equation into
equation (100) to obtain

g(x̃) = 1
2 |x0(u0 − α0u2) + x1(u1 − α1u2) + (∆− α2u2)|2

= 1
2

∣∣∣x0ũ0 + x1ũ1 + ∆̃
∣∣∣2

= 1
2 x̃TÃx̃ + b̃Tx̃ + c̃

(103)

where the second equality defines ũ0, ũ1 and ∆̃ and the third equality defines the quadratic coefficients

Ã =

 ũ0 · ũ0 ũ0 · ũ1

ũ1 · ũ0 ũ1 · ũ1

 , b̃ =

 ũ0 · ∆̃

ũ1 · ∆̃

 , c̃ =
1

2
|∆̃|2 (104)

The nonnegativity constraints x0 ≥ 0 and x1 ≥ 0 are summarized by x̃ ≥ 0. The inequality constraint
x0 + x1 ≤ 1 is summarized by D̃x̃ ≥ ẽ where

D̃ =
[
−1 −1

]
, ẽ =

[
−1

]
(105)

6.16 Line to Rectangle

The rectangle is p0 + x0u0 + x1u1 where u0 · u1 = 0, x0 ∈ [0, 1] and x1 ∈ [0, 1]. The line is p1 + x2u2. The
conversion to a CQP with elimination of x2 is identical to that of the line-triangle distance query except
that the inequality constraints are D̃x̃ ≥ ẽ where

D̃ =

 −1 0

0 −1

 , ẽ =

 −1

−1

 (106)

52

6.17 Line to Convex Polygon

6.17.1 Convex Polygons in 2D

In 2D the convex polygon contains points (x0, x1) defined by equation (60). Define the basis vectors u0 =
(1, 0) and u1 = (0, 1). The line is s + x2u2. The dimension of the CQP is 3, so x = (x0, x1, x2). Define
∆ = −s. Half the squared distance between a convex polygon point and a line point is

f(x) = 1
2 |(x0u0 + x1u1)− (x2u2 + s)|2

= 1
2 |x0u0 + x1u1 − x2u2 + ∆|2

(107)

The variable x2 is unconstrained, so we can eliminate it according to Section 1.4. Solve ∂f/∂x2 = 0 to
obtain

x2 =
x0u0 · u2 + x1u1 · u2 + ∆ · u2

|u2|2
= α0x0 + α1x1 + α2 (108)

where the last equality defines the scalars αi. Define x̃ = (x0, x1), g(x̃) = f(x) and substitute the x2-equation
into equation (107) to obtain

g(x̃) = 1
2 |x0(u0 − α0u2) + x1(u1 − α1u2) + (∆− α2u2)|2

= 1
2

∣∣∣x0ũ0 + x1ũ1 + ∆̃
∣∣∣2

= 1
2 x̃TÃx̃ + b̃Tx̃ + c̃

(109)

where the second equality defines ũ0, ũ1 and ∆̃, and the third equality defines the quadratic coefficients

Ã =

 ũ0 · ũ0 ũ0 · ũ1

ũ1 · ũ0 ũ1 · ũ1

 , b̃ =

 ũ0 · ∆̃

ũ1 · ∆̃

 , c̃ =
1

2
|∆̃|2 (110)

The inequality constraints are those of equation (78) and involve only the polygon components x̃ = (x0, x1),
so we will write the constraints as D̃x̃ ≥ ẽ.

As in Section 6.7.1, to obtain the nonnegativity constraints x̃ ≥ 0, we must translate the convex polygon into
the first quadrant. Compute the axis-aligned bounding rectangle [µmin,µmax] for the polygon and subtract
the minimum point to force the translated polygon into the first quadrant: ỹ = x̃ − µmin. The quadratic

function is g(x̃) = h(ỹ) = ỹTÂỹ/2 + b̂Tỹ + ĉ where

Â = Ã, b̂ = Ãµmin + b̃, ĉ =
1

2
µT

minÃµmin + b̃Tµmin + c̃ (111)

The nonnegativity constraints are ỹ ≥ 0 and the inequality constraints are D̃ỹ ≥ ẽ− D̃µmin.

The CQP is solved for ỹ after which x̃ = ỹ +µmin. The distance can be computed from f(x), g(x̃) or h(ỹ).

6.17.2 Convex Polygons in 3D

In 3D the convex polygon contains points (x0, x1, x2) defined by equation (61). Define the basis vectors
u0 = (1, 0, 0), u1 = (0, 1, 0) and u2 = (0, 0, 1). The line is s + x3u3. The dimension of the CQP is 4, so

53

x = (x0, x1, x2, x3). Define ∆ = −s. Half the squared distance between a convex polygon point and a line
point is

f(x) = 1
2 |(x0u0 + x1u1 + x2u2)− (x3u3 + s)|2

= 1
2 |x0u0 + x1u1 + x2u2 − x3u3 + ∆|2

(112)

The variable x3 is unconstrained, so we can eliminate it according to Section 1.4. Solve ∂f/∂x3 = 0 to
obtain

x3 =
x0u0 · u3 + x1u1 · u3 + x2u2 · u3 + ∆ · u3

|u3|2
= α0x0 + α1x1 + α2x2 + α3 (113)

where the last equality defines the scalars αi. Define x̃ = (x0, x1, x2), g(x̃) = f(x) and substitute the
x3-equation into equation (112) to obtain

g(x̃) = 1
2 |x0(u0 − α0u3) + x1(u1 − α1u3) + x2(u2 − α2u3) + (∆− α3u3)|2

= 1
2

∣∣∣x0ũ0 + x1ũ1 + x2ũ2 + ∆̃
∣∣∣2

= 1
2 x̃TÃx̃ + b̃Tx̃ + c̃

(114)

where the second equality defines ũ0, ũ1, ũ2 and ∆̃, and the third equality defines the quadratic coefficients

Ã =


ũ0 · ũ0 ũ0 · ũ1 ũ0 · ũ2

ũ1 · ũ0 ũ1 · ũ1 ũ1 · ũ2

ũ2 · ũ0 ũ2 · ũ1 ũ2 · ũ2

 , b̃ =


ũ0 · ∆̃

ũ1 · ∆̃

ũ2 · ∆̃

 , c̃ =
1

2
|∆̃|2 (115)

As in Section 6.7.2, to obtain the nonnegativity constraints x̃ ≥ 0, we must translate the convex polygon
into the first octant. Compute the axis-aligned bounding box [µmin,µmax] for the polygon and subtract the
minimum point to force the translated polygon into the first octant: ỹ = x̃− µmin. The quadratic function

is g(x̃) = h(ỹ) = ỹTÂỹ/2 + b̂Tỹ + ĉ where

Â = Ã, b̂ = Ãµmin + b̃, ĉ =
1

2
µT

minÃµmin + b̃Tµmin + c̃ (116)

The nonnegativity constraints are ỹ ≥ 0 and the inequality constraints are D̃ỹ ≥ ẽ− D̃µmin.

The CQP is solved for ỹ after which x̃ = ỹ +µmin. The distance can be computed from f(x), g(x̃) or h(ỹ).

6.18 Line to Tetrahedron

The tetrahedron is p0 + x0u0 + x1u1 + x2u2 with x0 ≥ 0, x1 ≥ 0, x2 ≥ 0 and x0 + x1 + x2 ≤ 1. The line is
p1 + x3u3. The dimension of the CQP is s, so x = (x0, x1, x2, x3). Define ∆ = p0 − p1. Half the squared
distance between a tetrahedron point and a line point is

f(x) = 1
2 |(x0u0 + x1u1 + x2u2 + p0)− (x3u3 + p1)|2

= 1
2 |x0u0 + x1u1 + x2u2 − x3u3 + ∆|2

(117)

54

The variable x3 is unconstrained, so we can eliminate it according to Section 1.4. Solve ∂f/∂x3 = 0 to
obtain

x3 =
x0u0 · u3 + x1u1 · u3 + x2u2 · u3 + ∆ · u3

|u3|2
= x0α0 + x1α1 + x2α2 + x3 (118)

where the last equality defines the scalars αi. Define x̃ = (x0, x1, x2).

We can then write

x =


x0

x1

x2

x3

 =


1 0 0

0 1 0

0 0 1

α0 α1 α2



x0

x1

x2

+


0

0

0

α3

 = J x̃ + t (119)

where the last equality defines the 4×3 matrix J , the 3×1 vector x̃ and the 4×1 vector t. Substitute this into
the quadratic equation to obtain g(x0, x1, x2) = f(x0, x1, x2, x3). In CQP notation, g(x̃) = x̃TÃx̃ + b̃Tx̃ + c̃
where

Ã = JTAJ, b̃ = JT(At + b), c̃ =
1

2
tTAt + bTt + c (120)

The nonnegativity constraints x0 ≥ 0, x1 ≥ 0 and x2 ≥ 0 are summarized by x̃ ≥ 0. The inequality
constraint x0 + x1 + x2 ≤ 1 is summarized by Dx̃ ≥ ẽ where

D̃ =
[
−1 −1 −1

]
, ẽ =

[
−1

]
(121)

6.19 Line to Box

The box is p0 + x0u0 + x1u1 + x2u2 where u0, u1 and u2 are mutually perpendicular and where x0 ∈ [0, 1],
x1 ∈ [0, 1] and x2 ∈ [0, 1]. The line is p1 +x3u3. The conversion to a CQP with elimination of x3 is identical
to that of the line-tetrahedron distance query except that the inequality constraints are D̃x̃ ≥ ẽ where

D̃ =


−1 0 0

0 −1 0

0 0 −1

 , ẽ =


−1

−1

−1

 (122)

6.20 Line to Convex Polyhedron

References

[1] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone.
The Linear Complementarity Problem.
Academic Press, San Diego, CA, 1992.

[2] Joel Friedman.
Linear complementarity and mathematical (non-linear) programming.
http://www.math.ubc.ca/~jf/courses/340/pap.pdf,
April 1998.

55

http://www.math.ubc.ca/~jf/courses/340/pap.pdf
http://www.math.ubc.ca/~jf/courses/340/pap.pdf
http://www.math.ubc.ca/~jf/courses/340/pap.pdf

[3] Robert J. Vanderbei.
Linear Programming: Chapter 3 - Degeneracy.
http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf,
September 2013.

56

http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf
http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf
http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf

	1 Introduction
	1.1 The Quadratic Programming Problem
	1.2 The Linear Complementarity Problem
	1.3 The Convex Quadratic Programming Problem
	1.4 Eliminating Unconstrained Variables
	1.5 Reduction of Dimension for Equality Constraints

	2 Lemke's Method
	2.1 Terms and Framework
	2.2 LCP with a Unique Solution
	2.3 LCP with Infinitely Many Solutions
	2.4 LCP with No Solution
	2.5 LCP with a Cycle
	2.6 Avoiding Cycles when Constant Terms are Zero

	3 Formulating a Geometric Query as a CQP
	3.1 Distance Between Oriented Boxes
	3.2 Intersection of Triangle and Cylinder

	4 Implementation Details
	4.1 The LCP Solver
	4.2 Distance Between Oriented Boxes in 3D
	4.3 Intersection of Triangle and Cylinder in 3D
	4.4 Accuracy Problems when using Fixed-Precision Floating-Point Arithmetic
	4.5 Dealing with Vector Normalization

	5 Geometric Primitives
	5.1 Linear Objects
	5.1.1 Lines
	5.1.2 Rays
	5.1.3 Segments

	5.2 Planar Objects
	5.2.1 Planes
	5.2.2 Triangles
	5.2.3 Rectangles
	5.2.4 Convex Polygons

	5.3 Volumetric Objects
	5.3.1 Tetrahedra
	5.3.2 Boxes
	5.3.3 Convex Polyhedra

	5.4 Data Structures for the Primitives

	6 Distance Queries
	6.1 Point to Line
	6.2 Point to Ray
	6.3 Point to Segment
	6.4 Point to Plane
	6.5 Point to Triangle
	6.6 Point to Rectangle
	6.7 Point to Convex Polygon
	6.7.1 Convex Polygons in 2D
	6.7.2 Convex Polygons in 3D

	6.8 Point to Tetrahedron
	6.9 Point to Box
	6.10 Point to Convex Polyhedron
	6.11 Line to Line
	6.12 Line to Ray
	6.13 Line to Segment
	6.14 Line to Plane
	6.15 Line to Triangle
	6.16 Line to Rectangle
	6.17 Line to Convex Polygon
	6.17.1 Convex Polygons in 2D
	6.17.2 Convex Polygons in 3D

	6.18 Line to Tetrahedron
	6.19 Line to Box
	6.20 Line to Convex Polyhedron

