Convex Quadratic Programming

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: December 10, 2017
Last Modified: September 11, 2020

Contents

1 Introduction
1.1 The Quadratic Programming Problem 0.
1.2 The Linear Complementarity Problem,
1.3 The Convex Quadratic Programming Problem
1.4 Eliminating Unconstrained Variables o L

1.5 Reduction of Dimension for Equality Constraints

2 Lemke’s Method
2.1 Terms and Framework L e
2.2 LCP with a Unique Solution e
2.3 LCP with Infinitely Many Solutions e
2.4 LCP with No Solution e
2.5 LCP with a Cycle e

2.6 Avoiding Cycles when Constant Terms are Zero vt i o

3 Formulating a Geometric Query as a CQP
3.1 Distance Between Oriented Boxes e e

3.2 Intersection of Triangle and Cylinder o Lo

4 Implementation Details
4.1 The LCP Solver o e e

4.2 Distance Between Oriented Boxesin 3D

BTG TS SN S, SRS

(0.4

11
13
14
14

17
17
18

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

4.3 Intersection of Triangle and Cylinder in 3D oL 23

4.4 Accuracy Problems when using Fixed-Precision Floating-Point Arithmetic 25
4.5 Dealing with Vector Normalization o 26
Geometric Primitives 32
5.1 Linear Objects o e e 32
5.1.1 Lines. . . . o o o e e e 33
5.1.2 Rays o e e e 33
5.1.3 Segmentsl e e e e e e 33
5.2 Planar Objects o e e 33
5.2.1 Planes oL e 33
5.2.2 Triangles oL e 34
5.2.3 Rectangles 34
5.2.4 Convex Polygons e 34
5.3 Volumetric Objects e e 35
5.3.1 Tetrahedra L 35
5.3.2 BOXEs e 35
5.3.3 Convex Polyhedra e 35
5.4 Data Structures for the Primitives L 36
Distance Queries 38
6.1 Point to Line oL 41
6.2 Point to Ray e 42
6.3 Point to Segment e 42
6.4 Point to Plane 43
6.5 Point to Triangle L 44
6.6 Point to Rectangle L 45
6.7 Point to Convex Polygon e 46
6.7.1 Convex Polygonsin 2D L e 46
6.7.2 Convex Polygons in 3D L e 47
6.8 Point to Tetrahedron Lo 48

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18
6.19
6.20

Point to Box e 49
Point to Convex Polyhedron 49
Line to Line« . . o L e e 50
Line to Ray o o o e 50
Line to Segment e e e e 51
Line to Plane e 51
Line to Triangle 0 L e e e e 52
Line to Rectangle e 52
Line to Convex Polygon e 53
6.17.1 Convex Polygonsin 2D e 53
6.17.2 Convex Polygons in 3D L e 53
Line to Tetrahedron o . e 54
Line to Box o e 55
Line to Convex Polyhedron 55

1 Introduction

This document briefly describes the quadratic programming (QP) problem, a minimization of a quadratic
polynomial on a domain defined by linear inequality constraints. The focus is on the convex quadratic
programming (CQP) problem, where the matrix of the quadratic polynomial is positive semidefinite. Many
geometric algorithms can be formulated as CQPs. A CQP is converted to a Linear Complementarity Problem
(LCP) that can be solved using Lemke’s Method [1].

The general framework for QP is presented first, showing how to convert a QP to an LCP. Lemke’s Method
is presented together with several illustrative examples. An implementation for solving an LCP is discussed
with attention given to accuracy of the results when using floating-point arithmetic. The LCP solver uses only
addition, subtraction, multiplication and division, so assuming the inputs are finite floating-point numbers,
such numbers are rational and the solver can use arbitrary-precision floating-point arithmetic to produce
exact results.

Some CQPs involve geometric primitives whose parameterizations use unit-length vectors. If these vectors
are computed using fixed-precision floating-point arithmetic, numerical rounding errors lead to vectors that
are not unit length when interpreted as exact rational inputs. In this situation, the LCP solver will not
produce the correct theoretical result that is based on real-valued arithmetic. However, in many cases the
concept of real quadratic field in abstract algebra can be used to solve the LCP exactly. If a distance query
is required within this framework, the distance itself is computed only at the very end of the algorithm by
approximating the exact quadratic field result by a fixed-precision floating-point number.

For the sake of notation, the set of n x 1 column vectors with real-valued entries is denoted R™. The set of
7 X ¢ matrices with r rows, ¢ columns, and real-valued entries is denoted R"*¢,

1.1 The Quadratic Programming Problem

The quadratic program (QP) is concisely stated as follows.

Given constants A € R"*" b € R", c € R, D € R™*" e € R™, and variable x € R", minimize
f(x) = 2 x"Ax + b'x + ¢ subject to the linear inequality constraints x > 0 and Dx > e.

The number of linear inequality constraints is n + m.

The linear inequalities define an intersection of half spaces. The intersection can be empty, in which case
the QP does not have a solution. For a nonempty intersection that is unbounded and with no additional
constraints on A, it is possible the QP has no solution. If the nonempty intersection is a bounded set,
that set is necessarily convex. The polynomial f is continuous and defined on a closed bounded set, which
guarantees that f attains both a minimum and a maximum on the set.

If x € R” is a local extremum of the QP, then there exists y € R such that (x,y) satisfies the Karesh—
Kuhn—Tucker (KKT) conditions

u=b+Ax—-D'y>0, x>0, x'u=0, 1)

v=—-e+ Dx >0, y >0, yTv:O

The KKT conditions are necessary for the existence of a local extremum. When A is positive semidefinite,
the KKT conditions are also sufficient for the existence of a local extremum.

1.2 The Linear Complementarity Problem

The linear complementarity problem (LCP) is concisely stated as

Given constants q € RF and M € RF*% find z € RF such that z > 0, q + Mz > 0, and
z'(q+ Mz) = 0.

Define w = q + Mz. We want z > 0 such that w > 0 and z'w = 0.

Lemke’s Method allows us to compute an LCP solution z if there exists one or to determine that there is no
solution.

1.3 The Convex Quadratic Programming Problem

In the quadratic program, when A is positive semidefinite the problem is a convex quadratic program (CQP).
The CQP can be converted to an LCP by defining

b A —-DT X u
q=) M = , L= , W= (2)
—e D 0 y v

where k = n + m. The variable names come from the CQP and the KKT conditions. The matrix M is not
symmetric, but it is positive semidefinite because z' Mz > 0 for all z. The inequality is guaranteed because
A is positive semidefinite.

Once formulated as an LCP, we may solve the problem using Lemke’s Method to extract the location x and
value f of the local minimum. Observe that the linear programming (LP) problem is a special case of CQP
when A is the zero matrix (which is positive semidefinite).

1.4 Eliminating Unconstrained Variables

The CQP problem has the inequality contraint x > 0 that says all independent variables must be nonnegative.
Some geometric queries involving variables that are unconstrained; that is, they can be any real number.
The corresponding CQP must be modified to eliminate such variables.

For example, consider a CQP in 3D with x = (zg,z1,z2) and whose inequality constraints depend only on
zo and x1q,
To
Iozo,Ilzo,D Ze (3)
€1

where D is m x 2 and e is m x 1. The variable x5 is unconstrained.

For a fixed pair (zg,71), the function f(x) = x'Ax/2 + b'x + ¢ is quadratic in z5. The minimum with
respect to xo must occur when the derivative with respect to x2 is zero. Let A = [a;;] and b = [b;]; then
0 = 0f/0z2 = axo + a2171 + asaxs + by and has solution o = —(a202 + a2121 + b2)/azs. The function
to minimize is g(zo,x1) = f(x0,z1, —(a20To + a2121 + b2)/asz) subject to the constraints of equation (3).

Using

1 0 0
X = o 0 + 21 1 + 0 = zoug + T1Uug + Uy (4)
—&20/(122 —&21/a22 —bz/a22

some algebra will show that g(s,t) = X7 A%/2 + b'% + &, where

ul Aug ul Awy 0 u/ Au, . 1
’ -) - 5

u] Aug u}Auq u/ Au, 2

A= uj Auy +bTuy + ¢ (5)

In general, let x. be the constrained variables and let x, are the unconstrained variables. Partition the
various quantities by

Xe Acc Acu bc
, A= , b= (6)
Xu Auc Auu bu

where the block elements are of the appropriate sizes. The matrix A is symmetric, so A,. = Al,. The
matrix A is also positive definite, so A.. and A,, are positive definite. The quadratic function is

f(Xe,Xu) = + +c

:| Acc Acu Xe b—cr Xe
Auc Auu Xu bl Xu

T T
[Xe Xy

N

(7)
= %XIACCXC + (XIAM + bD X, + (%XIAWX“ +blx, + c)

The derivative with respect to the unconstrained variables must be zero,

of
0= = Auc c Auu u bu 8
Ox. Xe + AuuXu + (8)
The solution is
Xy = _A;i (Aucxc + bu) (9)

Substituting this back into the quadratic function, we obtain g(x.) = f(x¢, X,) and
1 - - N
g(x.) = ixIAxc +b'x.+¢ (10)

where 1

A=Ay — A A Ay, b=b. — AL ALlb,, = 5nguuxu +blx, +c (11)
We solve the CQP to minimize g = XZ—AXC +bTx, + ¢ subject to x. > 0 and the problem-specific constraints
Dx,. > &. The solution x. is then substituted into equation (9) to obtain x,,.

1.5 Reduction of Dimension for Equality Constraints

Sometimes the CQP in an n-dimensional setting involves equality constraints. The dimension of the CQP
can be reduced by eliminating such contraints. For example, consider a CQP in 3D with x = (z¢, 21, z2)
with constraints

20>0,21>0, Dx>e, n-x+d=0 (12)

where D is m x 3, e is m x 1, and n = (ng, n1,ng) with ng # 0.

Solve the equality constraint for o = —(nozo + n1z1 + d)/ne and substitute it into both the function f(x)
and the inequality constraints Dx > e. The reduction g(zg, 1) = f(zo, 21, —(noxo + n1x1 +d)/n2) uses the
same approach that led to equations (4) and (5), except that up = (1,0, —ng/n2), u; = (0,1, —n;/ns) and
U = (0,0, —d/n2).

The reduction of the inequality constraint Dx > e is as follows. For D = [D;;] and e = [¢;], each inequality
constraint is of the form

ei < Djoxo + Djnx1 + Digxa = Dipxo + Dijixy — Dia(noxo + nizy + d) /ne (13)
Grouping similar terms, we have
(Dio — Dia no/n2)xo + (Di1 — Dig na/na)x1 > e; + Do d/no (14)

Using linear algebra terminology for solving the equality constraint, x5 is a basic variable and xy and x; are
free variables.

In general, let the ¢ equality constraints for the CQP be Fx +v =0 where F is £ x n and v is £ x 1. For a
nontrivial problem, it must be that ¢ < n. Apply row reductions to the linear system of equality constraints
to obtain a coefficient matrix that is in reduced row echelon form. Once in this form it is easy to identify
the basic variables and the free variables of the linear system. If x; is the tuple of basic variables and xy
is the tuple of free variables, then the reduced row echelon form can be solved for x;, = Hxy¢ + w for some
matrix H and vector w.

For simplicity, reorder the components of x so that x = (xf,X3). The general construction for unconstrained
variables starting with equation (6) can be duplicated with renamed quantities x¢ for x., x; for x,,, Ay for
Ay, Ay for Acy, Appy for Ay, by for b and by, for b,,. The resulting A, b and ¢ are used for the function
to be minimized, g(xy) = x}[le/2 +bTx; + ¢

Partition D = [Dy D) such that the number of columns of Dy is the number of components of x; and the
number of columns of Dy is the number of components of x;. The inequality constraints are

X
e< Dx= |: Df Dy] f ZDfo+DbXb:Dfo+Db(HXf —|—W) (15)
Xp
Grouping similar terms, we have
Dx; = (Dy+ DyH)x; > e — Dyw = & (16)

where the first equality defines D and the last equality defines é.

The reduction in dimension leads to minimizing g(x;) = X—}—AXf/2+BTXf +é&subject to x; > 0 and Dx; > é.

2 Lemke’s Method

2.1 Terms and Framework

The standard approach for solving LP is the simplex algorithm using the tableau method. This may also be
used to solve an LCP, but an approach that uses different terminology is Lemke’s Method. The presentation
here follows that of [2]. The equation w = q + Mz is considered to be a dictionary for the basic variables
w defined in terms of the nonbasic variables z. The analogy to a dictionary is that the basic variables are
words in the dictionary defined in terms of the nonbasic variables that are other words in the dictionary. If
q > 0, the dictionary is said to be feasible, in which case the LCP has the trivial solution z = 0 and w = q.

If the dictionary is not feasible, Lemke’s Method is applied. Assuming that z = (2o, ..., 2,—1), the first phase
of the algorithm adds an auxiliary variable z, > 0 by modifying the dictionary to w = q+ Mz+ 2,1, where 1
is the n-tuple whose components are all 1. The i-th equation is selected according to some criterion (described
later) that exchanges z, and w; by solving the equation for z,, which now becomes a basic variable. The
right-hand side of the equation contains a w; term, so w; now becomes a nonbasic variable. The equation for
the now-basic z, is substituted into the other equations to eliminate the right-hand side occurrences of z,.
The equation to solve for z, is selected so that after the substitutions in the other equations, the modified
dictionary is feasible.

The second phase of the algorithm is designed to obtain a dictionary such that the following two conditions
hold:

1. z, is nonbasic.

2. For each 1, either z; or w; is nonbasic.

A dictionary that satisfies conditions 1 and 2 is said to be a terminal dictionary. If the dictionary satisfies
only condition 2, it is said to be a balanced dictionary. The first phase produces a balanced dictionary, but
zn 1s in the dictionary (it is a basic variable), so the dictionary is not terminal. The procedure to reach a
terminal dictionary is iterative. Each iteration is designed so that a nonbasic variable enters the dictionary
and a basic variable leaves the dictionary. The invariant after each iteration is that the dictionary remain
feasible and balanced. To ensure this happens and hopefully to avoid producing the same dictionary twice,
if a variable has just left the dictionary, then its complementary variable must enter the dictionary on the
next iterations: A variable cannot leave/enter on one iteration and enter/leave on the next iteration. Once
zn leaves the dictionary, we have a terminal dictionary. The condition that z; or w; is nonbasic for each
i < n means that either z; = 0 or w; = 0; that is, w'z = 0 and we have solved the LCP.

Two problems can occur during the iterations.
1. The variable complementary to the leaving variable cannot enter the dictionary. In this case, the LCP
does not have a solution.

2. It is possible to encounter a cycle in the dictionaries, which prevents the algorithm from converging to
a solution. When this happens, one of the components of q in the dictionary has become zero. This is
referred to as a degeneracy. The algorithm can be modified by introducting symbolic perturbations of
the components of q to avoid the cycles.

Several examples are presented here to illustrate the algorithm.

2.2 LCP with a Unique Solution

Example 1 shows how one selects the variables to exchange in order to obtain a feasible dictionary.

Example 1. Linear Programming problem with a unique solution. Minimize f(xzq,21) = 229 — x1 subject
to the constraints xg > 0, 1 > 0, g + 1 < 3 and xg + 2x1 > 0. The figure shows the domain of f that is
defined by the inequality constraints. The function values at the vertices of the domain are shown in red.

X3

Xo

Visually, the minimum must occur at (zg,z1) = (0,3). The dimension of the LCP is n = 4. The LCP

quantities of interest are

2 0 0|1 -1 o Uup
-1 0 01 -2 xT1 (751
q= (—|> M = , 4= y W= (17)
3 -1 —-110 0 Yo Vo
-2 1 210 0 Y1 U1
The initial dictionary with auxiliary variable z,4 is
wyg = 2+ 29— 23+ 24
wp = —14290—223+ 24 (18)
wy = 3—20—21+24
w3 = 72+Zo+221+24

We need to exchange z, with one of the w;

and then substitute that equation into the others to obtain a

feasible dictionary; that is, choose the exchange equation so that the resulting constants for q are nonnegative.
The coefficients of z4 are positive, so we are limited to examining the two equations with negative constants.
We could solve the second equation, z4 = 1 — 29 + 223 + w1, but when substituting it in the fourth equation
we obtain ws = —1 4 zg + 221 — 22 + 223 + wy, which has a negative constant. The resulting dictionary is
not feasible. Therefore, the exchange equation is the fourth equation in which case z4 = 2 — 29 — 221 + ws.
The nonbasic variable z4 becomes basic (enters the dictionary) and the basic variable ws becomes nonbasic

(leaves the dictionary). Substituting in the other equations, we have

wog = 4—2z0— 221+ 29— 23+ w3

w; = 172’072214’2’2 72234’?1)3 (19)
wy = H—2zy— 321+ ws

Zz4 = 2—2z9—221+ws

For the initial dictionary, the exchange equation is the one with the minimum g-component.

For the remaining iterations, if v; is the nonbasic variable that is required to enter the dictionary and become
basic (v; is either z; or w;), the exchange equation is the one for which the coefficient of v; is negative and
the nonnegative ratio —g;/(m;;v;) is minimum for all 7.

The variable w3 left the dictionary, so z3 must now enter the dictionary. Choose the equation that minimizes
the quantity mentioned in the previous paragraph. The first and second equations have negative coefficients
for z3. The ratio for the first equation is 4/1 and the ratio for the second equation is 1/2, so the second
equation is the one to exchange. Solve for z3 and substitute this into the other equations,

zz = (1/2) = (1/2)z0 — 21 + (1/2)22 — (1/2)w1 + (1/2)ws (20)
Wwo = 5—220—321 + w3
24 = 2—29—221 +ws

The variable w; left the dictionary, so z; must now enter the dictionary. All four equations have negative
coefficients for z; and the ratios are 7/2, 1/2, 5/3 and 1, in order of listing of the equations. The minimum
ratio is 1/2, generated by the second equation. Solve for z; and subtitute this into the other equations,

wg = 3+ 23+ w;

z1 = (1/2) = (1/2)z0 — 23+ (1/2)22 — (1/2)w1 + (1/2)ws3 (21)
wy = (7/2) = (1/2)zp + 323 — (3/2)22 + (3/2)wy — (1/2)ws

za = 14223 — 29 +w;

The variable z3 left the dictionary, so w3 must now enter the dictionary. Only the third equation has a
negative coefficient for ws. Solve for w3 and substitute this into the other equations,

wog = 3+2z3+w;

zr = 4—Zo+223—22 + w1 — we (22)
w3 = T7—2zg+6z3 — 329 + 3wy — 2ws

zg = 14223 — 29 +w;

The variable wy left the dictionary, so zo must now enter the dictionary. The last 3 equations have a negative
coefficient for z3, so the ratios are 4, 7/3, and 1. The last equation provides the minimum ratio. Solve for

10

zo and substitute this into the other equations,

wg = 3+ z3+w;
21 = 3—2zZ+tzm—w
1 0 4 2 (23)
wy = 4—2z9+ 324 — 2wo
29 = 14223 —2z4+wr

The auxiliary variable z4 left the dictionary, returning to its initial role as a nonbasic variable. The iterations
terminate here and we have a solution. The variables on the right-hand side of the equation are set to zero:
z0 =0, 23 =0, 24 =0, w; = 0 and wy = 0. The variables on the left-hand side are then wg = 3, z; = 3,
wsg = 4 and zo = 0. The original variables that minimize f are (zo,z1) = (20, 21) = (0, 3).

2.3 LCP with Infinitely Many Solutions

Example 2 shows that the algorithm will select one of the locations at which the minimum occurs when there
are infinitely many such locations.

Example 2. Linear Programming problem with infinitely many solutions. Minimize f(zo,z1) = xo + 21
subject to the constraints 0 < zg < 2,0 < z1 <2, zg+x1 > 1 and zg + x1 > 2. The figure shows the
domain of f that is defined by the inequality constraints. The constraint x¢ 4+ 7 > 1 does not contribute to
defining the domain of f; generally, it is not trivial to identify such contraints. The function values at the
vertices of the domain are shown in red.

X3

2

The function is constant along the domain edge z¢ + 1 = 2, so any pair (2, 1) on this edge is a minimizer
point.

11

The dimension of the LCP is n = 6. The LCP quantities of interest are

[1_ [0 0f-1 —110_ _xo_ _uo_
1 0 0|-1 -1 0 1 T U1
q= -1 M= 1 1 0 0 0 O Ca= Yo Cwe Vo (24)
-2 1 1 0 0 0 O Y1 v1
2 -1 0o 0 0 0 O Y2 U2
i 2 | i 0 -1 0 0 0 0 | | U3 | | v |

The initial dictionary with auxiliary variable zg is

= 1—29—23+ 24+ 25
= 1—20—23+ 25+ 2

= 71+Zo+21+26

(25)
= —2+4+z+z21+2
= 2—20+ 2z
= 2—21+Ze

The fourth equation has minimum g-component (-2). Solve for zg and substitute this into the other equations,

wy = 3—29— 22— 23+ 24+ ws

wy = 3—20— 22— 23+ 25+ w3

wy = 1—ws (26)
26 = 2—29—2z21 +ws

wy = 4—2z9— 21+ w3

ws = 4—2zp— 221+ w3

The variable w3 left the dictionary, so z3 must now enter the dictionary. The first two equations have a
negative z3 coefficient and the same ratio, so either equation can be chosen. Let’s solve the first equation
for z3 and substitute this into the other equations,

z3

3— 20— 21— 29— wo+ 24 + w3
0+ wy — 24 + 25

1—w;s

2—20— 21 +ws

4 —2z9— z1 +ws

47207221%’11)3

12

The variable wq left the dictionary, so zy must now enter the dictionary. Of the four equations with a
negative zg coefficient, two of them attain the minimum ratio—the equation with z¢ and the equation with
wy, both having ratio 2. Solve the zg-equation for zy and substitute this into the other equations,

zz3 = 1—20—wo+ 24+ 24

wp = 04 wy— 24+ 25

wy = 1—w;s (28)
Zg = 2—2zg— 21 +ws

wy = 0+ 21+ 225 —ws

ws = 2—214+ 24

The auxiliary variable zg has left the dictionary, so we have solved the LCP. The variables on the right-hand
side are set to zero: z; = 0, 20 =0, 24 =0, 25 =0, z¢ = 0, wg = 0 and wz = 0. The variables on the
left-hand side are then z3 = 1, wy = 0, we = 1, 29 = 2, wy = 0 and ws = 2. The original variables that
minimize f are (zo,21) = (20,21) = (2,0). As noted, this is only one of infinitely many minimizers for f.

When wy left the dictionary, we had two choices for the equations leading to the minimum ratio. We chose
the zg-equation for the iteration, which led immediately to a solution (zg,z1) = (2,0). Had we chosen the
wy-equation, two additional iterations are required for zg to leave the dictionary. The solution in this case
is still (2,0).

2.4 LCP with No Solution

Example 3 has no solution because a complementary variable cannot enter the dictionary. It mentions a
general condition that ensures there is no solution in this case.

Example 3. Linear Programming problem with no solution. Minimize f(xzg,21) = 229 — 21 for xg > 0,
1 > 0 and g + 1 > 0. The domain of f is an unbounded convex region in the first quadrant. The
dimension of the LCP is n = 3. The LCP quantities of interest are

2 0 0]-1 i) Ug
q=| -1 |, M=]0 0|-1 |, 2z=| 21 |, w=| w | (29)
1 1 1 0 Yo Vo

The initial dictionary with auxiliary variable z3 is

wy = 2—29+23
wp = —l—23+2; (30)
we = 14294+ 21+ 23

13

The second equation has minimum g-component. Solve for z3z and substitute this into the other equatoins,

Wwog = 3
23 = 1l+z2+w (31)
we = 242z9p+2z1+23+w

The variable w left the dictionary, so the complementary variable z; must now enter the dictionary. However,
its coefficient is not negative, so it cannot enter the dictionary. Therefore, the LCP has no solution. This
should be intuitively clear because f(0,z1) = —x; which has the limit —oo as x; — oo; that is, f is not
bounded below.

2.5 LCP with a Cycle

I have been unable to construct a cycling example that uses the min-ratio algorithm shown in the previous
examples. Searching online for such an example has not been successful. Other pivoting strategies exist for
entering and leaving the dictionary. Example 4 uses an alternate strategy that generates a cycle.

Example 4. Linear Programming problem with a cycle. An example of a LCP with a cycle in the dictionaries
is presented in [3]. The cycle example is for a linear programming problem where the objective function is
tracked along with the LCP equations. The variable that enters the dictionary is the one in the objective
function that has the largest coefficient. The variable that leaves the dictionary is the basic variable with
the smallest index, where the z; variables are assumed to occur before the w; variables in the indexing. The
smallest-index rule is Bland’s rule.

2.6 Avoiding Cycles when Constant Terms are Zero

This section shows how to avoid cycles by perturbing the g-components with powers of a variable €. The
idea is that when the degeneracy occurs the first time because a component of q becomes zero, add ¢ to
it, making that component a linear polynomial of . The arithmetic operations of the LCP iterations now
involve a symbolic component—manipulating the polynomial itself using addition and scalar multiplication.
If another component of q becomes zero in a later iteration, then add €2 to it, making that component a
quadratic polynomial of €. In worst case, all components of q become zero during the iterations and the
final component has €™ added to it for an LCP of dimension n. The polynomials are linearly independent
throughout the iterations, so the cycling cannot occur. When the iterations terminate and there is an LCP
solution, set € to zero and report the solution z and w in the usual manner.

In the GTE implementation of the LCP solver, the code is kept simple by adding the powers of € to the
components of q even when those components are not zero. The trade-off is that more computations are
required to manipulate the polynomials. Of course, the code can be optimized to reduce computations by
inserting the powers of € only when needed.

Example 5 illustrates the idea for an LCP where at least one of the q components becomes zero during the
iterations.

14

Example 5. Minimize f(xg,71) = (23 + 22%)/2 — (z9 + x1) subject to the constraints zo > 0, 1 > 0 and
2zg + x1 > 1. The LCP formulation is the following, where z3 is the auxiliary variable,

wog = 71+207222+23
w; = —1+422 —z9+423 (32)
wy = —142z9+ 21+ 23

The variable z3 must enter the dictionary via the equation that has the minimum g-component. All compo-
nents attain the minimum, so choose the first equation to solve for z3. The variable wq exits the dictionary,

zz3 = 1—2zp+4 229+ wy
w1 = 0720+221+22+U}0 (33)
wy = 0429+ 21 +2294+wy

The variable zg must enter the dictionary. The minimum-ratio term is generated by the second equation, so
wi must leave the dictionary,

zZ3 = 1+’LU1—221+22
zg = 0—wy+ 221+ 29 +wp (34)
wy = 0—wi+ 321+ 322 + 2wy

The variable z; must enter the dictionary. The minimum-ratio term is generated by the first equation, so z3
must leave the dictionary,

21 = (1/2) + (1/2)wy — (1/2)z3 + (1/2)22
zo = 1—23+422 4wy (35)
wy = (3/2) + (1/2)wy — (3/2)z3 + (9/2) 22 + 2wy

The auxiliary variable z3 has exited the dictionary and the q coefficients are nonnegative, so we have a
unique solution to the LCP: w = (0,0,3/2) and z = (1,1/2,0). The CQP solution is (zo,z1) = (1,1/2).
Observe that V f(zg,x1) = (xo — 1,221 — 1) and the global minimum occurs when (xg — 1,221 — 1) = (0,0),
so g = 1 and 1 = 1/2. This is the solution we found via the LCP. The minimizer point is in the domain
defined by the inequality constraints.

Although we did not encounter a cycle, we can still perturb the q components by powers of . The LCP is

wyg = (—=14¢€)+ 20— 222+ 23
w; = (=1+&%)+22 —20+23 (36)
Wy = (—1—|—83)—|—22’0—|—21—|—Z3

Determining the minimum-ratio now depends on comparisons of polynomials. The less-than operation uses
lexiographical ordering. If a(z) = Y. ja;2" and b(z) = Y1 b;z", pseudocode for the less-than operation
is shown next,

15

bool LessThan(Polynomial a,

for (int i = 0; i <=n; ++i)

if (a[i] < b[i])
{

return true;

}
Ef (a[i] > b[i])
return false;

}

Polynomial b)

// At this point, a[i] and b[i] are equal for all i.

return false;

}

Of the 3 equations in the LCP, (=1 4+ ¢&3) < (=1 +¢) and (=1 + &) < (=1 + &2), so the last equation has
the minimum q component. The variable z3 enters the dictionary and the variable wy leaves the dictionary,

wo
w1

Z3

= (6—63)—20—Z1—222+w2
= (e2—-¢€%)—220+21 — 20 +ws (37)

= (1_53)_220—21+w2

The variable zo must enter the dictionary. The first two equations are candidates for the pivoting. The
ratios are, in order, (¢ —&3)/2 and (¢2 —&3). The second ratio is minimum, so w; must leave the dictionary,

Wo
z2

z3

(e —2e? + %) + 320 — 321 + 2wy — wo
(62 —&3) — 220 + 21 — w1 + wo (38)

(1 —¢e%) =220 — 21 + wo

The variable z; must enter the dictionary. The first and last equations are candidates for the pivoting. The
ratios are, in order, (¢ —2¢2+¢3)/3 and (1—¢?). The first ratio is minimum, so wy must leave the dictionary,

21

22

Z3

((1/3)e + (1/3)e? — (2/3)e®) — 20 — (1/3)wo — (1/3)w1 + (2/3)w2 (39)

((1/3)e = (2/3)e® + (1/3)e%) + 20 — (1/3)wo + (2/3)wy — (1/3)wy
(1= (1/3)e + (2/3)e”

— (4/3)®) = 320 + (1/3)wo — (2/3)w1 + (4/3)w2

The variable zy must enter the dictionary. The second and third equations are candidates for the pivoting.
The ratios are, in order, ((1/3)e — (2/3)e? + (1/3)e®) and ((1/3) — (1/9)e + (2/9)e? — (4/9)®). The first

ratio is minimum, so z3 must leave the dictionary,

a o= (04 (2/3)e — (1/3)2 — (1/3)€?) — 22 — (2/3)wo + (1/3)wr + (1/3)ws
20 = ((1/3)e+(1/3)e* = (2/3)e®) — 22 — (1/3)wo — (1/3)w1 + (2/3)wa (40)
2 = (1—(4/3)e — (1/3)e2 + (2/3)€%) + 322 + (4/3)wo + (1/3)wy — (2/3)ws

16

The variable wy must enter the dictionary. The last equation is the only pivoting candidate, so z3 must leave
the dictionary,

21 = ((1/2) = (1/2)e?) + (1/2)22 + (1/2)wy — (1/2)23
zo = (l—¢)+2z20+wy— 23 (41)
we = ((3/2) —2e— (1/2)e% +&3) + (9/2) 22 + 2wo + (1/2)w; — (3/2)23

The auxiliary variable left the dictionary and the q components with e = 0 are nonnegative, so we have a
unique solution to the LCP: w = (0,0,3/2) and z = (1,1/2,0). This is the same solution we found without
the perturbations.

3 Formulating a Geometric Query as a CQP

The typical geometric queries that can be formulated as CQPs are distance between objects and test-
intersection queries between objects. The latter type of query determines whether or not two objects overlap
but does not give information (or gives limited information) about the overlap set.

The first stage for implementing a geometric query is to formulate the corresponding CQP. The second stage
is to solve the CQP as an LCP.

3.1 Distance Between Oriented Boxes

Example 6 shows how to set up the convex quadratic programming algorithm for computing the distance
between two boxes in any dimension.

Example 6. Conver Quadratic Programming problem: Distance between boxes in n-dimensions. A box in
n-dimensions can be parameterized by choosing an n x 1 point k as a box corner, a right-handed orthonormal
set of axis directions {u; }?:_01 and positive edge lengths {¢; }?:_01. A point p in the box is

n—1

P(l)=k+Y &u;=k+RE 0<E<e (42)

=0

where £ is an n x 1 vector whose components are the £;, R is the n X n rotation matrix whose columns are
the u; and £ is an n x 1 vector whose components are the ¢;.

The goal is to formulate the distance between two boxes as a CQP that can then be solved using an LCP.
Let the box centers be k;, the rotation matrices be R; and the edge lengths be £;. The parameterized boxes
are

pi(&;) =ki + Ri§;, 0S¢, <4 (43)

for ¢ € {0,1}. All components are doubly indexed: p; has components p;;, k; has components k;;, u; has
components u;j, R; has columns u;, £; has components ¢;; and &; has components ;;.

17

Define A = k; — kg. Half the squared distance between two points, one point from each box, is

fx) = Llpo(&) —pu(&)?
= % |R0§0 - Ri& — A|2
= L (ETRTRot + ETRTR1E, + ATA — 26T RTR1€, — 28T Roy + 24T i, "
I —R'R

— 1 £T €T ‘ U EO + _ATRO ATRl 50 4 lATA

2 0 1 T 2

“RIR,| I £,
= %XTAX +b'x+e¢
where
_pT _pT
X — & A= I ‘ Ro I . b= & ,c:1|A‘2,£= to (45)
£, “RIR,| I RTA 2 o

and I is the n x n identity matrix. Note that ROTRO = RIR; = I because Ry and R; are rotation matrices.

The inequatity constraints are 0 < x < £. The formal statement of the inequality constraints for the
quadratic program is Dx > e. For the current example,

—I -4
—I —¢;

(46)

3.2 Intersection of Triangle and Cylinder

Example 7 show how to set up the convex quadratic programming algorithm for testing for intersection
between a triangle and a cylinder in any dimension. The motivation is the 3D problem, but notice that the
specialization of a cylinder to 2D is a rectangle, so the intersection query is for a triangle and rectangle.

Example 7. Conver Quadratic Programming problem: Intersection of a triangle and a finite cylinder. A
nondegenerate (solid) triangle in n-dimensions has vertices v; for ¢ € {0,1,2} and linearly independent
edge directions d; = v;j41 — vg for j € {0,1}. Define the parameter pair x = (zo,z1). The triangle is
parameterized by

p(x) =vo+aodo+21d1 = Vo + Ex, x>0, 21 >0, 20+21 <1 (47)

where F is an n x 2 matrix whose columns are the edge directions. A (solid) infinite cylinder is the set
of points that are within r units of distance from an axis with origin k and unit-length direction ug; r is
the radius of the cylinder. A (solid) finite cylinder is the infinite cylinder truncated by two hyperplanes
ug - (p — (kx (h/2)up)) = 0, keeping only those infinite cylinder points between the two hyperplanes; h is
the height of the finite cylinder. Let {u, }?;01 be a right-handed orthonormal basis for R™ for which the first
vector in the set is the finite cylinder axis direction. The finite cylinder is parameterized by

n—1 n—1
k+toug+ »_tju; =k+Rt, [to| <h/2, Y 7 <y’ (48)

Jj=1 j=1

18

where t is an n x 1 vector whose components are the ¢; and R is the n x n rotation matrix whose columns
are the u;.

The triangle and cylinder intersect when there is at least one triangle point within r units of the cylinder
axis and between the two truncating planes. We can formulate this using a CQP that minimizes a squared
distance. Define A = vy — k. The matrix that projects vectors onto the plane with origin 0 and normal ug
is P = I —upu]. The right-hand side of the third equality in the next displayed equation uses two properties
of a projection matrix: PT = P and P? = P. Half the squared distance between a triangle point and a
cylinder axis point is

f(x)

P (P(x) - k)|
P (Ex+ A)f

(Ex+ A)' P (Ex+A) (49)
x"ETPEx + ATPEx + %AT'PX

x"Ax+b"x+¢

1
2
1
2
1
2
1
2
1
2

where A= E"PE, b=E"PTA = ETPA and ¢ = |A[?/2.

The components of = are nonnegative. The other inequality constraints are

T+ <1, h/2 > [to] = [y (p(X) — k)| = [uo - (Ex + A)| = [u] Ex + UJ A| (50)
In terms of the formal inequality constraints Dx > e, we have
-17 -1
D=| uE |, e=| —h/2—ulA (51)
—ulE ~h/2+ulA

where D is a 3 X 2 matrix where 1 is a 2 x 1 vector whose components are both 1. The vector e is 3 x 1.

An LCP solver is used to compute the minimizer x and the corresponding minimum value f = f (x). The
minimum squared distance is 2f. The triangle and cylinder intersect whenever 2f < r2.

4 Implementation Details

The GTE source code that uses an LCP solver is designed to allow you to use fixed-precision floating-point
arithmetic (float or double) or arbitrary-precision floating-point arithmetic (via BSRational). See the document
GTE: Arbitrary Precision Arithmetic for details. The latter type allows the LCP solver to produce the exact
result under the assumption that the inputs are error free; that is, the inputs are assumed to be finite
floating-point numbers that, of course, are rational numbers. Any knowledge about numerical rounding
errors in producing the inputs is unknown to the LCP solver, so it cannot take advantage of it.

Various geometric primitives have representations that include unit-length vectors. This is problematic when
using arbitrary-precision floating-point arithmetic because typically those vectors are obtained by dividing
a floating-point vector by its length. The length involves a square root operation, which generally (as a real
number) is irrational and requires a numerical approximation to represent it. A section is included on how to
deal with the normalization symbolically, a concept related to the abstract algebraic topic of real quadratic
fields.

19

https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf

4.1 The LCP Solver

The LCP solver in GTE is a straightforward implementation of the algorithm used in Examples 1, 2 and 3.
The solver also uses the symbolic perturbation described previously to avoid degeneracy and cycles in the
iterations.

Listing 1 shows the public interfaces for the classes used to solve LCPs. The actual source code is found
online at LCPSolver.h.

Listing 1. The LCPSolverShared base class encapsulates the support for setting the maximum number
of iterations used by the LCP solver and for querying the actual number of iteration used. The Result
enumeration is used by derived classes to report the outcome of the solver. The two derived classes include
one that uses std::array when the dimension of the LCP is known at compile time and one that uses std::vector
when the dimension of the LCP is known only at run time.

template <typename Real>
class LCPSolverShared

protected:
// Abstract base class construction. A virtual destructor is not provided
// because there are no required side effects when destroying objects from
// the derived classes. The member mMaxlterations is set by this call to

// the default value of nxn.
LCPSolverShared (int n);

public
// Theoretically , when there is a solution the algorithm must converge
// in a finite number of iterations. The number of iterations depends
// on the problem at hand, but we need to guard against an infinite loop
// by limiting the number. The implementation uses a maximum number of
// n*n (chosen arbitrarily). You can set the number yourself, perhaps
// when a call to Solve fails—increase the number of iterations and call

// Solve again.
inline void SetMaxlterations(int maxlterations);
inline int GetMaxlterations() const;

// Access the actual number of iterations used in a call to Solve.
inline int GetNumlterations() const;

enum Result

{
HAS_TRIVIAL_.SOLUTION,
HAS_NONTRIVIAL_SOLUTION,
NO_SOLUTION,
FAILED_-TO_CONVERGE,
INVALID_INPUT

+

I

template <typename Real, int n>
class LCPSolver<Real, n> : public LCPSolverShared<Real>

public:
// Construction . The member mMaxlterations is set by this call to the
// default value of nxn.
LCPSolver ();

// If you want to know specifically why ’'true’ or ’'false’ ' was returned,

// pass the address of a Result variable as the last parameter.

bool Solve(std::array<Real, n> const& q, std::array<std::array<Real, n>, n> const& M,
std ::array<Real, n>& w, std::array<Real, n>& z,
typename LCPSolverShared<Real >::Result* result = nullptr);

20

https://www.geometrictools.com/GTE/Mathematics/LCPSolver.h

template <typename Real>
class LCPSolver<Real> : public LCPSolverShared<Real>

public:

// Construction. The member mMaxlterations is set by this call to the
// default value of n#¥n.
LCPSolver(int n);

// The input q must have n elements and the input M must be an n—by—n

// matrix stored in row—major order. The outputs w and z have n elements.

// If you want to know specifically why ’'true’ or ’'false’ ' was returned,
// pass the address of a Result variable as the last parameter.
bool Solve(std::vector<Real> const& q, std::vector<Real> const& M,

std :: vector<Real>& w, std::vector<Real>& z,

typename LCPSolverShared<Real >::Result* result = nullptr);

4.2 Distance Between Oriented Boxes in 3D

Example 6 shows the construction of the CQP for computing the distance between two oriented boxes in
n dimensions. Listing 2 shows pseudocode for computing the distance between two oriented boxes in 3
dimensions. The representations of an oriented box in GTE and in Wild Magic use a center point and
extents (half-lengths), so there is a small adjustment to compute the corners and lengths of the boxes.

Listing 2.

e; are extents, which are half the edge lengths of the box edges.

template <typename Real>
struct Box3

+

Point3<Real> center;
Vector3<Real> axis [3];
Real extent[3];

template <typename Real>
struct Box3Box3QueryResult

{

// Specify the maximum number of LCP iterations. The default in GTE

// is N°2 for an LCP with Nx1 vector q and NxN matrix M. The convergence
// is not guaranteed to occur within N"2 iterations, so a conservative
// approach in an application is to examine ’'status' after the query. If
// the value is FAILED-TO.CONVERGE, repeat with a larger maxLCPlterations
// if so desired.

int maxLCPlterations;

// The number of iterations used by LCPSolver regardless of whether
// or not the query is successful.
int numLCPlterations;

// The information returned by the LCP solver about what it discovered.
LCPSolver<Real, 12>::Result status;

// These members are valid only when querylsSuccessful is true;

// otherwise, they are all set to zero.

Real distance, sqrDistance;

std ::array<Real, 3> boxOParameter; // the x_i for box0

std ::array<Real, 3> boxlParameter; // the x_i for boxl

Vector3<Real> closestPoint [2]; // (P-0,P-1) wher P_0 is in box0 and P_1

21

is

The listing contains pseudocode for computing the distance between two oriented boxes in 3
dimensions. A box is parameterized by p = ¢ + Z?:o x;u; with |z;| < e;. The point c is the box center and

in boxl

// Set

result. maxLCPlterations to the desired value before calling this

template <typename Real>

void ComputeDistanceAndClosestPoints(Box3<Real> box0,

{

Box3<Real> box1,
Box3Box3QueryResult<Real>& result)

// Compute the box corners and difference of corners.
Point3<Real> KO = box0.center, Kl = boxl.center;

for (int r = 0; r < 3; ++r)

{
KO —= box0.extent[r] % box0.axis[r];
K1 — box1l.extent[r] * boxl.axis[r];

Vector3<Real> Delta = K1 — KO;

// Compute RO"T % Delta and RI1"T % Delta.

Vector3<Real> ROTDelta, R1TDelta;
for (int r = 0; r < 3; ++r)

ROTDelta[r] = Dot(box0.axis[r], Delta);

R1TDelta[r] = Dot(box1l.axis[r], Delta);
}
// Compute RO"T » RI.
std ::array<std ::array<Real, 3>, 3> ROTRI1;
for (int r = 0; r < 3; ++r)
{

for (int ¢ = 0; ¢ < 3; ++c)

ROTR1[r][c] = Dot(box0.axis[r], boxl.axis[c]);

}

// Compute the

lengths from the extents (half—lengths).

std ::array<Real, 3> lengthO, lengthl;

for (int r = 0; r < 3; ++r)
lengthO[r] = 2 x box0.extent[r];
lengthl[r] = 2 % boxl.extent[r];

// The LCP has

6 variables and 6 nontrivial inequality constraints.

function .

std ::array<Real, 12> q =

{
—ROTDelta[0], —ROTDelta[1], —ROTDelta[2], R1TDelta[0], R1TDelta[1],
lengthO[0], lengthO[1], lengthO[2], lengthl[0], lengthl[1],

s

std ::array<std ::array<Real, 12>, 12> M; // {{ A, -D°T }, { D, 0 }}

{
M[0] = { 1, 0, 0, —ROTR1[0][0], —ROTR1[0][1], —ROTR1[0][2]. 1,
M[1] = { 0, 1, 0, —ROTR1[1][0], —ROTR1[1][1]., —ROTR1[1][2], O,
M[2] ={ 0, 0, 1, —ROTR1[2][0], —ROTR1[2][1], —ROTR1[2][2], O,
M[3] = { —ROTR1[0][0], —ROTR1[1][0], —ROTR1[2][0], 1, 0, O, O,
M[4] = { —ROTR1[0][1], —ROTR1[1][1], —ROTR1[2][1], O, 1, O, O,
M[5] = { —ROTR1[0][2], —ROTR1[1][2], —ROTR1[2][2], 0, 0, 1 0,
M[6] ={ -1, 0, 0, O o, O, 0,
M[71={ 0, -1, 0, 0, 0, O, 0,
mMf 8 =4¢{ o0, 0, -1, 0, 0, O, 0,
M[9] ={ o0, O, O, -1, 0, O, 0,
mM{i0] ={ o, O, 0, 0, -1, O, 0,
M[11] ={ O, 0, 0, O 0, —1, 0,

I

LCPSolver<Real , 12> lcp;

lcp.SetMaxLCPlterations(result.maxLCPlterations);

std ::
if (lcp.Solve(

result.clo
for (int i

array<Real,

12> w, z;

q, M, w, z, &result.status))
sestPoint [0] = box0.center;
=0; i < 3; ++i)

22

[eNeoNeoNaN el

[=NeNeNeNeNo]

oooroOo

[=NeNelelele]

// —e
0,0,
0,0,
0, 0,
1, 0,
0, 1,
0,0,
0, 0,
0,0,
0,0,
0,0,
0,0,
0,0

R1TDelta[2],
lengthl [2]

HOOOOO

[=NeNelelele]

D i e ke e

// b

result.boxOParameter[i] = z[i] — box0.extent[i];
result.closestPoint [0] += result.boxOParameter[i] % box0.axis[i];

}

result.closestPoint[1] = boxl.center;

for (int i =0, j = 3; i < 3; ++i, ++j)

{
result.boxlParameter[i] = z[j] — boxl.extent[i];
result.closestPoint[1] += result.box1Parameter[i] x boxl.axis[i];

}

Vector3<Real> diff = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(diff, diff);

result.distance = sqrt(result.sqrDistance);

else
// If you reach this case, the value of 'result’ is one of

// NO_SOLUTION or FAILED-TO.CONVERGE. The value INVALID_INPUT
// occurs only when the LCPSolver is passed std::vector inputs
// whose dimensions are not correct.

for (int i = 0; i < 3; ++i)
{
result.boxOParameter[i] = 0;
result.boxlParameter[i] = 0;
result.closestPoint [0][i] = 0;
result.closestPoint [1][i] = 0;
result.distance = 0;
result.sqrDistance = 0;
}
result .numLCPlterations = lcp.GetNumlterations();

4.3 Intersection of Triangle and Cylinder in 3D

Example 7 shows the construction of the CQP for testing for intersection of a triangle and a finite cylinder
in n dimensions. Listing 3 shows pseudocode for this query in 3 dimensions.

Listing 3. The listing contains pseudocode for testing for the intersection of a triangle and a finite cylinder
in 3 dimensions.

template <typename Real>
struct Triangle3

{
+

template <typename Real>
struct Cylinder3

Point3<Real> vertex [3];

{
Point3<Real> center;
Vector3<Real> direction;
Real radius;
Real height;

b

template <typename Real>
struct Triangle3Cylinder3QueryResult

// Specify the maximum number of LCP iterations. The default in GTE
// is N°2 for an LCP with Nxl1 q and NxN M. The convergence is not

23

// guaranteed to occur within N"2 iterations, so a conservative approach

// in an application is to examine 'status' after the query. If the value

// is FAILED.TO.CONVERGE, repeat with a larger maxLCPlterations if so desired.
int maxLCPlterations;

// The number of iterations used by LCPSolver regardless of whether
// or not the query is successful.
int numLCPlterations;

// The information returned by the LCP solver about what it discovered.
LCPSolver<Real, 5>::Result status;

// The query is test—intersection that returns only a Boolean result.
bool intersects;

+

// Set result.maxLCPlterations to the desired value before calling this function.

template <typename Real>

void Testlntersection(Triangle3<Real> triangle, Cylinder3<Real> cylinder ,
Triangle3Cylinder3QueryResult<Real>& result)

{

Vector3<Real> delta = triangle.vertex[0] — cylinder.center;
Vector3<Real> edge0 triangle.vertex[1] — triangle.vertex[0];
Vector3<Real> edgel = triangle.vertex[2] — triangle.vertex[0];
Matrix<Real , 3, 2> E;
E[0][0] = edge0[0]; E[0][1] = edgel[0];
edgeO[1]; E[1][1] edgel [1];
E[2][0] = edge0[2]; E[2][1] = edgel [2];
Matrix<Real, 3, 3> P = Matrix<Real, 3, 3>:ldentity ()

— OuterProduct(cylinder.direction, cylinder.direction);

m
=
o
I

Matrix<Real , 2, 3> ETP = Transpose(E) % P;
Matrix<Real , 2, 2> A = ETP * E;

Vector2<Real> b = ETP x delta;

Vector2<Real> UOTE = cylinder.direction * E;
Real UOTdelta = Dot(cylinder.direction, delta);
Matrix<Real, 3, 2> D;

D[0][0] = —1; Dlo][1] = —1;
D[1][0] = UOTE[0]; D[1][1] = UOTE[1];
D[2][0] = —UOTE[0]; DJ[2][1] = —UOTE[1];
Vector3<Real> e;

e[0] = —1.0;

e[1] —0.5 % cylinder.height — UOTdelta;

—0.5 % cylinder.height + UOTdelta;

std ::array<Real, 5> q = { b[0], b[1], —e[0], —e[1l], —e[2] }:
std ::array<std ::array<Real, 5>, 5> M;

{
Mm[o] = { A[o][o], A[O][1]. -D[o]{o], —D[1][0]. —D[2][0] },
M[1] = { A[1][0]., A[1][t], -Dfo][1], —D[1][1], —D[2][1] },
M[2] = { D[o][o], D[o][1], O, 0, O },
M[3] = { D[1][o], D[1][1], O, 0, O },

}.M[4] = { D[2][0]. D[2][1], 0, 0,0}

LCPSolver<Real, 5> lcp;
lcp.SetMaxLCPlterations(result.maxLCPlterations);
std ::array<Real, 5> w, z;
LCPSolver<Real, 5> lcp;

if (lcp.Solve(q, M, w, z, &result.status))

result.intersects = true;

}

else

{

// If you reach this case, the value of ’'result’ is one of

// NO_SOLUTION or FAILED-TO.CONVERGE. The value INVALID_INPUT
// occurs only when the LCPSolver is passed std::vector inputs
// whose dimensions are not correct.

result.intersects = false;

24

result . numLCPlterations = lcp.GetNumlterations;

4.4 Accuracy Problems when using Fixed-Precision Floating-Point Arithmetic

Although the LCP solver allows for fixed-precision or arbitrary-precision floating-point arithmetic, certain
geometric configurations can produce inaccurate results when using fixed-precision. The problem is that
rounding errors can cause the choices of basic and nonbasic variables in the pivoting of the LCP tableau to
be different from those when using arbitrary-precision arithmetic.

In particular, the function LCPSolverShared<Real>::Solve in LCPSolver.h has a block of code
if (Augmented(r, driving) < (Real)0)

// execute when the coefficient of the nonbasic variable is negative

Rounding errors can lead to a misclassification. The arbitrary-precision code will enter the conditional block
when the coefficient is negative—no matter how small the magnitude—but the fixed-precision code will not
when rounding errors cause the computed coefficient to be a small positive number. The opposite can also
happen, where the arbitrary-precision code skips the conditional block but the fixed-precision code enters it.

An example for inaccurate results due to rounding error is shown next when computing the distance between
a triangle and an oriented box in 3D. The LCP solver code is DistTriangle3 AlignedBox3.h. Listing 4 shows
a test program that computes the distance using fixed precision and using arbitrary precision.

Listing 4. The listing contains an example for an inaccurate distance calculation because of rounding
errors when using fixed-precision floating-point arithmetic.

int main()

Triangle3<double> triangle;

triangle.v[0] = { 0.5, 0.5, 1.5 };

triangle.v[1] = { 0.50000000000000178, 25.5, 1.5 };
triangle.v[2] = { —0.50000000000000355, 0.5, 1.5 };

AlignedBox3<double> box;
box.min = { —28.666800635711962, 12.285771701019407, —48.666800635711965 };
box.max = { —20.476286168365689, 20.476286168365682, —40.476286168365689 };

DCPQuery<double, Triangle3<double>, AlignedBox3<double>> query;

auto result = query(triangle, box);

// result.querylsSuccessful = true

// result.distance = 47.6918933732887069

// result.sqrDistance = 2274.5166935291390473

// result.triangleParameter = (0.0199525116590519, 0.4351332588306535, 0.5449142295102947)
// result.boxParameter = (—22.6653617332430883, 12.2857717010194065, —40.4762861683656610)
// result.closestPoint [0] = (—0.0449142295102958, 11.3783314707663372, 1.5000000000000000)
// result.closestPoint[1] = (—22.6653617332430883, 12.2857717010194065, —40.4762861683656610)
// result.numLCPlterations = 11

typedef BSRational<UlntegerAP32> Rational;
Triangle3<Rational> rtriangle;

rtriangle .v[0] 0.5, 0.5, 1.5

rtriangle . .v[1] { 0.50000000000000178, 25.
rtriangle .v[2] { —0.50000000000000355, O.

5, 1.5 };
5, 1.5 };

25

https://www.geometrictools.com/GTE/Mathematics/LCPSolver.h
https://www.geometrictools.com/GTE/Mathematics/DistTriangle3AlignedBox3.h

AlignedBox3<Rational> rbox;
rbox.min = { —28.666800635711962, 12.285771701019407, —48.666800635711965 };
rbox.max = { —20.476286168365689, 20.476286168365682, —40.476286168365689 };

DCPQuery<Rational , Triangle3<Rational >, AlignedBox3<Rational>> rquery;

auto rresult = rquery(rtriangle, rbox);

// rresult.querylsSuccessful = true

// rresult.distance = 46.6845780373756085

// rresult.sqrDistance = 2179.4498265278130020

// rresult.triangleParameter = (0.0000000000000000, 0.4387667833180821, 0.5612332166819179)
// rresult.boxParameter = (—20.4762861683656894, 12.2857717010194065, —40.4762861683656894)
// rresult.closestPoint [0] = (—0.0612332166819192, 11.4691695829520519, 1.5000000000000000)
// rresult.closestPoint [1] = (—20.4762861683656894, 12.2857717010194065, —40.4762861683656894)
// rresult.numLCPlterations = 7

return O;

The relative error in the distance is approximately 0.0216. The pairs of closest points are approximately the
same in the y- and z-components, but they differ by a significant amount in the xz-component.

The geometric issue is that the plane of the triangle is parallel to a face of the box. A very small rotation of
the plane of the triangle, say, about the center of the triangle, can cause a large change in the closest points.
The closest points can vary greatly with small changes in the triangle vertices.

If you must use fixed-precision floating-point arithmetic, the problems with parallel configurations in the
geometric primitives should be handled differently. In the next major release of the source code (the Ge-
ometric Tools Library), LCP-based algorithms are provided for the queries, but specialized algorithms will
also be provided that try to resolve the accuracy problems with parallel configurations.

4.5 Dealing with Vector Normalization

To motivate the discussion, consider Example 7 analyzed previously for the test-intersection query between
a triangle and a finite cylinder in 3 dimensions. The construction of the matrices and vectors in the CQP
assumes real-valued arithmetic (error-free computations). In particular, the cylinder axis direction is a
unit-length vector ug.

The problem in an implementation is that if the axis direction is computed by normalizing a vector, and
then that direction is passed to the query and treated as a 3-tuple of rational numbers, the length is not
guaranteed to be 1 (due to rounding errors). For example, suppose the cylinder axis is in the direction of
(1,2,3). The normalized vector is (1,2,3)/y/14. The normalization code is

Vector3<double> u0 = { 1.0, 2.0, 3.0 };

double length = sqrt(u0[0] * uO[0] 4+ uO[1] % uO[1] + uO0[2] % u0[2]); // = sqrt(14.0)
u0 /= length;

// u0 = (0.26726124191242440, 0.53452248382484879, 0.80178372573727319)

typedef BSRational<UlntegerAP32> Rational;

Vector3<Rational> ru0 = { u0[0], uO[1], uO[2] };

Rational rSqrLength = Dot(ru0, ru0);

// rSqrLength.biasedExponent = —105

// rSqrlLength. bits = 0x00000200 0x00000000 0x000cc8b2 0xff10b80Ff

// Moving the binary point from the right—most bit 105 units to the left,

// rSqrlength = 1.0°{53}1100110010001011001011111111000100001011100000001111
// where 0°{53} denotes the occurrence of 53 O—valued bits. Therefore,

// rSqrLength = 1.t where t > 0

Suppose that uy was normalized from a vector v; that is, ug = v/|v|. The vector v has rational components
but its length |v| is usually irrational. Replace this expression in the CQP for the triangle-cylinder test-

26

intersection query. The projection matrix is P = I — vv' /|v|? and can be computed exactly using rational
arithmetic because of the occurrence of the squared distance. The quadratic matrix is A = ETPE which
is also rational because E involves quantities generated by the differences of rational points. The quadratic
vector b = ETPA, which is also rational. The quadratic scalar ¢ = |A|?/2 is rational.

Two of the inequality constraints in Dx > e involve the length |v|,
(v/IV)TEx > —h/2 = (v/IV)TA, —(v/IV)TEx > ~h/2+ (v/Iv])TA (52)

Multiplying the inequalites by the length eliminates the division, but the length term itself cannot be
eliminated,
vIEx > —h|v|/2 -V A, —v'Ex> —h|v|/2+Vv'A (53)

If |v| is irrational, we can approximate it by a rational number and then execute the LCP solver using
arbitrary-precision floating-point arithmetic. However, the resulting minimizer point x and corresponding
minimum function value f(x) are considered to be approximations.

It is possible to avoid the approximation of the length of a vector that is an input to the LCP solver by using
real quadratic fields. The idea is to introduce a symbolic component to the computations that involves the
vector length as the square root of a rational number. Details for such an approach can be found in GTE:
Arbitrary Precision Arithmetic.

To illustrate the use of real quadratic fields, consider the LCP formulation of the convex quadratic program
for determining whether a triangle and cylinder intersect. The implementations shown next are for double-
precision floating-point arithmetic, for rational arithmetic and for a real quadratic field where d is the rational
squared length of the cylinder axis direction.

Listing 5 shows the source code for the query when the numeric type is double (64-bit floating-point arith-
metic).

Listing 5. The listing uses double-precision arithmetic for executing the LCP solver for triangle-cylinder
intersection. The computations necessarily have rounding errors.

std :: array<double, 2> ExecuteDouble(Triangle3<double> const& triangle, Cylinder3<double> const& cylinder)

{

Vector3<double> delta = triangle.v[0] — cylinder.axis.origin;
Vector3<double> edgel = triangle.v[1l] — triangle.v[0];
Vector3<double> edge2 = triangle.v[2] — triangle.v[0];

Matrix <3, 2, double> E;

E.SetCol (0, edgel);

E.SetCol (1, edge2);

Matrix <3, 3, double> P = Matrix<3, 3, double>::ldentity () —
OuterProduct(cylinder.axis.direction, cylinder.axis.direction);

Matrix <2, 3, double> ETP = MultiplyATB(E, P);

Matrix <2, 2, double> A = ETP x E;

Vector2<double> b = ETP x delta;

Vector2<double> u0TE = cylinder.axis.direction * E;
double u0Tdelta = Dot(cylinder.axis.direction, delta);
Matrix <3, 2, double> D;

D(0, 0) = —1.0;

D(0, 1) = —1.0;

D(1, 0) = uOTE[O];

D(1, 1) = wOTE[1];

D(2, 0) = —uOTE[0];

D(2, 1) = —u0TE[1];

Vector3<double> e;

e[0] = —1.0;

e[1l] = —0.5 % cylinder.height — u0Tdelta;

27

https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf
https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf

e[2] = —0.5 % cylinder.height + uOTdelta;

std ::array<double, 5> g = { b[0], b[1], —e[0], —e[1], —e[2] };
std ::array<std ::array<double, 5>, 5> M;

{
M[0] = { A(0, 0), A(0, 1), —D(0, 0), —D(1, 0), —D(2, 0) };
M[1] = { A(1, 0), A(1, 1), -D(0, 1), —D(1, 1), —-D(2, 1) }
M[2] = { D(0, 0), D(0, 1), 0.0, 0.0, 0.0 };
M[3] = { D(1, 0), D(1, 1), 0.0, 0.0, 0.0 };
M[4] = { D(2, 0), D(2, 1), 0.0, 0.0, 0.0 };

}

std :: array<double, 5> w, z;
LCPSolver<double, 5> lcp;
lcp.Solve(q, M, w, z);

std ::array<double, 2> result = { z[0], z[1] };
return result;

The returned numbers are the triangle parameters for determining the triangle point closest to the cylinder
axis and that is between the two planes of the cylinder caps.

Listing 6 shows the source code for the query when the numeric type is BSRational<UlntegerAP32> (arbitrary-
precision arithmetic).

Listing 6. The listing uses exact rational arithmetic for executing the LCP solver for triangle-cylinder
intersection. The computations can be inaccurate when the cylinder axis direction is not unit length when
computed as the square root of the sum of squares of rational components.

typedef BSRational<UlntegerAP32> Rational;

std ::array<Rational , 2> ExecuteRational(Triangle3<double> const& inTri, Cylinder3<double> const& inCyl)
{
Triangle3<Rational> triangle;
triangle.v[0] = { inTri.v[0][O], inTri.v[O][1], inTri.v[0][2
triangle.v[1] { inTri.v[1][0], inTri.v[1][1], inTri.v[1]][2
triangle .v[2] { inTri.v[2][0], inTri.v[2][1], inTri.v[2][2

s
s
}

Cylinder3<Rational> cylinder;
cylinder.axis.origin =

{ inCyl.axis.origin[0], inCyl.axis.origin[1l], inCyl.axis.origin[2] };
cylinder.axis.direction =

{ inCyl.axis.direction[0], inCyl.axis.direction[1], inCyl.axis.direction[2] };
cylinder.radius = inCyl.radius;
cylinder.height = inCyl.height;

Vector3<Rational> delta

Vector3<Rational> edgel

Vector3<Rational> edge2

Matrix <3, 2, Rational> E;

E.SetCol (0, edgel);

E.SetCol (1, edge2);

Matrix <3, 3, Rational> P = Matrix<3, 3, Rational >::ldentity () —
OuterProduct(cylinder.axis.direction, cylinder.axis.direction);

triangle.v[0] — cylinder.axis.origin;
triangle.v[1l] — triangle.v[O0];
triangle.v[2] — triangle.v[0];

Matrix <2, 3, Rational> ETP = MultiplyATB(E, P);

Matrix <2, 2, Rational> A = ETP x E;

Vector2<Rational> b = ETP % delta;

Vector2<Rational> u0TE = cylinder.axis.direction % E;
Rational uOTdelta = Dot(cylinder.axis.direction, delta);
Matrix <3, 2, Rational> D;

Rational rNegOne(—1), rNegHalf(—0.5), rZero(0);

D(0, 0) = rNegOne;

28

D(0, 1) = rNegOne;

D(1, 0) = uOTE[0];

D(1, 1) = uOTE[1];

D(2, 0) = —u0TE[0];

D(2, 1) = —u0TE[1];

Vector3<Rational> e;

e[0] = rNegOne;

e[1] = rNegHalf % cylinder.height — u0Tdelta;
e[2] = rNegHalf % cylinder.height + uOTdelta;

std ::array<Rational, 5> g = { b[0], b[1], —e[0], —e[1], —e[2] };
std ::array<std::array<Rational, 5>, 5> M;

¢ M[0] = { A(0, 0), A(0, 1), -D(0, 0), —D(1, 0), —-D(2, 0) };
M[1] = { A(1, 0), A(1, 1), —D(0, 1), —D(1, 1), —D(2, 1) };
M[2] = { D(0, 0), D(0, 1), rZero, rZero, rZero };
M[3] = { D(1, 0), D(1, 1), rZero, rZero, rZero };
M[4] = { D(2, 0), D(2, 1), rZero, rZero, rZero };

}

std ::array<Rational, 5> w, z;
LCPSolver<Rational , 5> lcp;
lcp.Solve(q, M, w, z);

std ::array<Rational , 2> result = { z[0], z[1] };
return result;

The returned numbers are the triangle parameters for determining the triangle point closest to the cylinder
axis and that is between the two planes of the cylinder caps.

Listing 7 shows the source code for the query when the numeric type is QFElement for a real quadratic field.

Listing 7. The listing uses arithmetic for a real quadratic field when executing the LCP solver for triangle-
cylinder intersection. The computations are exact in the sense of returning parameters of the form x + yv/d
where z and y are rational numbers and v/d is represented symbolically.

typedef BSRational<UlntegerAP32> Rational;
typedef QFElement<Rational, 0> QFType;
Rational QFType::DSqr;

std ::array<QFType, 2> ExecuteQFType(Triangle3<double> const& inTri, Cylinder3<double> const& inCyl)

Triangle3<Rational> triangle;

triangle.v[0] { inTri.v[0][0], inTri.v[O][1], inTri.v[0][2] };
triangle.v[1] { inTri.v[1][0], inTri.v[1][1], inTri.v[1][2] };
triangle .v[2] { inTri.v[2][0], inTri.v[2][1], inTri.v[2][2] };

Cylinder3<Rational> cylinder;
cylinder.axis.origin =

{ inCyl.axis.origin[0], inCyl.axis.origin[1l], inCyl.axis.origin[2] };
cylinder.axis.direction =

{ inCyl.axis.direction[0], inCyl.axis.direction[1], inCyl.axis.direction[2] };
cylinder.radius = inCyl.radius;
cylinder.height = inCyl. height;

QFType:: DSqr = Dot(cylinder.axis.direction, cylinder.axis.direction);

Vector3<Rational> delta
Vector3<Rational> edgel
Vector3<Rational> edge2
Matrix <3, 2, Rational> E;
E.SetCol (0, edgel);

triangle.v[0] — cylinder.axis.origin;
triangle.v[1] — triangle.v[0];
triangle.v[2] — triangle.v[0];

29

E.SetCol (1, edge2);
Matrix <3, 3, Rational> P = Matrix<3, 3, Rational >::ldentity () —
OuterProduct(cylinder.axis.direction, cylinder.axis.direction) / QFType::DSqr;

Matrix <2, 3, Rational> ETP = MultiplyATB(E, P);

Matrix <2, 2, Rational> A = ETP x E;

Vector2<Rational> b = ETP % delta;

Vector2<Rational> u0TE = cylinder.axis.direction % E;
Rational uOTdelta = Dot(cylinder.axis.direction, delta);
Matrix <3, 2, Rational> D;

Rational rNegOne(—1), rNegHalf(—0.5), rZero(0);

D(0, 0) = rNegOne;
D(0, 1) = rNegOne;
D(1, 0) = uOTE[O];
D(1, 1) = uwOTE[1];
D(2, 0) = —uOTE[O];
D(2, 1) = —u0TE[1];
Vector3<QFType> e;
e[0] = (Rational)—1.0;
e[1][0] = —uOTdelta;
e[1][1] = rNegHalf % cylinder.height;
e[2][0] = uOTdelta;
e[2][1] = rNegHalf % cylinder.height;
std ::array<QFType, 5> q = { b[0], b[1l], —e[0], —e[1], —e[2] };
std ::array<std ::array<QFType, 5>, 5> M;
¢ M[0] = { A(0, 0), A(0, 1), -D(0, 0), —D(1, 0), —-D(2, 0) };
M{1] = { A(1, 0), A(1, 1), -D(0, 1), —D(1, 1), —D(2, 1) };
M[2] = { D(0, 0), D(0, 1), rZero, rZero, rZero };
M[3] = { D(1, 0), D(1, 1), rZero, rZero, rZero };
[4] = { D(2, 0), D(2, 1), rZero, rZero, rZero };
}

std ::array<QFType, 5> w, z;
LCPSolver<QFType, 5> lcp;
lcp.Solve(q, M, w, z);

std ::array<QFType, 2> result = { z[0], z[1] };
return result;

The returned numbers are the triangle parameters for determining the triangle point closest to the cylinder
axis and that is between the two planes of the cylinder caps.

Notice that most of the quantities in the code are rational numbers. The first introduction of real quadratic
field numbers is in the assignment to the 3-tuple e in the inequality constraints of equation (53); that is, e[1]
and e[2] are elements of Q(v/d). The call to lcp.Solve will involve arithmetic in the real quadratic field.

Executions of the functions of Listings 5, 6 and 7 are shown in Listing 8. In the comments, the rational
numbers are listed as odd integers times powers of two, a format described in GTE: Arbitrary Precision
Arithmetic.

Listing 8. The listing contains the main function to compare the results of the triangle-cylinder intersection
query for various numeric types.

int main()

Triangle3<double> triangle;

triangle.v[0] 0.5, —1.0, 0.0 };
triangle .v[1] { 3.0, 1.0, 0.0 };
triangle.v([2] { 0.5, 2.0, 0.0 };

30

https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf
https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf

Vector3<double> nonUnitDirection{ 1.0, 2.0, 3.0 };
Cylinder3 <double> cylinder;

cylinder.axis.origin = { 0.0, 0.0, 0.0 };
cylinder.axis.direction = nonUnitDirection;
Normalize(cylinder.axis.direction);

cylinder .radius = 1.0;

cylinder . height = 2.0;

// The point on the triangle closest to the cylinder axis is

// VO + (0)%(V1 — V0) + (11/30)x(V2 — V0). In the LCP solver, we expect
// that z = (0,11/30,%). Note that 11/30 = 0.3666... where the 6 repeats
// ad infinitum .

std :: array<double, 2> result;

result = ExecuteDouble(triangle, cylinder);

// result = (0.00000000000000000, 0.36666666666666670)
// The second component is an approximation to 11/30.

std ::array<Rational , 2> rresult;

rresult = ExecuteRational(triangle, cylinder);

// rresult [0]. numerator =0

// rresult [0]. denominator = 1

// rresult [1]. numerator = [0x0000096DB6DB6DB6DB5D4719DCAI5CTF, —108]

// rresult[1].denominator = [0x0000066DB6DB6DB6DB5D4719DCA15C7F, —106]
double temp;

temp = rresult [0]; // 0.00000000000000000

temp = rresult [1]; // 0.36666666666666670

// The second component is an approximation to 11/30.

cylinder.axis.direction = nonUnitDirection;
std ::array<QFType, 2> qfresult;

qfresult = ExecuteQFType(triangle, cylinder);
// qfresult [0][0]. numerator =
// qfresult [0][0]. denominator =
// qfresult [0][1]. numerator =
// qfresult [0][1].denominator =
// qfresult[0] = 0 + 0 % sqrt(14
// qfresult [1][0]. numerator =
// qfresult [1][0]. denominator =
// qfresult [1][1]. numerator =
// qfresult [1][1]. denominator = 1

// qfresult[1] = 11/30 + 0 * sqrt(14)

// The second component is exactly 11/30.
return O;

—~NO~O

[0x0007C5AB, —20] = 11 % 46305 % 2°{—20}
[0x000A992F, —19] = 30 % 46305 = 2°{—20}
0

Another slightly more interesting example is shown in Listing 9. The triangle intersects the cylinder and the
plane of one of the cylinder caps.

Listing 9. The triangle point inside the cylinder and closest to the cylinder axis is a point on the plane
that bounds the top of the cylinder.

int main()

Vector3<double> nonUnitDirection{ 1.0, 2.0, 3.0 };
Vector3<double> perp{ —3.0, 0.0, 1.0 };

Triangle3<double> triangle;

triangle.v[0] 0.125 x perp + 0.5 * nonUnitDirection;
triangle .v[1] 0.25 % perp;

triangle.v[2] perp;

Cylinder3<double> cylinder;
cylinder.axis.origin = { 0.0, 0.0, 0.0 };
cylinder.axis.direction = nonUnitDirection;
Normalize(cylinder.axis.direction);

31

cylinder.radius

1.0
cylinder . height 2.0

// The point on the triangle inside the planes of the cylinder
// caps and closest to the cylinder axis is
// VO + (1 — (1/7) * sqrt(14))*(V1 — V0) + (0)x(V2 — V0).

Normalize(cylinder.axis.direction);

std :: array<double, 2> result;

result = ExecuteDouble(triangle, cylinder);

// result = (0.46547751617515137, 0.00000000000000000)

// The first component is an approximation to 1—(1/7)xsqrt(14).

std ::array<Rational , 2> rresult;

rresult = ExecuteRational(triangle, cylinder);

// rresult [0]. numerator = [0x001bddd422d07e93, —53]
// rresult [0]. denominator [0x003bddd422d07e93, —53]
// rresult[1]. numerator 0

// rresult[1].denominator
double temp;

temp = rresult [0]; // 0.46547751617515126
temp rresult [1]; // 0.00000000000000000

1

cylinder.axis.direction = nonUnitDirection;

std ::array<QFType, 2> qfresult;

qfresult = ExecuteQFType(triangle, cylinder);

// qfresult [0][0]. numerator = [+0x00000031, —5]
// qfresult [0][0]. denominator [+0x00000031, —5]
// qfresult [0][1]. numerator [—0x00000007 , —5]
// qfresult [0][1].denominator [+0x00000031, —5]
// qfresult [0] =1 — (1/7) * sqrt(14)

// qfresult [1][0]. numerator 0

// qfresult [1][0]. denominator = 1
// qfresult [1][1]. numerator = 0
// qfresult [1][1]. denominator = 1

// qfresult[1] = 0 + 0 % sqrt(14)
// 1 — (1/7)xsqrt(14) is approximately 0.46547751617515123063089303824049
return 0;

5 Geometric Primitives

The remainder of the document is about formulating distance queries as CQP problems in 2D and in 3D.
Each of the primitives involved is parameterized in a manner that is suited for the inequality constraints
of the CQP. The 1-dimensional primitives include lines, rays and segments. The 2-dimensional primitives
include planes and objects that live in a plane such as triangles, rectangles and convex polygons. The
3-dimensional primitives are convex polyhedra including tetrahedra and boxes.

5.1 Linear Objects

The linear objects are lines, rays and segments. Each object has a single parameter in its representation.

32

5.1.1 Lines

A line has an origin point p and a direction vector u that is not the zero vector. Usually, u is specified as a
unit-length vector. The parameterization is

p+tu teR (54)
The parameter t is unconstrained, so Section 1.4 is applicable when formulating distance queries between

lines and other objects.

5.1.2 Rays

A ray is a subset of a line. It has an origin point p and a direction vector u that is not the zero vector.
Usually, u is specified as a unit-length vector. The parameterization is

p+tu, t>0 (55)

5.1.3 Segments

A segment is a subset of a line. The classical parameterization uses endpoints pg = p and p; = p+u, where
u is not the zero vector (and generally not unit length). The parameterization is

p+tu=(1—t)po+tp, 0<t<1 (56)

Other representations are possible. Using the line representation of equation (54), the segment is specified
by an interval [tg,t1] for tog < t;. Another representation involves choosing a center point p, a unit-length
direction u and a radius 7 > 0, namely, p + tu with || < r.

5.2 Planar Objects

The planar objects are planes or convex polygons contained in the plane, including triangles and rectangles.

5.2.1 Planes

Whether living in 2D or 3D, a plane has an origin point p and two linearly independent direction vectors
ug and uy. In 2D, the directions are 2-tuples with ug - uf % 0. In 3D, the directions are 3-tuples with
ug X uy # 0. The parameterization is

p +toug +tiuy, o € R, t1€R (57)

Usually the directions uy and u; are chosen to be unit length and perpendicular. The parameters tg and t;
are unconstrained, so Section 1.4 is applicable when formulating distance queries between planes and other
objects in 3D.

33

5.2.2 Triangles

A triangle is defined by a point p and two linearly independent vectors ug and u; for the directions of
the edges emanating from p. The triangle vertices are pg = p, p1 = p + up and ps = p + u;. The
parameterization is

p +toug +tiuy, to >0, ¢ >0, to+t; <1 (58)

Generally, the edge directions are not unit length.

5.2.3 Rectangles

A rectangle is defined by a point p and two perpendicular vectors ug and u; for the directions of the edges
emanating from p. The rectangle vertices are pgo = p, P1o = P + Ug, Por = P+ u; and p1;1 = p+ up + ug.
The parameterization is

p+t0u0+t1u1, Ogtogl,ogtlgl (59)

Sometimes the edge directions are specified by unit-length vectors uy and u;. The corresponding edge
lengths are £y and ¢;. The parameterization is the same as equation (59) but with constraints 0 < ¢; < ;. A
common representation of a rectangle uses a center point p, two unit-length and perpendicular directions ug
and uy, and radii 7o > 0 and 7 > 0. The parameterization is the same as equation (59) but with constraints
|ti| S Ti-.

5.2.4 Convex Polygons

A simple parameterization is not possible, although the polygon can be triangulated and then each triangle
processed separately using the parameterization of equation (58). However, when formulating CQP problems,
it is sufficient to define a convex polygon as the intersection of half-spaces. Let the polygon have n ordered
vertices named p; for 0 < i < n.

In 2D, let the vertices be counterclockwise ordered. The edge directions are d; = p;+1 — p; with the
understanding that the indices are computed modulo n; that is, p, = po and p_1 = pn_1. A normal to the
edge d; that points to the polygon interior is n; = —dil, where (u,v)* = (v, —u). The polygon P is defined
by

P={yecR*:n;-(y—p;)>0,0<i<n} (60)

In 3D, the vertices are coplanar where the plane has origin py and normal direction m. Let the vertices be
counterclockwise ordered to an observer positioned on the side of the plane to which m points and who is
looking in the direction —m at the polygon in the plane. As in 2D, the edge directions are d; = p;+1 — pi.
A normal to the edge that lives in the plane and points to the polygon interior is n; = m x d;. The polygon
P is defined by

P={yeR’:m-(y—po) =0, n;-(y—pi) >0, 0<i<n} (61)

Whether 2D or 3D, observe that one or more components of y € P can be negative. This prevents us from
choosing x =y as the independent variables for the quadratic function of the CQP. We can remedy this by
translating the polygon to the first quadrant in 2D or to the first octant in 3D. Let p be the vector with the
largest components for y > p. We can choose the quadratic function variables as x =y — p, in which case
x > 0 and the nonnegativity constraints are satisfied. When computing the distance between the polygon
and another object, we must also translate that object by subtracting g from its points.

34

5.3 Volumetric Objects

The volumetric objects are convex polyhedra in space, including tetrahedra and boxes.

5.3.1 Tetrahedra

A tetrahedron is defined by a point p and three linearly independent vectors ug, u; and us for the directions
of the edges emanating from p. The tetrahedron vertices are pg = p, p1 = p+ ug, p2 = p + u; and p + us.
The convention is that the points are ordered so that ug - -u; x us > 0. The canonical tetrahedron has
vertices pg = (0,0,0), p1 = (1,0,0), p2 = (0,1,0) and ps = (0,0,1). The parameterization is

p +toug +tiug +taug, tp >0, 11 >0, 12 >0, tg+t +12 <1 (62)

Generally, the edge directions are not unit length.

5.3.2 Boxes

A box is defined by a point p and three mutually perpendicular vectors ug, u; and us for the directions
of the edges emanating from p. The box vertices are p;yi,i, = P + foup + 411 + i2uy for i; € {0,1} for
j =0,1,2. The convention is that ug - u; X us > 0. The canonical box has vertices p;yi,i, = (40,1, %2) for
i; € {0,1} for j =0, 1,2. The parameterization is

P +toug +tiug +toun, 0<¢ <1,0<¢ <1,0<t, <1 (63)

Sometimes the edge directions are specified by unit-length vectors ug, u; and us. The corresponding edge
lengths are ¢y, ¢1 and ¢». The parameterization is the same as equation (63) but with constraints 0 < ¢; < ¢;.
A common representation of a box uses a center point p, three unit-length and perpendicular directions uy,
u; and us, and radii 79 > 0, 1 > 0 and r5 > 0. The parameterization is the same as equation (63) but with
constraints [t;| < ;.

5.3.3 Convex Polyhedra

A simple parameterization is not possible, although the polyhedron can be tetrahedralized and each tetra-
hedron processed separately using the parameterization of equation (62). However, when formulating CQP
problems, it is sufficient to define a convex polyhedron as the intersection of half-spaces.

Let the polyhedron have m vertices named p; for 0 < ¢ < m. Assume that the polyhedron has n faces
each with normal vector n; for 0 < ¢ < n that points towards the polyhedron interior. The normals
are not necessarily unit length. In the common case that the polyhedron faces are triangles, consider a
face (piy, Pi,s Pi,) Whose vertices are counterclockwise ordered when viewed by an observer outside the
polyhedron. An inner-pointing normal vector is n;, = (Pi, — Pio) X (Pi; — Pio). The polyhedron P is defined
by

P={yeR¥:n; - (y—p;)>0,0<i<n} (64)

where pj, is a point on the ith face. Generally, for a face that is a convex polygon, choose any three
noncollinear points of the face and compute the normal vector as shown for a triangle.

35

Observe that one or more components of y € P can be negative. This prevents us from choosing x =y
as the independent variables for the quadratic function of the CQP. We can remedy this by translating the
polyhedron to the first octant in 3D. Let p be the vector with the largest components for y > p. We can
choose the quadratic function variables as x = y — u, in which case x > 0 and the nonnegativity constraints
are satisfied. When computing the distance between the polyhedron and another object, we must also
translate that object by subtracting g from its points.

5.4 Data Structures for the Primitives

The linear primitives all have an origin p and a direction u. The planar primitives, not including convex
polygons, have an origin p and two directions ug and u. The volumetric primitives, not including convex
polyhedra, have an origin p and three directions ug, u; and us. The data structures used in the pseudocode
for distance queries are shown in Listing 10 and use C++ template notation. In actual GTE code, the Real
type can be float or double, although floating-point rounding errors have the potential to cause the LCP solver
to generate inaccurate information. The Real type can also represent an arbitrary-precision number system
for exact computation as mentioned previously in this document.

Listing 10. The data structures used to represent geometric primitives are listed here.

// linear primitives

template <typename Real, int N> struct Line { Point<Real, N> p; Vector<Real, N> u; }
template <typename Real, int N> struct Ray { Point<Real, N> p; Vector<Real, N> u; }
template <typename Real, int N> struct Segment { Point<Real, N> p; Vector<Real, N> u; }

// planar primitives not including convex polygons

template <typename Real, int N> struct Plane { Point<Real, N> p; Vector<Real, N> u0, ul; }
template <typename Real, int N> struct Triangle { Point<Real, N> p; Vector<Real, N> u0, ul; }
template <typename Real, int N> struct Rectangle { Point<Real, N> p; Vector<Real, N> u0, ul; }

// volumetric primitives not including convex polyhedra
template <typename Real, int N> struct Tetrahedra { Point<Real, N> p; Vector<Real, N> u0, ul, u2; }
template <typename Real, int N> struct Box { Point<Real, N> p; Vector<Real, N> u0, ul, u2; }

Although each class of primitives (such as linear primitives) has the same form for the structure, they vary
based on constraints for the coefficients of the u-vectors.

Listing 11 contains data structures for convex polygons with sufficient information to support the distance
queries.

Listing 11. The data structures for convex polygons living in R? or R3 are listed here.

template <typename Real> struct ConvexPolygon2

std :: vector<Point<Real , 2>> points;
std :: vector<Vector<Real, 2>> normals;
Point<Real, 2> minimum;

}
template <typename Real> struct ConvexPolygon3
{
std :: vector<Point<Real , 3>> points;
std :: vector<Vector<Real, 3>> normals;
Point<Real , 3> minimum;
Vector<Real, 3> planeNormal;
std ::array<int, 3> permute, invPermute;
}

36

The points array stores the vertices of the polygon. The vertices are ordered, and it does not matter whether
that ordering is clockwise or counterclockwise. The distance query depends only on having normals that are
directed to the polygon interior. The normals array has the same number of elements as the points array. The
vector normal[i] is perpendicular to the edge with points[i+1] - points[i] and must be directed to the interior
of the polygon. The minimum point has components that store the minimum values for the vertices. This
member supports translation of the convex polygon to the first quadrant for convex polygons in 2D or to
the first octant for convex polygons in 3D.

For convex polygons living in 3-dimensional space, we need to know the plane that contains the polygon.
The normal for that plane is planeNormal. The vertex point[0] is chosen to be the plane origin. The vector
normal[i] is perpendicular to both the edge direction points[i+1] - points[i] and the plane normal planeNormal; it
must be directed to the interior of the polygon. The 3-tuple permute stores a permutation of {0,1,2}, call
it {io, 71,42}, so that the plane normal has its maximum absolute component at index io; thus, if the plane
normal is m = (mg, m1, me), then |m;,| = max{|mo|, |m1],|mz2|}. The 3-tuple invPermute is the inverse of
the permutation. Table 1 shows the permutations and their inverses.

Table 1. The permutations and their inverse.

permute (0,1,2) (0,2,1
invPermute | (0,1,2) (0,2,1

~—
—~
[N}
=
—_
~—
—~
—_
p
[\
—
—_
\.l\D
(=}
N
—~
[\
=
(=}
~

~—
—~
—
[N}
(=)
~—
—~
—_
\.O
[\
~
—~
\.[\3
\.O
—
N
—~
[\
—
(=}
~—

Convex polyhedra are assumed to have triangle faces. Listing 12 contains a data structure with sufficient
information to support the distance queries.

Listing 12. The data structure for convex polyhedra living in R? is listed here.

template <typename Real> struct ConvexPolyhedron

{
std :: vector<Point<Real , 3>> points;
std ::vector<std ::array<int, 3>> triangles;
std :: vector<Vector<Real, 3>> normals;
Point<Real, 3> minimum;

}

The points array stores the vertices of the polygon. The triangles stores triples of indices that are relative to
the points array. For example, face i of the polygon has triple triangles[i] and the vertices that form the face
are points[triangles[i][0]], points[triangles[i][1]] and points[triangles[i][2]]. The normals array has the same number
of elements as the triangles array. The vector normal[i] is perpendicular to the triangle face determined by the
triangle[i] triple. The minimum point has components that store the minimum values for the vertices. This
member supports translation of the convex polyhedron to the first octant in order to satisfy the nonnegativity
constraints.

37

6 Distance Queries

Each distance query is formulated as a CQP. Alternatively, it is possible to formulate a query in a feature-
based manner by decomposing the objects into vertices and edges, computing the distance queries for those
features, and then selecting the feature pair that leads to the object-object distance, but this style of query
is not discussed in the document.

The CQP formulations use the object definitions presented in Section 5. The input variable of the CQP is
x = (xg,...,2n—1) of the appropriate dimension n. All the queries are formulated as the minimization of
the quadratic function f subject to inequality constraints, namely,

1
f(x)= §XTAX +b'x+c, x>0, Dx>e (65)
Each subsection has a construction for A, b, ¢, D and e with the appropriate selection of parameters x

depending on the types of primitives of the query.

The pseudocode for a distance query is shown in Listing 13. The squared distance is computed so that exact
arithmetic can be supported. If you need the distance, compute the square root of the squared distance
using whatever support is required for sqrt of your numeric type.

Listing 13. The listing contains pseudocode for a distance query using an LCP solver. The number of
components of x and the number of inequality constraints depends on the pair of objects participating in
the query.

template <typename Real, int N>
struct QueryResult

QueryResult(int numXComponents) : x(numXComponents) {}

// The squared distance between object0 and objectl.
Real sqrDistance;

// The parameters x that minimize f(x), the half—squared—distance
// function.
Vector<Real> x; // x has numXComponents elements

// A pair of closest points that generate the squared distance

// between objectO0 and objectl. The closest point of object0 is

// closestPoint [0] and the closest point of objectl is closestPoint[1].
Point<Real, N> closestPoint [2];

}

template <typename Real, int N>

QueryResult<Real , N>

DoQuery(ObjectOType<Real> object0, ObjectlType<Real> objectl)

{
// Preprocess object data to support nonnegativity constraints. This
// step always applies to convex polygons and convex polyhedra.

// Compute the coefficients of the quadratic function f(x).
int numXComponents; // depends on types of the input objects

Matrix<Real> A(numXComponents, numXComponents); // ... assign A elements
Vector<Real> b(numXComponents); // ... assign b elements
Real ¢; // ... assign c value

// Compute the inequality constraint coefficients.
Matrix<Real> D(numXComponents, numConstraints); // ... assign D elements
Vector<Real> e(numConstraints); // ... assign e elements

// Compute the LCP inputs.

38

int lcpSize = numXComponents + numConstraints;
Vector<Real> q(lcpSize); // ={ b, —e }
Matrix<Real> M(lcpSize , lcpSize); // = {{A, —Transpose(D)}, {D, 0}}

// Solve the LCP and extract the x—portion from z = { x, y }.
Vector<Real> w(lcpSize), z(lcpSize);

LCPSolver<Real> LCP(q, M, w, z);

Vector<Real> x(numXComponents);

for (int i = 0; i < numXComponents; ++i)

x[i] = z[i];

// Report the query results to the caller. NOTE: In theory, the

// squared distance is nonnegative. In practice when using floating—point
// arithmetic for objects that are very close together, rounding errors
// can cause sqrDistance to be a small negative number. It is better

// in practice to compute sqrDistance as the squared length of the
// difference of the closest points.

QueryResult<Real, N> result(numXComponents);

result . x = x;

result.sqrDistance = Dot(x, A * x) + 2 % Dot(b, x) + 2 % c;

// Compute the closest points from x using the parameterizations of
// the types ObjectOType and ObjectlType. Postprocess the closest

// points to undo, if necessary, any adjustments made during
// preprocessing.

result.closestPoint [0]; // ... assign the N—tuple
result.closestPoint [1]; // ... assign the N—tuple

return result;

When using fixed-precision floating-point arithmetic, it is better in practice to compute result.sqrDistance by
constructing the closest points first and then computing the squared length of the difference. This avoids
the computed value for x" Ax 4 2bTx + 2¢ from being slightly negative caused by rounding errors when the
objects are nearly touching or slight overlapping (distance nearly zero). This approach allows you to skip
the numerical computation of c.

A common subroutine in the queries for any pair of objects is the conversion of A, b, D and e to the LCP
inputs q and M. Moreover, the LCP solver returns a vector z whose first several rows stores the output x.

The DoQuery implementation of Listing 13 may then be refactored and converted to that of Listing 14.

Listing 14. The listing contains refactored pseudocode for a distance query using an LCP solver.

template <typename Real, int N>
QueryResult<Real , N>
DoQuery (Object0OType<Real> object0, ObjectlType<Real> objectl)

// Preprocess object data to support nonnegativity constraints. This
// step always applies to convex polygons and convex polyhedra.

// Compute the coefficients of the quadratic function f(x).

int numXComponents; // depends on types of the input objects
Matrix<Real> A(numXComponents, numXComponents); // ... assign A elements
Vector<Real> b(numXComponents); // ... assign b elements

// Compute the inequality constraint coefficients.
Matrix<Real> D(numXComponents, numConstraints); // ... assign D elements
Vector<Real> e(numConstraints); // ... assign e elements

// Set up the LCP and solve it for vector x. The numXComponents and

39

// numConstraints values are is accessible to ComputeMinimizer from the
// inputs. In queries without inequality constraints, ComputeMinimizer
// does not have D or e inputs.

QueryResult<Real , N> result(numXComponents);

result .x = ComputeMinimizer(A, b, D, e);

// Compute the closest points from x using the parameterizations of
// the types ObjectOType and ObjectlType. Postprocess the closest

// points to undo, if necessary, any adjustments made during

// preprocessing.

result.closestPoint [0]; // ... assign the N—tuple
result.closestPoint [1]; // ... assign the N—tuple

Vector<Real> diff = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(diff, diff);

return result;

}

// The minimizer function when the CQP has inequality constraints.
template <typename Real>
Vector<Real> ComputeMinimizer(Matrix<Real> A, Vector<Real> b, Matrix<Real> D, Vector<Real> e)

{
// Compute the LCP inputs.

int numXComponents = b.size ();
int numConstraints = e.size ();

Vector<Real> q(lcpSize); // ={ b, —e }
for (int r = 0; r < numXComponents; ++r)

alr] = b[r];
for (int r = 0; r < numConstraints; ++r)

{

q[r + numXComponents] = —e[r];

Matrix<Real> M(lcpSize , lcpSize); // = {{A, —Transpose(D)}, {D, 0}}
for (int r = 0; r < numXComponents; ++r)

{ for (int ¢ = 0; ¢ < numXComponents; ++c)
M{r][c] = A[r]lc];
for (int ¢ = 0; ¢ < numConstraints; ++c)
M[r][c + numXComponents] = —D[c][r];
}
for (int r = 0; r < numConstraints; ++r)
{ for (int ¢ = 0; ¢ < numXComponents; ++c)
M[r 4+ numXComponents]|[c] = D[r][c];
for (int ¢ = 0; ¢ < numConstraints; ++c)
M[r + numXComponents][c + numXComponents] = 0;
}
// Solve the LCP and extract the x—portion from z ={ x, y }.
int lcpSize = numXComponents + numConstraints;

Vector<Real> w(lcpSize), z(lcpSize);
LCPSolver<Real> LCP(q, M, w, z);
Vector<Real> x(numXComponents);

for (int i = 0; i < numXComponents; ++i)

x[i] = z[i];

40

return x;

// The minimizer function when the CQP has no inequality constraints. The LCP
// solver still involves the nonnegativity constraints (internally).

template <typename Real>

Vector<Real> ComputeMinimizer(Matrix<Real> A, Vector<Real> b)

{
// With no inequality constraints, q = b and M = A. Solve the LCP;
// the z vector is the solution x.
Vector<Real> w(b.size()), z(b.size());
LCPSolver<Real> LCP(q, M, w, z);
return z;
}

Naturally, the implementation for a specific pair of object types can be optimized to avoid filling in A, b, D
and e only to use these to fill in q and M. The pseudocode in this document does not use such optimizations
to ensure that the readability and structure of the pseudocode is understandable at a high level.

6.1 Point to Line

The point is s and the line is p + xou. The dimension of the CQP is 1, so x = (xp). Define A = p —s. Half
the squared distance between a line point and the point is

1 1 1
f(x) = §|gcou+p—s|2 =3 lzou+ A = §XTAx+bTx+c (66)
The quadratic coefficients are

A=[|u|2},b=[u-A],c=%|A|2 (67)

There are no constrained variables, so the nonnegativity constraint does not exist and D and e do not exist.

The variable xg is unconstrained, so we can eliminate it according to Section 1.4 by solving df /dzo = 0. The
solution is the parameter of the point that minimizes the distance,

ro = —u-A/|ul? (68)

Listing 15 contains pseudocode for the distance query.

Listing 15. The listing contains pseudocode for the point-line distance query. The number of x-components
is 1 and the number of inequality constraints is 0.

template <typename Real, int N>
QueryResult<Real , N>
DoQuery(Point<Real , N> point, Line<Real, N> line)

{
Vector<Real, N> delta = line.p — point;
Real A00 = Dot(ray.u, ray.u);
Real b0 = Dot(ray.u, delta);
QueryResult<Real , N> result(1);
result.x[0] = —b0 / A00;
result.closestPoint [0] = point;
result.closestPoint[1] = line.p + result.x[0] * line.u;
delta = result.closestPoint[1] — result.closestPoint[0];
result.sqrDistance = Dot(delta, delta);
return result;
}

41

6.2 Point to Ray
The point is s and the ray is p 4+ xou where xy > 0. Half the squared distance between a ray point and the
point is given by equation (66) and the quadratic coefficients are given by equation (67).

The nonnegativity constraint zo > 0 is summarized by x > 0. There are no inequality constraints of the
form Dx > e, so D and e do not exist. The LCP coefficients are therefore @ = b and M = A.

Listing 16 contains pseudocode for the distance query.

Listing 16. The listing contains pseudocode for the point-ray distance query. The number of x-components
is 1 and the number of inequality constraints is 0.
template <typename Real, int N>

QueryResult<Real , N>
DoQuery(Point<Real , N> point, Ray<Real, N> ray)

Vector<Real, N> delta = ray.p — point;

Matrix<Real> A(1, 1);
Vector<Real> b(1);

A[0][0] = Dot(ray.u, ray.u);
b[0] = Dot(ray.u, delta);

QueryResult<Real , N> result(1);
result .x = ComputeMinimizer(A, b);

result.closestPoint [0] = point;
result.closestPoint[1] = ray.p + result.x[0] * ray.u;
delta = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(delta, delta);
return result;

Use of the general LCP solver is not necessary. You can implement the algorithm manually and inline it for
performance.

6.3 Point to Segment
The point is s and the segment is pg + zou where z € [0,1]. Half the squared distance between a segment
point and the point is given by equation (66) and the quadratic coefficients are given by equation (67).

The nonnegativity constraint ¢ > 0 is summarized by x > 0. The inequality constraint ¢ < 1 is summarized
by Dx > e where

D:[—l},e:{—l} (69)

Listing 17 contains pseudocode for the distance query.

Listing 17. The listing contains pseudocode for the point-segment distance query. The number of x-
components is 1 and the number of inequality constraints is 1, so the LCP size is 2.

42

template <typename Real, int N>
QueryResult<Real , N>
DoQuery(Point<Real, N> point, Segment<Real, N> segment)

{
Vector<Real, N> delta = segment.p — point;
Matrix<Real> A(1, 1), D(1, 1);
Vector<Real> b(1), e(1);
A[0][0] = Dot(ray.u, ray.u);
b[0] = Dot(ray.u, delta);
D[O][0] = —1;
e[0] = —-1;
QueryResult<Real , N> result(1);
result .x = ComputeMinimizer(A, b, D, e);
result.closestPoint [0] = point;
result.closestPoint[1] = segment.p + result.x[0] % segment.u;
delta = result.closestPoint[1] — result.closestPoint[0];
result.sqrDistance = Dot(delta, delta);
return result;
}

Use of the general LCP solver is not necessary. You can implement the algorithm manually and inline it for
performance.

6.4 Point to Plane

The 2D query has the trivial solution of distance zero because the point is already in the plane, so consider
the query for 3D. The point is s and the plane is p + xgug + x1u;, where uy and u; are not necessarily
unit length or perpendicular. The dimension of the CQP is 2, so x = (9, 21). Define A = p —s. Half the
squared distance between a plane point and the point is

1 1 1
f(x) = 3 |zoug + z1us +p — S|2 =35 |zoug + 210 + AP = §XTAX +b'x+c (70)
The quadratic coefficients are

Up-Up Up-uy uO-A 1
A= , b= ,e=5 AP (71)
u;-up U -ug u1~A 2
There are no constrained variables, so the nonnegativity constraint does not exist and D and e do not exist.
The variables xg and x; are unconstrained, so we can eliminate them according to Section 1.4 by solving
V f(xo,z1) = (0,0). The solution is the parameter pair that minimizes the distance,
X0 1 (110'111)(111 ~A)—(u1 °111)(110'A)

o | TPl = (o w? | (g) A) — (110 - o) (1 - A)

(72)
Observe (in 3D) that |ug|?|u;|? — (ug - uy)? = |ug x uy|?, which is not zero because uy and u; are linearly
independent. Similar cross product identities lead to

Zo 1 (up x uy) - (ug x A)

N (73)
21 o X w | —(ug) - (ug x A)

43

Listing 18 contains pseudocode for the distance query.

Listing 18. The listing contains pseudocode for the point-plane distance query in 3D. The dimension N
is specialized to 3 in the listing.

template <typename Real>
QueryResult<Real , 3>
DoQuery(Point<Real, 3> point, Plane<Real, 3> plane)

Vector<Real, 3> delta = plane.p — point;
Vector<Real, 3> uOxul = Cross(plane.u0, plane.ul);
Vector<Real, 3> uOxDelta = Cross(plane.u0, delta);
Vector<Real, 3> ulxDelta = Cross(plane.ul, delta);
Real dot0 = Dot(uOxul, uOxul);

Real dotl = Dot(uOxul, uOxDelta);

Real dot2 = Dot(uOxul, ulxDelta);

QueryResult<Real , 3> result (2);

result .x[0] = dotl / dotO;

result .x[1] = —dot2 / dot0;

result.closestPoint [0] = point;

result.closestPoint[1] = plane.p + result.x[0] % plane.u0 + result.x[1] * plane.ul;
delta = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(delta, delta);

return result;

6.5 Point to Triangle

The point is s and the triangle is p + zgug + z1u; where g > 0, 1 > 0 and z¢ + 1 < 1. Half the squared
distance between a triangle point and the point is given by equation (70). The quadratic coefficients are
given by equation (71).

The nonnegativity constraints xy > 0 and x; > 0 are summarized by x > 0. The inequality constraint
xo + x1 < 1 is summarized by Dx > e where

D:[fl 71],82[71} (74)

Listing 19 contains pseudocode for the distance query.

Listing 19. The listing contains pseudocode for the point-triangle distance query. The number of x-
components is 2 and the number of inequality constraints is 1, so the LCP size is 3.

template <typename Real, int N>

QueryResult<Real , N>

DoQuery(Point<Real, N> point, Triangle<Real, N> triangle)
{

Vector<Real, N> delta = triangle.p — point;

Matrix<Real> A(2, 2), D(1, 2);
Vector<Real> b(2), e(1);

A[0][0] = Dot(triangle.u0, triangle.u0);
A[0][1] = Dot(triangle.u0, triangle.ul);
A[1][0] = A[0][1];

A[1][1] = Dot(triangle.ul, triangle.ul);

b[0] = Dot(triangle.u0, delta);

44

] = Dot(triangle.ul, delta);
1[0] = —1;
]][i] =-L

QueryResult<Real , N> result (2);
result.x = ComputeMinimizer(A, b, D, e);

result.closestPoint [0] = point;
result.closestPoint[1] = triangle.p + result.x[0] x triangle.u0 + result.x[1] % triangle.ul;
delta = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(delta, delta);
return result;

6.6 Point to Rectangle

The point is s and the rectangle is p + zoug + x1u; where ug - u; = 0, 9 € [0,1] and z; € [0,1]. Half
the squared distance between a rectangle point and the point is given by equation (70). The quadratic
coefficients are given by equation (71).

The nonnegativity constraints o > 0 and z; > 0 are summarized by x > 0. The inequality constraints
zo <1 and x; < 1 are summarized by Dx > e where

-1 0 -1

D= . e= (75)
0 -1 ~1

Listing 20 contains pseudocode for the distance query.

Listing 20. The listing contains pseudocode for the point-rectangle distance query. The number of
x-components is 2 and the number of inequality constraints is 2, so the LCP size is 4.

template <typename Real, int N>
QueryResult<Real , N>
DoQuery(Point<Real, N> point, Rectangle<Real, N> rectangle)

Vector<Real, N> delta = rectangle.p — point;

Matrix<Real> A(2, 2), D(2, 2);
Vector<Real> b(2), e(2);

[N

A[0][0] = Dot(rectangle.u0, rectangle.u0);
A[0][1] = O;

A[1][0] = O;

A[1][1] = Dot(rectangle.ul, rectangle.ul);
b[0] = Dot(rectangle.u0, delta);

b[1] = Dot(rectangle.ul, delta);

D[O0][0] = —1;

D[0][1] = O;

D[1][0] = O;

D[1][1] = —1;

e[0] =

e[l] =

QueryResult<Real , N> result;
result .x = ComputeMinimizer(A, b, D, e);

result.closestPoint [0] = point;
result.closestPoint[1] = rectangle.p + result.x[0] * rectangle.u0 + result.x[1] * rectangle.ul;
delta = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(delta, delta);
return result;

45

6.7 Point to Convex Polygon
6.7.1 Convex Polygons in 2D

In 2D the point is s and the convex polygon contains points y defined by equation (60). In order to satisfy
nonnegativity constraints, the polygon must be translated to the first quadrant by choosing x =y — p > 0
according to the description in Section 5.2.4. The point must be translated accordingly. Define A = p —s.
The dimension of the CQP is 2, so x = (z¢, z1). Half the squared distance between a convex polygon point
and the point is

1 1 1
f(x):§|y—s|2:§|x+A\2:ixTAx—l—bTx—kc (76)
The quadratic coefficients are
10 1,9
A= , b=A, c=—-|A] (77)
0 1 2

The inequality constraints are Dx > e where D is £ x 2 and e is £ x 1 when the polygon has ¢ edges (and
vertices). The matrices are

n} n{(po — p)
D= : , e= : (78)
n; n_ (pe—1— p)

The vertices of the polygon have been translated by p. The CQP is solved for x from which we can extract
y = x + p for the closest point to s. Listing 21 contains pseudocode for the distance query.

Listing 21. The listing contains pseudocode for the point-convex polygon distance query in 2D. The
number of x-components is 2 and the number of inequality constraints is ¢, so the LCP size is £ + 2.
template <typename Real>

QueryResult<Real , 2>
DoQuery(Point<Real, 2> point, ConvexPolygon2<Real> polygon)

Vector<Real, 2> delta = polygon.minimum — point;
int L = polygon.normals.size ();

Matrix<Real> A(2, 2), D(L, 2);
Vector<Real> b(2), e(L);
1

Afo][0] = 1;

A[0][1] = O;

A[1][0] = A[0][1];

AlL][1] = 1;

b[0] = delta [0];

b[1] = delta[1];

for (int j = 0; j < L; ++j)

{
D[j][0] = polygon.normals[j][0];
D[j][1] = polygon.normals[j][1];
e[j] = Dot(polygon.normals[j], polygon.points[j] — polygon.minimum);

}

QueryResult<Real, N> result (2);
result .x = ComputeMinimizer(A, b, D, e);

result.closestPoint [0] = point;
result.closestPoint[1] = result.x + polygon.minimum;
delta = result.closestPoint[1] — result.closestPoint[0];

46

result.sqrDistance = Dot(delta, delta);
return result;

6.7.2 Convex Polygons in 3D

In 3D the point is s and the convex polygon contains points y defined by equation (61). In order to satisfy
the nonnegativity constraints, the polygon must be translated by choosing x = y — p > 0 according to
the desription in Section 5.2.4. The point must be translated accordingly. Define A = u —s. Half the
squared distance between a convex polygon point and the point is provided by equation (76) except that x
is a 3-tuple.

We have an equality constraint, m- (x — pg) = 0, that defines the plane containing the convex polygon. The
point pg is the first point in the list of polygon vertices and m is a plane normal. Let m = (mg, m1, ms)
and A = (Ag,A1,Az). Choose a permutation (ig,i1,72) € {(0,1,2),(2,0,1),(1,2,0)} for which |m;,| =
max{|mg|,|m1]|, |mz|}. The plane equation can be solved for

m-Ppo — MiyTig — M4y Tiy

Tip, = = Qo + Q1% + Qg (79)
mi2

where the last equality defines the scalars «;.

Substitute x;, into f(x) of equation (76). Define X = (z;,,x;,). The quadratic equation is

f(x) = %5&1& +b'x+¢ (80)

where

- 1+a2 apa _ Ay +ag(As, + 1 1

A= 0 com || Beteoldatan)l Lean e s
[e7s105] 1 +Oz% Ail +041(A1'2 +012) 2 2

Substitute x;, into the inequality constraints Dx > e. If n; = (néj), ngj), ngj)), then the constraints anx >

n] (p; — p) become Dx > & where

nz(-g) + aongg) nl(»?) + amz(-g) nl (po — p) — agngg)
D= , &= (82)
ngy Y +aon ™ a4 a7V n}_y(pe—1 — p) —aznll)

The CQP is solved for x from which we can compute x and then y = x+ p. Listing 22 contains pseudocode
for the distance query.

Listing 22. The listing contains pseudocode for the point-convex polygon distance query in 3D. The
number of X-components is 2 and the number of inequality constraints is ¢, so the LCP size is £ + 2.

47

template <typename Real>
QueryResult<Real , 3>
DoQuery(Point<Real, 3> point, ConvexPolygon3<Real> polygon)

{

Vector<Real, 3> delta = polygon.minimum — point;

int i0 = polygon.permute[0], il = polygon.permute[l], i2 = polygon.permute[2];
Real alpha0 = —polygon.planeNormal[i0O] / polygon.planeNormal[i2];

Real alphal = —polygon.planeNormal[il] / polygon.planeNormal[i2];

Real alpha2

int L = polygon.normals.size ();
Matrix<Real> A(2, 2), D(L, 2);
Vector<Real> b(2), e(L);

A[0][0] =1 + alphaO % alphaO;
A[O0][1] = alphaO * alphal;
A[1][o] = A[0][1];

A[1][1] = 1 + alphal * alphal;

b[0] = delta[i0O] + alphaO * (delta[i2] + alpha2);
b[1] = delta[il] + alphal % (delta[i2] + alpha2);
for (int j = 0; j < L; ++j)

{
D[j][0] = polygon.normals[j][i0] + alphaO % polygon.normals[j][i2];
D[j][1] = polygon.normals[j][il] + alphal % polygon.normals[j][i2];
Real dot = Dot(polygon.normals[j], polygon.points[j] — polygon.minimum);
e[j] = dot — alpha2 x polygon.normals[j][i2];

}

QueryResult<Real , N> result (2);

result .x = ComputeMinimizer (A, D, v /) (x[i0],x[i1])

b,
Vector<Real, 3> x; // (x[0],x[1],x[2

e
]

x[0] = result.x[polygon.invPermute[iO]

x[1] = result.x[polygon.invPermute[il]

x[2] = result.x[polygon.invPermute[i2]

result.closestPoint [0] = point;

result.closestPoint[1] = x 4+ polygon.minimum;

delta = result.closestPoint[1] — result.closestPoint[0];

result.sqrDistance = Dot(delta, delta);
return result;

Dot(polygon.planeNormal, polygon.points[0]) / polygon.planeNormal[i2];

6.8 Point to Tetrahedron

The point is s and the tetrahedron is p+xzgug+2x1u; +2z2us with g > 0, 1 > 0, 9 > 0 and zg+z1 4+ < 1.
The dimension of the CQP is 3, so x = (g, %1, %2). Define A = p —s. Half the squared distance between a

tetrahedron point and the point is

1 1 1
flx)= 3 |zoug + z1u; + z2uy +p —s|” = 3 |Zoug + 21u; + 20uy + Al = ixTAx +b'x+c (83)

The quadratic coefficients are

Up-Up Up-u; Up-up u0~A
1
2
A=]u v uw-u uw-u [, b=|u- A ,c:§|A| (84)
Uz -Up Uz U] U2 U2 llQ‘A

The nonnegativity constraints o > 0, 1 > 0 and 2 > 0 are summarized by x > 0. The inequality
constraint zg + x1 + x2 < 0 is summarized by Dx > e where

D=| -1 -1 4}, ez[q} (85)

48

6.9 Point to Box

The point is s and the box is p + zoug + z1uy + x2ug with z¢ € [0,1], z; € [0,1] and x5 € [0, 1]. Half the
squared distance between a box point and the point is given by equation (83). The quadratic coefficients are
given by equation (84).

The nonnegativity constraints o > 0, 1 > 0 and z3 > 0 are summarized by x > 0. The inequality
constraints g < 1, 1 < 1 and 23 < 1 are summzrized by Dx > e where

-1 0 0 -1
D=0 -1 0 [|,e=| -1 (86)
0 0 -1 -1

6.10 Point to Convex Polyhedron

The point is s and the convex polyhedron contains points x defined by equation 64. The dimension of the
CQP is 3, so x = (xo, x1, 2). Half the squared distance between a convex polyhedron point and the point is

f(x)= % x —s|® = %XTAX+bTX+C (87)
The quadratic coefficients are
1 00
A=10 1 0|, b=—s, c:%|s|2 (88)
0 01

The inequality constraints are Dx > e where D is n x 3 and e is n x 1 when the polyhedron has /¢ faces.
The matrices are

n} n{ po
D= e s (89)
HZ_ 1 n}-_ 1Pn—1

We have a technical problem to resolve. In the definition for a convex polyhedron, it is not necessary that
x > 0; that is, not all the vertices are necessarily in the first octant. To formulate the CQP, we need
to translate the vertices to the first octant. Do so by computing an axis-aligned bounding box for the
polyhedron, say, [, Bmax)- Subtract the minimum point from the polygon vertices and from the query
point,y =X — p;, and r =s — p 5 then

£ = 5 b= sP = Sy —xl* = g(y) (90)

where the last equality defines the quadratic function g. The nonnegativity constraints y > 0 are now
feasible because the translated vertices are in the first quadrant. The inequality constraints Dx > e become
Dy > e — Dp,;,, = h, where the last equality defines the vector h. The quadratic coefficients for g(y) are

1
A=1I b= -r, c:i\r|2 (91)

49

where [is the 3 x 3 identity matrix. The nonnegativity constraints are y > 0 and the inequality constraints
are Dy > h.

The CQP is solved for y from which we can extract x =y + p,,;, for the closest point to s. The distance
can be computed either from f(x) or g(y).

6.11 Line to Line

The lines are p; + x;u; for 4 = 0,1. The dimension of the CQP is 2, so x = (xg,x1). Define A = pg — p1.
Half the squared distance between a point on one line and a point on the other line is

1 1 1
f(x) = 5 l(po + zouo) — (p1 + pw)* = 5 [zowo — 21wy + AP = QXTAX +b'x+c (92)
The quadratic coefficients are
Up-uy —Up-u ug- A 1
A= 0 T = c=5|AP (93)
—up - U u; - uqp —uj - 2

There are no constrained variables, so the nonnegativity constraint does not exist and D and e do not exist.

Both z¢ and z; are unconstrained, so we can eliminate them according to Section 1.4. There are no
constrained variables, so (0,0) = V f(zg,z1) = Ax + b provides the parameters of the points that minimize
the distance,

Up - Uo Up - up o _ Uo A (94)

—Uu - Up u; - up I up A

The linear system is invertible if and only if ug and u; are not parallel. If they are parallel, there are
infinitely many pairs of closest points—any such pair may be used to compute the line-line distance. The
simplest pair to choose is the line origin p; and its projection onto the other line. Let p; = po + youo + ug-
where ug is a vector perpendicular to ug. The closest point is pj = ug + youg, where yo = —A - ug/|ug|?.
The distance is |p}] — p1].

6.12 Line to Ray

The ray is po + zoug for o > 0 and the line is p; + z1u;. The dimension of the CQP is 2, so x = (zg, x1).
Half the squared distance between a ray point and a line point is given by equation (92). The variable x; is
unconstrained, so we can eliminate it according to Section 1.4. Solve df/dx1 = 0 to obtain

Toup-u; +ug- A

xr| = = qpxo + a1 (95)

g [?
where the last equality defines the scalars a;. Define x = (), g(X) = f(x) and substitute the x;-equation
into equation (92) to obtain

ZEo(uO — aoul) =+ (A — alul)\Q

2
ZoUg + A‘ (96)

9(x) =

Nl= N= =

M

TAx+b'x+¢

50

where the second equality defines tg and A and the third equality defines the quadratic coefficients,

- . 1 -
A=[ag 0 |, b= A], e=3IAP (97)
Observe that all 3 quantities are scalars.

The nonnegativity constraint xg > 0 is summarized by x > 0. There are no other inequality constraints.

6.13 Line to Segment

The segment is pg+zoug for 21 € [0, 1] and the line is p; +z1u;. The conversion to a CQP with elimination
of z; is identical to that of the line-ray distance query except that we now have an inequality constraint
Dx > e where

p=[1] e[] o

6.14 Line to Plane

The 2D query has the trivial solution of distance zero because the line is already in the plane, so consider the
query for 3D. The plane is pg + zgug + x1u1, where uy and u; are linearly independent but not necessarily
unit length or perpendiculat. The line is p; + zaus. The dimension of the CQP is 3, so x = (xq,z1, 22).
Define A = pg — p1. Half the squared distance between a plane point and a line point is

f(x) = % |(zouo + z1u1 + po) — (z2u2 + p1)|2
= Llzoug + 1wy — z0us + A2 (99)
= Ix"Ax+b'x+c
The quadratic coefficients are
Up - Uo Up-u; —Up- Uz uo~A
1

A= u; - ug u;-u; —up-ue | b= u A |, C:§‘A|2 (100)

—Ug2-Up —Ug- U Ug - U2 —Uu9 - A

All three variables are unconstrained, so we eliminate all variables using the method in Section 1.4. We
need to solve 0 = Vf(x) = Ax + b. By assumption, ug and u; are linearly independent. The matrix A is
invertible when ug, u; and uy are linearly independent. This happens geometrically when the line is not
parallel to the plane. The solution x = —A~!b is the point of intersection of the line with the plane, in
which case the distance is 0. If J = [up u; — u], then A = JTJ, b= JTA and f(x) = |Jx + A|?/2. We
can instead solve Jx + A =0 for x = —J 1A,

If A is not invertible, then us is a linear combination of ug and u;. The line is parallel to—or coincident
with—the plane. Infinitely many pairs of points achieve the minimum. The solution space to Ax = —b is
1-dimensional, so any solution in this space generates a pair that achieves the minimum. The simplest pair

51

to choose is the line origin p; and its perpendicular projection onto the plane. Let p; = po + youo + y1u1 +
y2Ug X uy. Dotting the equation with uy x u; leads to

7A'll0><ll1

Yo = (101)

‘UO X 111|2
The projection onto the plane is pj = p1 — y2ug X uy, which is the closest plane point to p;. The distance
is [p — p1l-

6.15 Line to Triangle

The triangle is pg + zoug +x1uy for xg > 0, 1 > 0 and g+ 21 < 1 and the line is p; + z2us. The dimension
of the CQP is 3, so x = (xg,x1,x2). Define A = pg — p;1. Half the squared distance between a triangle
point and a line point is provided by equation (99). The quadratic coefficients are provided by equation
(100). The variable x5 is unconstrained, so we can eliminate it according to Section 1.4. Solve df /x5 =0

to obtain
x0u0~u2+x1u1'u2+A~u2

To = = ToQg + T101 + Q2 (102)

|ug|?
where the last equality defines the a;. Define X = (z¢, z1), g(X) = f(x) and substitute the zs-equation into
equation (100) to obtain

|zo(up — apus) + z1 (01 — ajus) + (A — a2u2)|2
2
rolg + 2101 + A (103)

g(x) =

Nl N= N

b3

TAx+bTx+¢
where the second equality defines ug, u; and A and the third equality defines the quadratic coefficients
i -y o -y P - A

) ~

1 -~
, = —|A (104)
ﬁl'ﬁo ﬁl'ﬁl ul‘A 2

The nonnegativity constraints xo > 0 and z; > 0 are summarized by x > 0. The inequality constraint

zo + 21 < 1 is summarized by Dx > e where

D:{—l —1],é=[—1} (105)

6.16 Line to Rectangle

The rectangle is pg + zoug + 2111 where ug - u; =0, zg € [0,1] and x; € [0,1]. The line is p; + zauy. The
conversion to a CQP with elimination of x5 is identical to that of the line-triangle distance query except
that the inequality constraints are Dx > € where

i -1 0 ~1
D= , 6= (106)

6.17 Line to Convex Polygon
6.17.1 Convex Polygons in 2D

In 2D the convex polygon contains points (xg, 1) defined by equation (60). Define the basis vectors ug =
(1,0) and u; = (0,1). The line is s + x2up. The dimension of the CQP is 3, so x = (zg,x1,22). Define

A = —s. Half the squared distance between a convex polygon point and a line point is
fx) = 3l(zoug+ziwr) — (z2us +5)[° (107
— %|.’£0U0+$1U1 71’2U2+A|2

The variable x5 is unconstrained, so we can eliminate it according to Section 1.4. Solve df/0xs = 0 to

obtain
ToUg - Uz +x1Up - U + A - Uy

o = = QoI + Q121 + (65) (108)

| |?
where the last equality defines the scalars «;. Define X = (¢, z1), g(X) = f(x) and substitute the z9-equation
into equation (107) to obtain

‘ZE()(UO — Olo'llg) + 1‘1(111 — 041112) + (A — a2u2)|2
~ 12
Tolg + 101 + A (109)

9(x) =

Nl= NI= =

xTAx +bTx + ¢
where the second equality defines ug, u; and A, and the third equality defines the quadratic coefficients

_ -1y Up- 1 _ o - A 1 .
A= 7 b= 0T L o= 5|AP (110)

up - g fll'fll ﬁlA

The inequality constraints are those of equation (78) and involve only the polygon components X = (xq, 1),
so we will write the constraints as Dx > é.

As in Section 6.7.1, to obtain the nonnegativity constraints x > 0, we must translate the convex polygon into
the first quadrant. Compute the axis-aligned bounding rectangle [ftin, Hmax) for the polygon and subtract
the minimum point to force the translated polygon into the first quadrant: y = X — p,;,- The quadratic
function is g(X) = h(y) = y' Ay /2 + b’y + ¢ where

A = A7 b = All’min + 67 é = 7u‘minA#'min + BTlJ’min + c (111)

The nonnegativity constraints are y > 0 and the inequality constraints are Dy > & — Dy, ;...

The CQP is solved for § after which X =y + p,,,;,,- The distance can be computed from f(x), g(X) or h(y).

6.17.2 Convex Polygons in 3D

In 3D the convex polygon contains points (zg,x1,22) defined by equation (61). Define the basis vectors
up = (1,0,0), u3 = (0,1,0) and uz = (0,0,1). The line is s + x3us. The dimension of the CQP is 4, so

53

x = (xg, x1, T2, 23). Define A = —s. Half the squared distance between a convex polygon point and a line
point is

fx) = -

[(zoug + x1u; + 22u2) — (x3u3 + s)|2
|

N= D=

2
ToUg + z1Uu1 + T2U2 — T3U3 + A‘

The variable x3 is unconstrained, so we can eliminate it according to Section 1.4. Solve df/0x3 = 0 to

obtain
ToUg - Uz + T1Uq - Uz + Tous - Uz + A - ug

‘ll |2 = QX + 11 + X2 + a3 (113)
3

xr3 =

where the last equality defines the scalars «;. Define X = (xg,1,22), g(X) = f(x) and substitute the
x3-equation into equation (112) to obtain

|zo(up — apus) + z1 (w1 — aguz) + z2(ug — agus) + (A — oz3u3)|2
2
Tolg + 2101 + xoUs + A (114)

g(x) =

TAX+b'x +¢

[T T T
b

where the second equality defines tg, t17, G2 and A, and the third equality defines the quadratic coefficients

-1y Wp-0y - i i - A

. . R 1 -
~ ~ ~ ~ ~ ~ ~ ~ 2

A=| -9 w-a u-u |, b=|a-A], C:§|A| (115)
Ug-Ug Up-U; Us- Uy u - A

As in Section 6.7.2; to obtain the nonnegativity constraints x > 0, we must translate the convex polygon
into the first octant. Compute the axis-aligned bounding box [tt,in, max) fOr the polygon and subtract the
minimum point to force the translated polygon into the first octant: y = x — pt,;,,- The quadratic function

is g(X) = h(y) = yTAy/2 + b7y + ¢ where

A ~ A ~ ~ 1 ~ ~
A= A, b= All’min + b’ ¢= iu;rninAu’min + bTu’min +c (116)

The nonnegativity constraints are y > 0 and the inequality constraints are Dy > & — Dy, ;...

The CQP is solved for § after which X =y + p,,,;,,- The distance can be computed from f(x), g(X) or h(y).

6.18 Line to Tetrahedron

The tetrahedron is pg + xoug + x1u1 + x2us with xg > 0, 1 > 0, 9 > 0 and xg + 1 + z2 < 1. The line is
p1 + xz3us. The dimension of the CQP is s, so x = (zo, 21, Z2,x3). Define A = pg — p;. Half the squared
distance between a tetrahedron point and a line point is

) o

[IR I

[(zoup + z1uy + zous + po) — (z3u3 + p1)|2
|

2
ToUg + T1U1 + Toup — r3uz + A

54

The variable x3 is unconstrained, so we can eliminate it according to Section 1.4. Solve df/0x3 = 0 to

obtain A
ToUp - U3 + 21U - Uz + TaUg - U3 + A - U3
I3 = |u |2 = TgQg + 101 + Toa + X3 (118)
3

where the last equality defines the scalars «;. Define X = (xq, x1, x2).

We can then write

Zo 1 0 0 0
Zo
x 0 1 0 0 .
X = = x| + =Jx+t (119)
T2 0 0 1 0
L2
T3 Qo Q1 Q2 (O%:]

where the last equality defines the 4 x 3 matrix J, the 3 x 1 vector x and the 4 x 1 vector t. Substitute this into
the quadratic equation to obtain g(zo, 1, z2) = f(xo, 21, T2, z3). In CQP notation, g(X) = X" Ax +b'x + ¢
where

- 1
A=JTAJ, b=J"(At +b), ¢= 5tTAt +b't+c (120)

The nonnegativity constraints o > 0, 1 > 0 and 2 > 0 are summarized by x > 0. The inequality
constraint zg + x1 + x2 < 1 is summarized by Dx > € where

D=| -1 -1 —1}, é:[—ﬂ (121)

6.19 Line to Box

The box is pg + Zoug + £1u; + T2uy where ug, u; and uy are mutually perpendicular and where zq € [0, 1],
r1 € [0,1] and x5 € [0,1]. The line is p; +z3u3. The conversion to a CQP with elimination of x3 is identical
to that of the line-tetrahedron distance query except that the inequality constraints are DX > € where

-1 0 0 ~1
D=| 0 -1 0|, &=|-1 (122)
0 0 —1 -1

6.20 Line to Convex Polyhedron

References

[1] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone.
The Linear Complementarity Problem.
Academic Press, San Diego, CA, 1992.

[2] Joel Friedman.
Linear complementarity and mathematical (non-linear) programming.
http://www.math.ubc.ca/~jf/courses/340/pap.pdf,
April 1998.

55

http://www.math.ubc.ca/~jf/courses/340/pap.pdf
http://www.math.ubc.ca/~jf/courses/340/pap.pdf
http://www.math.ubc.ca/~jf/courses/340/pap.pdf

[3] Robert J. Vanderbei.
Linear Programming: Chapter 3 - Degeneracy.
http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf,
September 2013.

56

http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf
http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf
http://www.princeton.edu/~rvdb/522/Fall13/lectures/lec3.pdf

	1 Introduction
	1.1 The Quadratic Programming Problem
	1.2 The Linear Complementarity Problem
	1.3 The Convex Quadratic Programming Problem
	1.4 Eliminating Unconstrained Variables
	1.5 Reduction of Dimension for Equality Constraints

	2 Lemke's Method
	2.1 Terms and Framework
	2.2 LCP with a Unique Solution
	2.3 LCP with Infinitely Many Solutions
	2.4 LCP with No Solution
	2.5 LCP with a Cycle
	2.6 Avoiding Cycles when Constant Terms are Zero

	3 Formulating a Geometric Query as a CQP
	3.1 Distance Between Oriented Boxes
	3.2 Intersection of Triangle and Cylinder

	4 Implementation Details
	4.1 The LCP Solver
	4.2 Distance Between Oriented Boxes in 3D
	4.3 Intersection of Triangle and Cylinder in 3D
	4.4 Accuracy Problems when using Fixed-Precision Floating-Point Arithmetic
	4.5 Dealing with Vector Normalization

	5 Geometric Primitives
	5.1 Linear Objects
	5.1.1 Lines
	5.1.2 Rays
	5.1.3 Segments

	5.2 Planar Objects
	5.2.1 Planes
	5.2.2 Triangles
	5.2.3 Rectangles
	5.2.4 Convex Polygons

	5.3 Volumetric Objects
	5.3.1 Tetrahedra
	5.3.2 Boxes
	5.3.3 Convex Polyhedra

	5.4 Data Structures for the Primitives

	6 Distance Queries
	6.1 Point to Line
	6.2 Point to Ray
	6.3 Point to Segment
	6.4 Point to Plane
	6.5 Point to Triangle
	6.6 Point to Rectangle
	6.7 Point to Convex Polygon
	6.7.1 Convex Polygons in 2D
	6.7.2 Convex Polygons in 3D

	6.8 Point to Tetrahedron
	6.9 Point to Box
	6.10 Point to Convex Polyhedron
	6.11 Line to Line
	6.12 Line to Ray
	6.13 Line to Segment
	6.14 Line to Plane
	6.15 Line to Triangle
	6.16 Line to Rectangle
	6.17 Line to Convex Polygon
	6.17.1 Convex Polygons in 2D
	6.17.2 Convex Polygons in 3D

	6.18 Line to Tetrahedron
	6.19 Line to Box
	6.20 Line to Convex Polyhedron

