Akima Interpolation for Nonuniform 1D Data

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: August 13, 2013
Last Modified: February 14, 2019

Contents

1 Cubic Polynomial Interpolation 2
2 Estimates of the First Derivative 2
3 Akima Estimates of the First Derivative 3
4 Implementation 3
This document describes how to generate a piecewise cubic polynomial interpolator for a collection of samples \(\{(x_i,f_i)\}_{i=0}^{n-1} \) for an unknown underlying function \(f(x) \). The interpolator is globally \(C^1 \)-continuous. The \(f_i \) are estimates of the function at locations \(x_i \); that is, \(f_i \approx f(x_i) \). The \(x \)-inputs are strictly ordered: \(x_i < x_{i+1} \) for all \(i \).

1 Cubic Polynomial Interpolation

Let \(p(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 \) be a cubic polynomial for \(t \in [0,1] \). The coefficients are uniquely determined by specifying the polynomial values and the first derivative values at the endpoints. That is, let \(p(0) = v_0 \), \(p'(0) = v'_0 \), \(p(1) = v_1 \), and \(p'(1) = v'_1 \) for known quantities \(v_0 \), \(v'_0 \), \(v_1 \), and \(v'_1 \). We have four linear equations in the four unknown coefficients. The solution is

\[
\begin{align*}
 c_0 &= v_0, \\
 c_1 &= v'_0, \\
 c_2 &= 3(v_1 - v_0 - v'_0) - (v'_1 - v'_0), \\
 c_3 &= (v'_1 - v'_0) - 2(v_1 - v_0 - v'_0)
\end{align*}
\]

We can construct two cubic polynomials that share an endpoint. For example, let \(q(t) = d_0 + d_1 t + d_2 t^2 + d_3 t^3 \) for \(t \in [1,2] \). The coefficients are uniquely determined by specifying polynomial values and derivatives at the endpoints: \(q(1) = p_1 \), \(q'(1) = p'_1 \), \(q(2) = p_2 \), \(q'(2) = p'_2 \). The piecewise polynomial function

\[
r(t) = \begin{cases}
 p(t), & t \in [0,1] \\
 q(t), & t \in [1,2]
\end{cases}
\]

has a continuous derivative because \(p(1) = q(1) \) and \(p'(1) = q'(1) \).

Generally, we can construct a sequence of cubic polynomials, each consecutive pair sharing an endpoint. The piecewise polynomial function has a continuous derivative. Also, the intervals on which the polynomials are defined are not required to have the same length (which was 1 in the previous example). Using the notation for our samples, we want a sequence of cubic polynomials \(p_i(x) \) for \(0 \leq i \leq n-2 \), each defined for \(x \in [x_i,x_{i+1}] \). The polynomials must match the function samples, \(p_i(x_i) = f_i \) for \(0 \leq i \leq n-2 \) and \(p_{n-2}(x_{n+1}) = f_{n-1} \). We do not have derivative estimates \(f'_i \), but if we did, we also need \(p'_i(x_i) = f'_i \) for \(0 \leq i \neq n-2 \) and \(p'_{n-2}(x_{n+1}) = f'_{n-1} \).

We can compute the polynomial coefficients one at a time by using a normalized variable. Specifically, for \(x \in [x_i,x_{i+1}] \), define \(u = (x - x_i)/(x_{i+1} - x_i) \in [0,1] \). The polynomial may be written as

\[
p_i(u) = c_{i0} + c_{i1} u + c_{i2} u^2 + c_{i3} u^3
\]

To evaluate the piecewise polynomial at a value \(x \in [x_0,x_{n-1}] \), compute the index \(i \) for the subinterval \([x_i,x_{i+1}] \) containing \(x \), compute \(u = (x - x_i)/(x_{i+1} - x_i) \), and then evaluate \(p_i(u) \).

2 Estimates of the First Derivative

The construction of the piecewise polynomial function requires derivative estimates at the samples. These are typically not available in applications, so you must construct them from your function samples. To estimate \(f'_i \), you must use finite differences of function samples at neighboring samples. Not knowing the quality of the function samples, the simplest algorithm is to use a centered difference,

\[
f'_i = \frac{f_{i+1} - f_{i-1}}{x_{i+1} - x_{i-1}}
\]
The centered difference are used for all interior samples, but at the endpoints we use one-sided estimates,

\[f'_0 = \frac{f_1 - f_0}{x_1 - x_0}, \quad f'_{n-1} = \frac{f_{n-1} - f_{n-2}}{x_{n-1} - x_{n-2}} \]

Larger neighborhoods may be used; see Derivative Approximation by Finite Differences.

3 Akima Estimates of the First Derivative

A more general formulation for estimating first derivatives is to use a weighted average of one-sided first derivatives,

\[f'_i = a_i \frac{f_{i+1} - f_i}{x_{i+1} - x_i} + b_{i+1} \frac{f_{i+1} - f_i}{x_{i+1} - x_i} \]

where \(a_i \geq 0, b_{i+1} \geq 0, \) and \(a_i + b_{i+1} = 1. \) The choice of weights can be tied to knowledge you have about the quality of the function samples. Observe that if \(a_i = (x_{i+1} - x_i)/(x_{i+1} - x_{i-1}) \) and \(b_{i+1} = (x_{i+1} - x_i)/(x_{i+1} - x_{i-1}), \) we get the centered finite difference estimate. The \(a_i \) and \(b_{i+1} \) measure the relative location of \(x_i \) in the interval \([x_{i-1}, x_{i+1}].\)

The Akima estimates use weights that depend on how neighboring one-sided differences vary. The neighborhood consists of 5 samples. Define the one-sided differences

\[\sigma_{i+2} = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}, \quad 0 \leq i \leq n - 2 \]

with boundary values

\[\sigma_0 = 2\sigma_1 - \sigma_2, \quad \sigma_1 = 2\sigma_2 - \sigma_3, \quad \sigma_{n+1} = 2\sigma_n - \sigma_{n-1}, \quad \sigma_{n+2} = 2\sigma_{n+1} - \sigma_n \]

Choose

\[a_i = \frac{|\sigma_{i+3} - \sigma_{i+2}|}{|\sigma_{i+3} - \sigma_{i+2}| + |\sigma_i - \sigma_{i+1}|}, \quad b_{i+1} = \frac{|\sigma_i - \sigma_{i+1}|}{|\sigma_{i+3} - \sigma_{i+2}| + |\sigma_i - \sigma_{i+1}|} \]

in which case the derivative estimates for use in the polynomial constructions are

\[f'_i = \frac{|\sigma_{i+3} - \sigma_{i+2}|\sigma_{i+1} + |\sigma_i - \sigma_{i+1}|\sigma_{i+2}}{|\sigma_{i+3} - \sigma_{i+2}| + |\sigma_i - \sigma_{i+1}|} \]

Observer that the denominator can be zero, in which case the weights are indeterminate forms \((0/0).\) When the denominator is zero, use the centered finite difference for \(f'_i \) (at an interior value, but use the one-sided differences at boundary values).

4 Implementation

An implementation is provided in the files

GeometricTools/GTEngine/Include/GteIntpAkima1.h
GeometricTools/GTEngine/Include/GteIntpAkimaNonuniform1.h
Sample code for the interpolation is listed next.

```cpp
#include <GteIntpAkimaNonuniform1.h>
using namespace gte;

int main() {
    // Construct a data set with 10 samples. Generally, X[i] can be any
    // numbers as long as they are increasing. For simplicity, I just
    // chose them to be consecutive integers.
    int const numSamples = 10;
    double X[numSamples] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
    double F[numSamples] =
        { 0.13547700429678050, 0.83500858999457950, 0.96886777112423139, 0.22103404298270490, 0.30816705050700327, 0.54722059636785192, 0.18838197604718110, 0.99288130191780666, 0.99646132554800870, 0.96769493701050258 };
    // The interpolator does not take ownership of the input data, so it
    // does not matter whether X and F are stack variables or dynamically
    // allocated.
    IntpAkimaNonuniform1<double> interpolator(numSamples, X, F);
    // Interpolate at a number t with X[0] <= t <= X[numSamples-1].
    double t, function, derivative;
    t = 3.0;
    function = interpolator(t); // or interpolator(0, t)
    derivative = interpolator(1, t);
    // function = 0.22103404298270490 = F[3]
    // derivative = -0.03559043059374664

    t = 3.1415927;
    function = interpolator(0, t); // or interpolator(t)
    derivative = interpolator(1, t);
    // function = 0.21904360792075869
    // derivative = 0.0067899310784779107

    return 0;
}
```