3D GAME ENGINE DESIGN

A Practical Approach to
Real-Time Computer Graphics

DAVID H. EBERLY
Magic Software, Inc.

®
M (<

MORGAN KAUFMANN PUBLISHERS

AN IMPRINT OF ACADEMIC PRESS
A Harcourt Science and Technology Company

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
OOOOOOOOOOOOOOOOO

Acquisitions Editor Tim Cox

Production Editors Elisabeth Beller and Sarah Burgundy
Editorial Assistants Brenda Modliszewski and Stacie Pierce
Cover Design Ross Carron Design

Text Design Rebecca Evans

Color Insert Preparation Side By Side Studios/Mark Ong
Composition/Illustration 'Windfall Software, using ZzTgX
Copyeditor Ken DellaPenta

Proofreader Jennifer McClain

Indexer Steve Rath

Printer Courier Corporation

Trademarks are listed on page 561.

Cover images: Top image courtesy Random Games. Bottom three Prince of Persia images
Copyright © 1999, 2000 Mattel Interactive and Jordan Mechner. All Rights Reserved. Prince
of Persia is a registered trademark of Mattel Interactive.

ACADEMIC PRESS

A Harcourt Science and Technology Company

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http://www.academicpress.com

Academic Press
Harcourt Place, 32 Jamestown Road, London, NW1 7BY, United Kingdom
http://www.academicpress.com

Morgan Kaufmann Publishers
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
http://www.mkp.com

© 2001 by Academic Press
All rights reserved
Printed in the United States of America

05 04 03 02 01 54 3

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, recording or otherwise—
without the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Eberly, David H.
3D game engine design : a practical approach to real-time computer graphics / David H. Eberly.
p. cm.

Includes bibliographical references and index.
ISBN 1-55860-593-2
1. Computer graphics. 2. Three-dimensional display systems. 3. Real-time

programming. I. Title.

T385.E373 2001

006.6'93—dc21 00-055019

This book is printed on acid-free paper.

14 Chapter 2 Geometrical Methods

thereby showing that the transform of a linear combination of vectors is the linear
combination of the transforms.

The previous three properties show that R(?) is an orthonormal transformation,
a class that includes rotations and reflections. We need to show that reflections cannot
occur. For unit-length vector v, define the function M by 0 = M (), a function
from the unit sphere in R> to the unit quaternions with zero real part. Its inverse
isv =M~1(D). If b = M(w) and = R(D) = qdg*, then the composition

w=M'W) =M ' (R®) =M (R(M(®)))

defines a matrix transformation w = Pv, where P is an orthonormal matrix since
R(D) is an orthonormal transformation. Thus, | det(P)| = 1, which implies that the
determinant can be only +1 or —1. P is determined by the choice of unit quaternion g,
so it is a function of g, written as P (q) to show the functional dependence. Moreover,
P(g) is a continuous function, which in turn implies that §(¢) = det(P(g)) is a
continuous function of ¢. By the definition of continuity, lim,_.; P(g) = P(1) =1,
the identity matrix, and lim,_, 6(g) = §(1) = 1. Since §(¢) can onlybe 41 or —1 and
since the limiting value is +1, §(g) = 1 is true for all unit quaternions. Consequently,
P cannot contain reflections.

We now prove that the unit rotation axis is the 3D vector & and the rotation angle
is 26. To see that # is a unit rotation axis, we need only show that i is unchanged by
the rotation. Recall that 1% = fiii = —1. This implies that 7#°> = —ii. Now

R(@) = qiiq™
= (cos 0 + i1 sin)ii(cos @ — it sin 0)
= (cos)%t — (sin 0)*@°
= (cos 0)*i — (sin 6)*(—11)
= .
To see that the rotation angle is 26, let i, U, and W be a right-handed set of
orthonormal vectors. That is, the vectors are all unit length; i - 0 =i - w =0 - w =0,

and # X 0 =W, U X W =1, and W x & = 0. The vector ¥ is rotated by an angle ¢

to the vector gvg*, so U - (q0g™) = cos(¢). Using Equation (2.8) and v* = —0, and

p? = —1 for unit quaternions with zero real part,

cos(¢) =0 - (g0g™)
= W(0*qdq")
= W[—0(cos 0 + i1 sin 0)v(cos O — i sin O)]

2.3 Quaternions 17

the axis U = (uo, u1, u2). Given the angle and axis, the components of the quaternion
are w = cos(0/2), x = ug sin(0/2), y = u; sin(6/2), and z = u, sin(6/2).

Quaternion to Angle-Axis

The inverse problem is also straightforward. If |w| = 1, then the angle is 6 = 0 and
any axis will do. If [w| < 1, the angle is obtained as & = 2 cos™!(w) and the axis is

computed as U= (x, y,2) /1 — w2,

2.3.5 CONVERSION BETWEEN QUATERNION AND ROTATION MATRIX

To complete the set of conversions between representations of rotations, this section
describes the conversions between quaternions and rotation matrices.

Quaternion to Rotation Matrix

The problem is to compute 6 and U given w, x, y, and z. Using the identities
2sin?(#/2) = 1 — cos(f) and sin(8) = 2 sin(8/2) cos(f/2), it is easily shown that
2wx = (sin 0)ug, 2wy = (sin O)u1, 2wz = (sin Ous, 2x* = (1 — cos 9)”%, 2xy =
(1 — cos @)ugu, 2xz = (1 — cos O uguts, 2y> = (1 — cos Q)M%, 2yz = (1 — cos O)uyuy,
and 272 = (1 — cos 9)u§. The right-hand sides of all these equations are terms in the
expression R = I + (sin 0)S + (1 — cos #)S2. Replacing them yields

1—2y?—2z2 2xy— 2wz 2x7 + 2wy
R = 2xy 4+ 2wz 1 —2x* -2z 2yz —2wx . (2.13)
2xz — 2wy 2yz+2wx 11— 2x? — 2y2

Rotation Matrix to Quaternion

Earlier it was mentioned that cos 8 = (trace(R) — 1)/2. Using the identity 2 cos?(9/2)
=1+ cos 0 yields w? = cos?(8/2) = (trace(R) + 1)/4 or |w| = «/trace(R) + 1/2.If
trace(R) > 0, then |w| > 1/2, so without loss of generality choose w to be the positive
square root, w = «/trace(R) + 1/2. The identity R — RT = (2sin 6)S also yielded
(r12 — 121, 20 — Fo2, o1 — r10) = 2 sin 0 (ug, u1, uy). Finally, identities derived earlier
were 2xw = ug sin 6, 2yw = u; sin 6, and 2zw = u; sin 6. Combining these leads to
x = (rip —r21)/(4w), y = (ra0 — ro2)/(4w), and z = (ro1 — r10)/(4w).

If trace(R) < 0, then |w| < 1/2. The idea is to first extract the largest one of x, y,
or z from the diagonal terms of the rotation R in Equation (2.13). If rq is the max-
imum diagonal term, then x is larger in magnitude than y or z. Some algebra shows

50 Chapter 2 Geometrical Methods

Figure 2.3

2
3 1
0
S
4 5 6

Partitioning of the sz-plane by triangle domain D.

(implicitly defined by Q = Vp) just touches the triangle domain edge s + =1 ata
value s = 50 € [0, 1], 7o = 1 — s¢. For level values V < Vj, the corresponding ellipses
do notintersect D. For level values V > Vj, portions of D lie inside the corresponding
ellipses. In particular, any points of intersection of such an ellipse with the edge must
have a level value V > Vj,. Therefore, Q(s, 1 —s) > Q(so, to) fors € [0, 1] and s # 5.
The point (so, #p) provides the minimum squared distance between P and the triangle.
The triangle point is an edge point. Figure 2.4 illustrates the idea by showing various
level curves.

An alternate way of visualizing where the minimum distance point occurs on the
boundary is to intersect the graph of Q with the plane s = 1. The curve of intersection
is a parabola and is the graph of F(s) = Q(s, 1 — s) for s € [0, 1]. Now the problem
has been reduced by one dimension to minimizing a function F (s) for s € [0, 1]. The
minimum of F (s) occurs either at an interior point of [0, 1], in which case F'(s) =0
at that point, or at an end point s = 0 or s = 1. Figure 2.4 shows the case when the
minimum occurs at an interior point of the edge. At that point the ellipse is tangent to
theline s + ¢ = 1. In the end point cases, the ellipse may just touch one of the vertices
of D, but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partition-
ing idea applies in the one-dimensional case. The interval [0, 1] partitions the real line
into three intervals, s < 0, s € [0, 1], and s > 1. Let F'(5) =0.If § < 0, then F(s) is
an increasing function for s € [0, 1]. The minimum restricted to [0, 1] must occur
at s = 0, in which case Q attains its minimum at (s,) = (0, 1). If § > 1, then F(s)
is a decreasing function for s € [0, 1]. The minimum for F occurs at s = 1 and the
minimum for Q occurs at (s, r) = (1, 0). Otherwise, 5 € [0, 1], F attains its minimum
at §, and Q attains its minimum at (s, f) = (5, 1 — §).

The occurrence of (5, f) in region 3 or 5 is handled in the same way as when the
global minimum is in region 0. If (5, 7) is in region 3, then the minimum occurs at
(0, o) for some 1 € [0, 1]. If (5, f) is in region 5, then the minimum occurs at (s, 0)
for some s¢ € [0, 1]. Determining if the first contact point is at an interior or end point
of the appropriate interval is handled the same as discussed earlier.

If (5, 1) is in region 2, it is possible the level curve of Q that provides first contact
with the unit square touches either edge s + t = 1 or edge s = 0. Because the global
minimum occurs in region 2, the negative of the gradient at the corner (0, 1) cannot

Figure 2.4

2.6 Distance Methods 51

Q=Vi<Vy

First contact
point (1, ¢g)

Various level curves Q(s,t) =V

point inside D. If%Q = (Qs, Qr), where Qg and Q; are the partial derivatives of Q,
it must be that (0, —1) - %Q(O, 1) and (1, —1) - %Q(O, 1) cannot both be negative.
The two vectors (0, —1) and (1, —1) are directions for the edgess =0ands +¢ =1,
respectively. The choice of edge s + 7 =1 or s = 0 can be made based on the signs
of (0, —1) - %Q(O, 1) and (1, —1) - %Q(O, 1). The same type of argument applies in
region 6. In region 4, the two quantities whose signs determine which edge contains
the minimum are (1, 0) - %Q(O, 0) and (0, 1) - %(0, 0).

The implementation of the algorithm is designed so that at most one floating-
point division is used when computing the minimum distance and corresponding
closest points. Moreover, the division is deferred until it is needed, and in some cases
no division is needed.

Quantities that are used throughout the code are computed ﬁrst In particular, the
Values computed are D = B Poa= Eo EO, b= EO El, c= E1 E,d= EO D,
e= E1 D, and f= D - D. The code actually computes § = |ac — b?| since it is
possible for small edge lengths that some floating-point round-off errors lead to a
small negative quantity.

In the theoretical development, 5§ = (be — cd)/§ and (bd — ae) /5 were computed
so that V 0O(5, 1) = (0, 0). The location of the global minimum is then tested to see if
it is in the triangle domain D. If so, then the information to compute the minimum
distance is known. If not, then the boundary of D must be tested. To defer the
division by §, the code instead computes § = be — ¢d and f = bd — ae and tests for

188 Chapter 6 Collision Detection

physics systems: any collision detection back end can be fit with any physics system
front end.

Hierarchical organization of data allows the application to tag each node with a
set of flags indicating how the collision test should propagate. The simplest choice
is whether or not to recurse on the call or to terminate immediately. Other choices
involve specifying what types of calculations should occur (test only, first time only,
first point of contact, do only bounding volume comparisons but not triangle-triangle
tests, go all the way to triangle-triangle tests, etc.).

Remembering information about a previous intersection may help in localizing
the search for the next call of the collision system. The usual space-time trade-off
applies: more memory is used to retain state information in exchange for a faster
execution. Whether space or time is important depends on the application and its
data. For example, retaining state information is a key feature in the GJK and extended
GJK algorithms (Gilbert, Johnson, and Keerthi 1988; Cameron 1996; van den Bergen
1999), but bounding volume trees typically do not retain state information and are
designed to localize the search by fast intersection tests between the bounding volumes
(Gottschalk, Lin, and Manocha 1991; Gregory et al. 1998). Both approaches are viable,
but in this chapter we will discuss only the bounding volume tree ideas.

62 INTERSECTION OF DYNAMIC OBJECTS AND LINES

In the following sections, the line is stationary and defined by P +sD for s €R.
The other objects are moving with constant linear velocity W over a time interval
t € [0, fmax]. If Dx W= 6, then the object is moving parallel to the line. The static
test for intersection is sufficient for this case.

The algorithms presented here determine only if the line and object will intersect
on the time interval. Computation of the first time of contact is typically more ex-
pensive. For the sphere, capsule, and lozenge, finding the first time of contact involves
solving a quadratic equation, which requires taking a square root.

6.2.1 SPHERES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Sphr

The moving sphere has center C+tWforte [0, fmax] and radius r > 0. The distance
between a point and aline is given by Equation 2.14. Replacing the time-varying center
in this equation leads to a quadratic function in ¢ that represents the squared distance,

Q(t)=‘<ﬁ/—?'Vfﬁ>t+<(5—ﬁ)—w5>
D-D

2
=:at® + 2bt + c.

D-D

The coefficient a is positive because of the assumption that the direction of motion is
not parallel to the line. If Q(#) < r2 for some € [0, fmay], then the line intersects the
sphere during the specified time interval. The problem is now one of determining the

6.5 Dynamic Object-Object Intersection 233

Table 6.10 Coefficients for unique points of triangle-OBB intersection for Ag x E i

L Coefficients

Ao X Eo X1 =—0 sign([fz . Eo)al, Xy =40 sign(gl . Eo)az
_ [0, opo=ming(opr)
. { I, o(po+ N - Ag) = ming(opy)
onéo~(5xéo—y1ﬁ—xlglxlfo—ngzxfo)
|Agx Eof2

Xg =

Ao X El X1 =—0 sign(Az . El)al, Xy = +0 sign(gl . El)az
{ 0, o po=ming(opg)

Yo = > .
1, o(po— N - Ag) = ming(opi)
X0 = A0X514(5XE1+y0N—X1A1Xél—ngzxél)
|Aox E; |2
IK() X Ez X1 =—0 sign(Az . Ez)al, Xy =40 sign(ﬁl . Ez)az
0, opo=ming(op)
Yo+ y1= S .
L, o(po— N - Ap) = ming(opx)
X0 = Aox Ep-(Dx Ext(o+y)N—x1 A1 x Ex=x2 A2 X E2)

|Aox Eaf2

Finding the First Time of Intersection

Given that the two triangles do not intersect at time r = 0, but do intersect at some later
time, a simple modification of the algorithm for testing for an intersection provides the
first time of intersection. The first time is computed as the maximum time T > 0 for
which there is atleast one separating axis forany ¢ € [0, T'), but for which no separating
axis exists at time 7'. The idea is to test each potential separating axis and keep track of
the time at which the intervals of projection intersect for the first time. The largest such
time is the first time at which the triangles intersect. Also, it is important to keep track
of which side each of the intervals is relative to the other interval. Finally, knowing the
separating axis associated with the maximum time 7 allows us to reconstruct a point
of intersection.

The code for stationary triangles needs to be modified to handle the case of
constant velocities. The velocity of the first triangle is subtracted from the velocity of
the second triangle so thatall calculations are done relative to a stationary first triangle.
If the triangle velocities are Vo and V1, define the relative velocity to be W= Vl Vo
Let the time interval be [0, fiax].

234 Chapter 6 Collision Detection

Table 6.11 Coefficients for unique points of triangle-OBB intersection for A x E j

>

L Coefficients

Al X Eo Xo =40 sign(gz . Eo)ao, Xy =—0 sign(Ao . Eo)az
_ [0, opo=ming(pi)
e { 1, o(po+N - Ap) = ming(opr)
AlxEo-(ﬁxEo—ylﬁ—xogoxEo—ngszO)
| A1 % Eol?

X1 =

Al X El xXo =40 sign(gz . El)ao, Xy =—0 sign(go . El)az
{ 0, o(po=mink(px))

Yo = > .
1, o(po— N - Ay) =ming(opi)
x] = A’lXEy(BXE1+y0N—xogoxél—ng2XE1)
| Ay x E; |2
gl X Ez Xo =40 sign(gz . Ez)ao, X)=—0 sign(go . Ez)az
0, opo=ming(pr)
Yo+ y1= o= .
1, o(po— N -A;)=ming(opi)
X = A1 x Ep-(Dx Ext(yo+y) N—=xoAox Ex—x2A2 X E2)

|A|x Eaf2

Axes]C’ or]\71

The problem is to make sure the minimum interval containing max (vy + fmaxW, V1 +
fmaxW, V2 + tmaxw) does not intersect {u}. The pseudocode is

if (v0O > u)

{
if (vl >=v0)
{
if (v2 >=v0)
{
min = v0;
if (min + tmax*w > u)
return no_intersection;
}
else
{

min = v2;
if (min > u and min + tmax*w > u)
return no_intersection;

6.5 Dynamic Object-Object Intersection

Table 6.12 Coefficients for unique points of triangle-OBB intersection for A x E i

L

Coefficients

Az X Eo Xg=—0 Sigl‘l(Al . Eo)ao, X1 =+0 sign(go . Eo)al

3= 0, opo=ming(opk)
I, o(po+ N - Az) = ming(o pr)
— Az><E(y(ﬁXéo—ylﬁ—xogoxéo—xlgl XE())
|A2x Eo|2

X2

Az X El Xp=—0 sign(gl . El)ao, x1 =40 sign(go . El)al

Yo = 0, opo=ming(opi)
L, o(po— N - Ay) =ming(opi)

_ AxxEr-(DxE1+yN—xoAox E1—x1A1x E1)

2 |Ax E1 |2
132 X Ez Xo=—0 sign(zzl . Ez)ao, X1 =40 sign(z&o-éz)al
{0’ o po = ming (o py)
Yo+t yi= .S .
1, o(po— N - Az) =ming(opi)
Xy = AZXEZ'(ﬁXE2+(}70ty1)]Y*XOAOXEz*xlxlXEZ)
|A2x E|?
}
}
else if (vl >=v2)
{
min = v2;
if (min > u and min + tmax*w > u)
return no_intersection;
}
else
{
min = vl;
if (min > u and min + tmax*w > u)
return no_intersection;
}
}
else if (v0O < u)
{

if (vl <= v0)
{

235

Figure 7.10

7.4 Subdivision 279

Subdivision of a curve by midpoint distance.

bisect. One criterion is to measure on a subinterval the variation between the curve
and the line segment connecting the end points of the subinterval. If the subinterval
is [#;, t;+1], then the variation is

fit1
V =
t

where E(t) ; is the line segment connecting the points ¥ (¢;) and X (1),

- .2
30 - G| ar,

t_

L) =50 + —— (i) — 31)) . (7.23)
tiy1— 1

The integration is shown for i = 0 to illustrate some optimizations that can be made in
computing variation. Define X; = X(¢;) for j =0, 1. The integral can be decomposed
as

h, o o oL L t—1
V:/ @-Edt—Z/ x-xodt—Z/ X - (X1 — Xo)
to to 1o n—rt

1
+/ X -xdt=V, =2V, =2V3+ V.
1o

dt

308 Chapter 8 Surfaces

than explicitly writing summation signs, if an expression contains a repeated index,
the assumption is that the index is summed over the appropriate range of values. For
example, if A = [A;;] is an n x n matrix and X = [x;] is an n x 1 vector, then the
expression AX is written as Z?;(l) A;jxj in the standard notation, but as A;;x; using
the summation convention. The index j is repeated, so an implied summation occurs
over j. The second part of tensor notation specifies derivatives using indices. If X(p)
is an n x 1 vector-valued function of the m x 1 vector p, then the derivative of the
ith component of x with respect to the jth component of p is denoted x; ;. In tensor
notation, indices before the subscripted comma refer to components and indices after
the comma refer to derivatives. Second derivatives have two indices after the comma,
third derivatives have three, and so on.

For a polynomial curve of degree at most three, the identities equivalent to Equa-
tion (7.24) for surfaces are

- L/, - -
x(s, 1) = 3 (x(s +8,1) +X(s — 8, 1) — 8% Xys(s, t))
(8.3)
- L/, - -
HOOES (x(s,t F8) 4 R(s, t —8) — 8% (s, z))
Similarly, the identities equivalent to Equation (7.25) for surfaces are
- L. -
Fos (1) = 5 (Fos (s +8,0) + Xy (s = 8,1)
(8.4)
- . -
xtt(sa t) = E (-xtt(srt + 8) + -xtt(s)t - 8))

Now we will describe the algorithm for the block with parameter values s €
[s0, 1] and ¢ € [1o, t1]. Define s, = (so + 51)/2, ty = (fo + 11)/2, and d = s, — 59 =
tm — to. At each of the four corner points it is assumed that the following quantities
are precomputed: X, X5, Xsr, and Xggr. The subscripts indicate partial derivatives
with respect to the listed variables. The formulas shown below are valid because of
Equations (8.3) and (8.4).

For midpoints (s;,, ®), where e is either ¢ or 7;:

Xss(Sm>) = 0.5 (2” (50> ®) + X5 (515 .))

Xssit(Sm> ©) = 0.5 (}sstt(SO) ®) + Xy (51, '))

8.4 Subdivision 309

Tt (s) = 0.5 (% (50, 9) + For 51, ©) = Ayt (5, #))
R (s 9) = 0.5 (¥(s0,) + F(s1,) = 55,)) -
For midpoints (e, t,,,), where e is either s or s1:

For (8, 1) = 0.5 (e (8, 10) + Fos (9, 11))
Xyser() = 0.5 (Xs511 (@, 1) + Xgr (o, 11))
Tiy(e, 1) = 0.5 (}ss(., 10) + Xos (8, 1)) — d*3ssrs (o, tm)>
F(o, 1) = 0.5 (55(., f0) + F(o, 1) — d*%sr (o, tm)> .

At the center point (s, t;):

Xss(Sm> tm) = 0.5 (}ss (50> tm) + Xss (51, tm))
itt(sm) tm) = 0.5 ()_étt(sm) fo) +)_étt(sm) tl))

Xystt(Sm> tm) = 0.5 ()?sstt(sm tm) + Xss: (515 tm))

i(sm) tm) = 0.5 (55(50) tm) +)_é(sl: Im) — dz)_éss(sm) tm)) .

If L full subdivisions are performed, then M, = 2¢(2~! + 1) new midpoints and
C¢ = 4"~! new centers are generated at subdivision £. The total number of midpoints
is

L
2
M= Z 200 =@l — 1)+ 208 — 1),
3
e=1
and the total number of center points is

L
1
C=>) 4""= 5(4L —1).
=1

344 Chapter 9 Animation of Characters

for some phase angle v;. The boundary conditions for ¢y are used to obtain 1 =
sin(yg)/ sin 8 and 0 = sin(w +)/ sin 6, which are satisfied when ¢ =6 and
w = —0. Thus,

sin((1 — 1)0)

co(t,0) = sin 6

The boundary conditions for ¢; are used to obtain 0 = sin(y;)/ sin 6, and 1 = sin(w +
Y1)/ sin 6, which are satisfied when ¥; = 0 and w = 6. Thus,

sin(t6)
sinf

Cl(t)g) =

The spherical linear interpolation, abbreviated as slerp, is defined by

qo sin((1 — 1)0) + g1 sin(10)
sin 0

slerp(t; qo, q1) = (9.3)

for0<tr<I.

Although ¢; and —q represent the same rotation, the values of slerp(t; o, ¢1)
and slerp(#; go, —¢q1) are not the same. It is customary to choose the sign o on ¢; so
that go - (0g1) > 0 (the angle between ¢y and o ¢ is acute). This choice avoids extra
spinning caused by the interpolated rotations.

For unit quaternions, slerp can be written as

—1 4
slerp(#; go» 1) = qo (qo ql) , (9.4)

in which case slerp(0; go, 1) = qo and slerp(1; go, ¢1) = qo(qo_lql) = ¢;. The term
q, g1 = cos 0 + i sin 6, where 6 is the angle between go and g;. The time parameter
can be introduced into the angle so that the adjustment of ¢ varies uniformly with
time over the great arc between gg and ¢;. That is, g () = go[cos(t0) + i sin(t0)] =
golcos 0 + i sin 0]" = go(gy 'q1)"-

The derivative of slerp in the form of Equation (9.4) is a simple application of
Equation (9.1):

slerp’ (3 90, q1) = qo(qy 'q1)" log(qy ' q1). (9.5)

It is possible to add extra spins to the interpolation. Rather than interpolating the
shortest great arc between the two quaternions, it is possible to wrap around the great
circle n times before stopping at the destination quaternion. The formula in Equation
(9.3) requires addition of a phase angle to 6,

qo sin((1 — 1)(6 4+ 27n) + g sin(t (0 + 27n))

SlerpExtra(t; qo, 1) = pemw

9.1 Key Frame Animation 345

9.1.3 SPHERICAL CUBIC INTERPOLATION

SOURCE CODE

LIBRARY

Core

Quaternion

The cubic interpolation of quaternions can be achieved using a method described by
Boehm (1982), which has the flavor of bilinear interpolation on a quadrilateral. The
evaluation uses an iteration of three slerps and is similar to the de Casteljau algorithm
(Farin 1990). Imagine four quaternions p, a, b, and g as the ordered vertices of a
quadrilateral lying on the unit hypersphere. Interpolate ¢ along the great circle arc
from p to g using slerp. Interpolate d along the great circle arc from a to b. Now
interpolate the interpolations ¢ and d to get the final result e. The end result is denoted
squad and is given by

squad(t; p, a, b, q) = slerp(2t (1 — t); slerp(¢; p, q), slerp(t; a, b)). (9.6)

The derivative of squad in Equation (9.6) is computed as follows. Let u(r) =
co(t,0)p + c1(t,0)q, v(t) = co(t, Pp)a + c1(t, 0)b, and S(¢t) = squad(t; p,a, b, q) =
cot(1 — 1), v (t))u(t) + c12t (1 — t), ¥(t)), where cos(0) = p - g, cos(¥) =a - b,
and cos(¥ (t)) = u(t) - v(t). The derivative is

dco(2t(1 — 1), w(t))u
dt

dey (2t (1 — 1), ¥ (1) y
dt

§'(t) = co2t (1 — 1), Yr()u' (1) + (1) +

12t (1 =), YW (1) + ().

Using the chain rule and Equation (9.5), it can be shown that

dco(2t(1 — 1), ¥ (1))
dt

1(0) + dei2t(1 —0), ¥ (1))

0) = slerp’(0; p,
,:o 7 v(0) = slerp'(0; p, a)

t=0

and

deo(2t(1 —1), ¥ (1))
dt

der(2t(1 —1), (1))
dt

v(1) = slerp’(0; ¢, b).

=1

u(l) +

=1

Consequently, S'(0) = p log(p~'q) + 2p log(p~'a) and S'(1) = q log(p~'q) —
2q log(g~'b). The derivative of squad at the end points are

squad'(0; p, a, b,) = pllog(p~'q) + 2log(p~'a)] ©7)

squad'(1; p,a, b, ¢) = q[log(p~'q) — 2log(qg~'b)].

12.2 Portals 415

are to be viewable through a common geometric portal, then both regions must have a
portal associated with them, and the two portals coexist in space in identical locations.

The regions and portals together can form an arbitrarily complex scene. For
example, it is possible to stand in one region, look through a portal into an adjacent
region, and see another portal from that region into yet another region. The rendering
algorithm must draw the regions in a back-to-front order to guarantee the correct
visual results. This is accomplished by constructing an abstract directed graph for
which the regions are the graph nodes and the portals are directed graph edges.
This graph is not the parent-child scene graph, but represents relationships about
adjacency of the regions. Each region is represented as a scene graph node that contains
enough state information to support traversal of the adjacency graph. The portals are
represented by scene graph nodes but are not drawable objects. Moreover, the portal
nodes are attached as children to the region nodes to allow culling of portals. If a region
is currently being visited by the adjacency graph traversal, it is possible that not all
portals of that region are in the view frustum (or part of the current set defined by the
intersection of the frustum and additional portal planes). The continued traversal of
the adjacency graph can ignore such portals, effectively producing yet another type of
culling. Finally, the region nodes can have additional child nodes that represent the
bounding planes of the regions (the walls, so to speak, if the region is a room) and the
objects that are in the regions and that need to be drawn if visible. The pseudocode for
rendering a convex region in the portal system is given below. The object pTaneSet is
the current set of planes that the renderer uses for culling and (possibly) clipping. The
planes maintained by the portal are those formed by the edges of the convex polygon
of the portal and the current camera location.

void Render (Region region)
{
if (not region.beingVisited)
{
region.beingVisited = true;
for (each portal in region)
{
if (portal.IsVisibleWithRespectTo(planeSet))
{
planeSet.Add(portal.planes);
Render(portal.adjacentRegion);
planeSet.Remove(portalPlanes);

}

Render(region.boundingPlanes);
Render(region.containedObjects);
region.beingVisited = false;

Figure A.1

A.3 Run-Time Type Information 445

RIGHTTRIANGLE

Single-inheritance hierarchy.

EQUILATERAL-
TRIANGLE

stores a link to the base class (if any) to allow an application to determine if a class is
inherited from another class. The simplest representation stores no class information
and only the link to the base class. However, it is useful to store a string encoding the
name of the class. In particular, the string will be used in the streaming system that
is described later. The string may also be useful for debugging purposes in quickly
identifying the class type.

class MgcRTTI
{
public:
MgcRTTI (const char* acName, const MgcRTTI* pkBaseRTTI)
m_kName(acName)

{
m_pkBaseRTTI = pkBaseRTTI;
}
const MgcRTTI* GetBaseRTTI () const
{
return m_pkBaseRTTI;
}

const MgcString& GetName () const
{

return m_kName;

B.5 Root Finding 489

Table B.1 Signs of the Sturm polynomials for #> + 3t> — 1 at various # values.

t Sign fo(t) Sign fi(t) Sign fo(t) Sign f3(t) Sign changes
—00 — + - + 3
-3 — + - + 3
-2 + 0 - + 2
—1 - — - + 2
0 — 0 + + 1
+1 + + + + 0
400 + + + + 0

Table B.2 Signs of the Sturm polynomials for (+ — 1)° at various ¢ values.

t Sign fo(t) Sign fi(t) Sign fo(t) Sign changes
—00 — + 0 1
0 — + 0 1
+o00 + + 0 0

The Sturm sequence is fo(t) =13 + 3t> — 1, fi(t) = 3t> + 6t, f>o(t) =2t + 1, and
f3=19/4. Table B.1 lists the signs of the Sturm polynomials for various ¢ values. Letting
N (a, b) denote the number of real-valued roots on the interval (a, b), the table shows
that N(—00, —3) = 0, N(—=3, =2) = 1, N(=2, —=1) = 0, N(=1,0) = 1, N(0, 1) = 1,
and N (1, oo) = 0. Moreover, the number of negative real roots is N (—o0, 0) = 2, the
number of positive real roots is N (0, co) = 1, and the total number of real roots is
N (—o00, 00) = 3.

The next example shows that the number of polynomials in the Sturm sequence is
not necessarily the degree(f) + 1. The function f(t) = (+ — 1) hasa Sturm sequence
fot) = (t — 1)°, fi(t) =3(t — 1)%, and f1(t) = 0 since f; exactly divides f with no
remainder. Table B.2 lists sign changes for f at various ¢ values. The total number of
real roots is N (—00, 00) = 1.

B.5.2 METHODS IN MANY DIMENSIONS

Root finding in many dimensions is a more difficult problem than it is in one dimen-
sion. Two simple algorithms are summarized here: bisection and Newton’s method.

ABOUT THE AUTHOR

David Eberly is the President of Magic Software, Inc. (www.magic-software.com), a
company known for its Web site that offers free source code and documentation for
computer graphics, image analysis, and numerical methods. Previously he was the
Director of Engineering at Numerical Design Limited, the company responsible for
the real-time 3D game engine, NetlImmerse. His background includes a B.A. degree
in mathematics from Bloomsburg University, M.S. and Ph.D. degrees in mathematics
from the University of Colorado at Boulder, and M.S. and Ph.D. degrees in computer
science from the University of North Carolina at Chapel Hill. He is co-author with
Philip Schneider of the forthcoming Geometry Tools for Computer Graphics, to be
published by Morgan Kaufmann.

As a mathematician, Dave did research in the mathematics of combustion, signal
and image processing, and length-biased distributions in statistics. He was a research
associate professor at the University of Texas at San Antonio with an adjunct appoint-
ment in radiology at the U.T. Health Science Center at San Antonio. In 1991 he gave
up his tenured position to retrain in computer science at the University of North Car-
olina. During his stay at U.N.C., MAGIC (My Alternate Graphics and Image Code) was
born as an attempt to provide an easy-to-use set of libraries for image analysis. Since
its beginnings in 1991, MAGIC has continually evolved into the “net library” that it
currently is, now managed by the company Magic Software, Inc. After graduating in
1994, he remained for one year as a research associate professor in computer science
with a joint appointment in the Department of Neurosurgery working in medical im-
age analysis. His next stop was the SAS Institute working for a year on SAS/Insight,
a statistical graphics package. Finally, deciding that computer graphics and geometry
were his real calling, Dave went to work for Numerical Design Limited, then later to
Magic Software, Inc. Dave’s participation in the newsgroup comp.graphics.algorithms
and his desire to make 3D graphics technology available to all are what has led to
the creation of this book. The evolution of Magic will continue and the technology
transfer is not yet over.

557

ABOUT THE CD-ROM

Contents of the CD-ROM

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. A partial listing of the directory structure is

/Wild Magic 0.4
LinuxReadMe.txt
WindowsReadMe.txt
/Linux

/WildMagic
/Applications
/Include
/Library
/Licenses
/0bject
/SourcefFree
/SourceGameEngine

/Windows

/WildMagic
/Applications
/Include
/Library
/Licenses
/SourceFree
/SourceGameEngine
/Tools

The read-me files contain the installation instructions and other notes. The path Win-
dows/WildMagic contains the distribution for use on a computer whose operating
system is one of Windows 95, Windows 98, Windows N'T, or Windows 2000. The path
Linux/WildMagic contains the distribution for use on a computer whose operating
system is Linux. Compiled source code is already on the CD-ROM. The application
directories, located in AppTications, contain compiled executables that are ready to
run.

The distributions are nearly identical. The Windows text files have lines that are
terminated by carriage return and line feed pairs whereas the Linux text files are ter-
minated by line feeds. The Windows distribution contains an OpenGL renderer and
a Win32 application layer, both dependent on the operating system. The Windows
distribution also has a rudimentary software renderer and it has a tool for convert-
ing bitmap (*.bmp) files to Magic image files (*.mif). Both the Windows and Linux
distributions contain an OpenGL renderer and an application layer that is dependent
on GLUT. The Windows code is supplied with Microsoft Developer Studio Projects

559

560 About the CD-ROM

(*.dsp) and Microsoft Developer Studio Workspaces (*.dsw). The Linux code is sup-
plied with make files. The other portions of the distributions are the same.

License Agreements

Each source file has a preamble stating which of two license agreements governs the
use of that file. The license agreements are located in the directory Licenses. The
source code in the path SourceGameEngine is governed by the license agreement
Licenses/3DGameEngine.pdf. The remaining source code is governed by the li-
cense agreement Licenses/free.pdf. All source code may be used for commercial
or noncommercial purposes subject to the constraints given in the license agreements.

Installation on a Windows Sytem

These directions assume that the CD-ROM drive is drive D and the disk drive to
which the contents are to be copied is drive C. Of course you will need to substi-
tute the drive letters that your system is using. Copy the CD-ROM subtree D: \Wild
Magic 0.4\Windows\WildMagic to C:\SomePath\WildMagic. Since the files are
copied as read-only, execute the following two commands, in order, from a com-
mand window: cd C:\SomePath\WildMagic and attrib -r *.* /s. The dis-
tribution comes precompiled, but if you want to rebuild it, open the workspace
C:\SomePath\WildMagic\BuildA11.dsw and select the Bui1dA11 project (the
default one that shows up in the project list box is BezierSurface). Build
both the Debug and Release configurations. This builds the SourceFree,
SourceGameEngine, and Application source trees, in that order. Each of the
directories SourceFree, SourceGameEngine, and Applications has a top level
workspace to build only those pieces.

Installation on a Linux System

Mount the CD-ROM drive by: mount -t 1509660 /dev/cdrom /mnt. If your de-
sired top level directory is /HomeDirectory/SomePath (substitute the actual path
to your home directory), and if your current working directory is /HomeDirec-
tory/SomePath then use cp "/mnt/Wild Magic 0.4/Linux/WildMagic" -r .
to generate the source tree /HomeDirectory/SomePath/WildMagic. Note that “.”
is the last argument of “cp”. Since the files are copied as read-only, execute the fol-
lowing two commands, in order, (assumes your current working directory is still
/HomeDirectory/SomePath): cd WildMagic and chmod a+rw -R *. The distri-
bution comes precompiled, but if you want to rebuild it, run make on the makefile in
the Wi1dMagic subdirectory. Build the Debug configuration bymake CONFIG=Debug
and the Release configuration by make CONFIG=Release. Each of the directories
SourcefFree, SourceGameEngine, and Applications has a top-level makefile to
build only those pieces.

You need some form of OpenGL and GLUT on your machine. I downloaded
Mesa packages from the Red Hat site, Mesa-3.2-2.1686.rpm,Mesa-devel-3.202
.1686.rpm, and Mesa-glut-3.1-1.1686.rpm, and used the Gnome RPM tool
to install them. I told the tool to ignore the fact that GLUT is 3.1 and Mesa is
3.2. The installation puts the libraries in /usr/X11R6/1ib and the headers in
/usr/X11R6/include. The makefiles for applications use the libraries 11bGL.1a,
1ibGLU.Ta,and 1ibglut.1a.

