
Contents

List of Figures xxi

List of Tables xxv

Preface xxvii

Chapter

1 Introduction 1

1.1 A Brief Motivation 1

1.2 A Summary of the Chapters 3

1.3 Text Is Not Enough 5

Chapter

2 Geometrical Methods 7

2.1 Transformations 8

2.1.1 Scaling 8
2.1.2 Rotation 8
2.1.3 Translation 9
2.1.4 Homogeneous Transformations 9

2.2 Coordinate Systems 10

2.3 Quaternions 11

2.3.1 Quaternion Algebra 11
2.3.2 Relationship of Quaternions to Rotations 13
2.3.3 Conversion between Angle-Axis and Rotation Matrix 15

Angle-Axis to Rotation Matrix 15
Rotation Matrix to Angle-Axis 16

2.3.4 Conversion between Quaternion and Angle-Axis 16
Angle-Axis to Quaternion 16
Quaternion to Angle-Axis 17

2.3.5 Conversion between Quaternion and Rotation Matrix 17
Quaternion to Rotation Matrix 17
Rotation Matrix to Quaternion 17

vii

Eberly final pages 2000/7/14 13:07 p. vii

viii Contents

2.4 Euler Angles 18

2.4.1 Factoring Rotation Matrices 19
Factor as RxRyRz 19
Factor as RxRzRy 20
Factor as RyRxRz 21
Factor as RyRzRx 22
Factor as RzRxRy 23
Factor as RzRyRx 23

2.4.2 Factor Product of Two 24
Factor PxPy 24
Factor PyPx 24
Factor PxPz 25
Factor PzPx 25
Factor PyPz 26
Factor PzPy 26

2.5 Standard 3D Objects 26

2.5.1 Spheres 26
Sphere Containing Axis-Aligned Box 26
Sphere Centered at Average of Points 27
Minimum-Volume Sphere 28

2.5.2 Oriented Boxes 29
Axis-Aligned Boxes 29
Fitting Points with a Gaussian Distribution 29
Minimum-Volume Box 31
Fitting Triangles with a Gaussian Distribution 32

2.5.3 Capsules 32
Least-Squares Fit 33
Minimum of Minimum-Area Projected Circles 33

2.5.4 Lozenges 34
Fit with a Gaussian Distribution 34
Minimization Method 35

2.5.5 Cylinders 35
Least-Squares Line Contains Axis 36
Least-Squares Line Moved to Minimum-Area Center 36

2.5.6 Ellipsoids 36
Axis-Aligned Ellipsoid 37
Fitting Points with a Gaussian Distribution 37
Minimum-Volume Ellipsoid 37

2.6 Distance Methods 38

2.6.1 Point to Linear Component 38
2.6.2 Linear Component to Linear Component 41

Line to Line 42
Line to Ray or Segment 43

Eberly final pages 2000/7/14 13:07 p. viii

Contents ix

Ray to Ray or Segment, and Segment to Segment 43
2.6.3 Point to Triangle 49
2.6.4 Linear Component to Triangle 53

Line to Triangle 54
Ray to Triangle and Segment to Triangle 57

2.6.5 Point to Rectangle 57
2.6.6 Linear Component to Rectangle 58

Ray to Rectangle and Segment to Rectangle 60
2.6.7 Triangle to Triangle 61
2.6.8 Triangle to Rectangle 61
2.6.9 Rectangle to Rectangle 61
2.6.10 Point to Oriented Box 61
2.6.11 Miscellaneous 65

Point to Ellipse 65
Point to Ellipsoid 66
Point to Quadratic Curve or Quadric Surface 67
Point to Circle in 3D 68
Circle to Circle in 3D 69
Ellipse to Ellipse in 3D 73

Chapter

3 The Graphics Pipeline 79

3.1 Model and World Coordinates 80

3.2 Perspective Projection 80

3.2.1 Lines Project to Lines 81
3.2.2 Triangles Project to Triangles 83
3.2.3 Conics Project to Conics 83

3.3 Camera Models 84

3.3.1 Standard Camera Model 85
3.3.2 General Camera Model 87
3.3.3 Model-to-View Transformation 87
3.3.4 Mapping to Screen Coordinates 89
3.3.5 Screen Space Distance Measurements 90

3.4 Culling and Clipping 91

3.4.1 Object Culling 92
3.4.2 Back Face Culling 92
3.4.3 Clipping 93

Clip World, Transform World to View 97
Clip Model, Transform Model to View 98
Transform Model to View, Clip View 98

Eberly final pages 2000/7/14 13:07 p. ix

x Contents

3.5 Surface and Vertex Attributes 99

3.5.1 Depth 99
3.5.2 Colors 99
3.5.3 Lighting and Materials 100

Lights 100
Materials 101
Lighting and Shading 101

3.5.4 Textures 105
Coordinate Modes 105
Filtering Modes 106
Mipmapping 106
Multitexture 108

3.5.5 Transparency and Opacity 108
3.5.6 Fog 109
3.5.7 Combining Attributes 110

3.6 Rasterizing 113

3.6.1 Lines 113
3.6.2 Circles 117
3.6.3 Ellipses 119

Specifying the Ellipse 119
Axis-Aligned Ellipses 120
General Ellipses 122

3.6.4 Triangles 124
3.6.5 Interpolation during Rasterization 126

Linear Interpolation 126
Perspective Interpolation 129

3.7 An Efficient Clipping and Lighting Pipeline 132

3.7.1 Triangle Meshes 132
3.7.2 Clipping a Triangle Mesh 133
3.7.3 Computing Vertex Attributes 136

3.8 Issues of Software, Hardware, and APIs 138

Chapter

4 Hierarchical Scene Representations 141

4.1 Tree-Based Representation 143

4.1.1 Transforms 144
Local Transforms 144
World Transforms 145

4.1.2 Bounding Volumes 145
4.1.3 Renderer State 146

Eberly final pages 2000/7/14 13:07 p. x

Contents xi

4.1.4 Animation 147

4.2 Updating a Scene Graph 147

4.2.1 Merging Two Spheres 148
4.2.2 Merging Two Oriented Boxes 149
4.2.3 Merging Two Capsules 151
4.2.4 Merging Two Lozenges 151
4.2.5 Merging Two Cylinders 152
4.2.6 Merging Two Ellipsoids 152
4.2.7 Algorithm for Scene Graph Updating 152

4.3 Rendering a Scene Graph 157

4.3.1 Culling by Spheres 157
4.3.2 Culling by Oriented Boxes 159
4.3.3 Culling by Capsules 160
4.3.4 Culling by Lozenges 161
4.3.5 Culling by Cylinders 163
4.3.6 Culling by Ellipsoids 164
4.3.7 Algorithm for Scene Graph Rendering 166

Chapter

5 Picking 169

5.1 Intersection of a Linear Component and a Sphere 171

5.2 Intersection of a Linear Component and a Box 172

5.2.1 Line Segment 176
5.2.2 Ray 177
5.2.3 Line 179

5.3 Intersection of a Linear Component and a Capsule 179

5.4 Intersection of a Linear Component and a Lozenge 180

5.5 Intersection of a Linear Component and a Cylinder 181

5.6 Intersection of a Linear Component and an Ellipsoid 182

5.7 Intersection of a Linear Component and a Triangle 182

Chapter

6 Collision Detection 185

6.1 Design Issues 186

6.2 Intersection of Dynamic Objects and Lines 188

6.2.1 Spheres 188

Eberly final pages 2000/7/14 13:07 p. xi

xii Contents

6.2.2 Oriented Boxes 190
6.2.3 Capsules 190
6.2.4 Lozenges 191
6.2.5 Cylinders 191
6.2.6 Ellipsoids 191
6.2.7 Triangles 192

6.3 Intersection of Dynamic Objects and Planes 193

6.3.1 Spheres 193
6.3.2 Oriented Boxes 194
6.3.3 Capsules 196
6.3.4 Lozenges 197
6.3.5 Cylinders 198
6.3.6 Ellipsoids 201
6.3.7 Triangles 202

6.4 Static Object-Object Intersection 203

6.4.1 Spheres, Capsules, and Lozenges 204
6.4.2 Oriented Boxes 205
6.4.3 Oriented Boxes and Triangles 207

Axis �N 209
Axes �Ak 210
Axes �Ai × �Ej 210

6.4.4 Triangles 210
Axes �N or �M 213
Axes �Ei × �Fj 214

Axes �N × �Ei or �M × �Fi 214

6.5 Dynamic Object-Object Intersection 214

6.5.1 Spheres, Capsules, and Lozenges 215
6.5.2 Oriented Boxes 217

Finding the First Time of Intersection 218
Finding a Point of Intersection 219

6.5.3 Oriented Boxes and Triangles 223
Finding the First Time of Intersection 223
Finding a Point of Intersection 227

6.5.4 Triangles 232
Finding the First Time of Intersection 233
Finding a Point of Intersection 238

6.6 Oriented Bounding Box Trees 244

6.7 Processing of Rotating and Moving Objects 245

6.7.1 Equations of Motion 246
6.7.2 Closed-Form Algorithm 248

Eberly final pages 2000/7/14 13:07 p. xii

Contents xiii

6.7.3 Algorithm Based on a Numerical Ordinary Differential
Equation Solver 249

6.8 Constructing an OBB Tree 250

6.9 A Simple Dynamic Collision Detection System 251

6.9.1 Testing for Collision 252
6.9.2 Finding Collision Points 253

Chapter

7 Curves 257

7.1 Definitions 258

7.2 Reparameterization by Arc Length 260

7.3 Special Curves 261

7.3.1 Bézier Curves 261
Definitions 261
Evaluation 262
Degree Elevation 263
Degree Reduction 263

7.3.2 Natural, Clamped, and Closed Cubic Splines 264
Natural Splines 266
Clamped Splines 266
Closed Splines 267

7.3.3 Nonparametric B-Spline Curves 267
7.3.4 Kochanek-Bartels Splines 271

7.4 Subdivision 276

7.4.1 Subdivision by Uniform Sampling 276
7.4.2 Subdivision by Arc Length 276
7.4.3 Subdivision by Midpoint Distance 277
7.4.4 Subdivision by Variation 278
7.4.5 Subdivision by Minimizing Variation 282
7.4.6 Fast Subdivision for Cubic Curves 283

7.5 Orientation of Objects on Curved Paths 285

7.5.1 Orientation Using the Frenet Frame 285
7.5.2 Orientation Using a Fixed “Up” Vector 286

Chapter

8 Surfaces 287

8.1 Definitions 288

Eberly final pages 2000/7/14 13:07 p. xiii

xiv Contents

8.2 Curvature 289

8.2.1 Curvatures for Parametric Surfaces 289
8.2.2 Curvatures for Implicit Surfaces 290

Maxima of Quadratic Forms 290
Maxima of Restricted Quadratic Forms 291
Application to Finding Principal Curvatures 292

8.2.3 Curvatures for Graphs 293

8.3 Special Surfaces 293

8.3.1 Bézier Rectangle Patches 293
Definitions 294
Evaluation 294
Degree Elevation 295
Degree Reduction 295

8.3.2 Bézier Triangle Patches 297
Definitions 297
Evaluation 297
Degree Elevation 298
Degree Reduction 298

8.3.3 Bézier Cylinder Surfaces 301
8.3.4 Nonparametric B-Spline Rectangle Patches 302
8.3.5 Quadric Surfaces 304

Three Nonzero Eigenvalues 304
Two Nonzero Eigenvalues 305
One Nonzero Eigenvalue 305

8.3.6 Tube Surfaces 306

8.4 Subdivision 306

8.4.1 Subdivision of Bézier Rectangle Patches 306
Uniform Subdivision 306
Nonuniform Subdivision 313
Adjustments for the Camera Model 316
Cracking 316

8.4.2 Subdivision of Bézier Triangle Patches 321
Uniform Subdivision 322
Nonuniform Subdivision 323

8.4.3 Subdivision of Bézier Cylinder Surfaces 328
Uniform Subdivision 328
Nonuniform Subdivision 328

8.4.4 Subdivision of Spheres and Ellipsoids 328
Data Structures for the Algorithm 329
Subdivision Algorithm 331

8.4.5 Subdivision of Tube Surfaces 339

Eberly final pages 2000/7/14 13:07 p. xiv

Contents xv

Chapter

9 Animation of Characters 341

9.1 Key Frame Animation 342

9.1.1 Quaternion Calculus 342
9.1.2 Spherical Linear Interpolation 343
9.1.3 Spherical Cubic Interpolation 345
9.1.4 Spline Interpolation of Quaternions 346
9.1.5 Updating a Key Frame Node 347

9.2 Inverse Kinematics 348

9.2.1 Numerical Solution by Jacobian Methods 350
9.2.2 Numerical Solution by Nonlinear Optimization 351
9.2.3 Numerical Solution by Cyclic Coordinate Descent 351

List Manipulator with One End Effector 352
List Manipulator with Multiple End Effectors 354
Tree Manipulator 355
Other Variations 355

9.3 Skinning 356

Chapter

10 Geometric Level of Detail 359

10.1 Sprites and Billboards 360

10.2 Discrete Level of Detail 361

10.3 Continuous Level of Detail 362

10.3.1 Simplification Using Quadric Error Metrics 362
10.3.2 The Algorithm 364
10.3.3 Construction of the Error Metric 365
10.3.4 Simplification at Run Time 365
10.3.5 Selecting Surface Attributes 366

Chapter

11 Terrain 369

11.1 Terrain Topology 370

11.2 Vertex-Based Simplification 373

11.2.1 Distant Terrain Assumption 373
11.2.2 Close Terrain Assumption 374
11.2.3 No Assumption 375

Eberly final pages 2000/7/14 13:07 p. xv

xvi Contents

11.3 Block-Based Simplification 375

11.3.1 Distant Terrain Assumption 376
11.3.2 Close Terrain Assumption 378
11.3.3 No Assumption 379

11.4 Vertex Dependencies 381

11.5 Block Rendering 383

11.6 The Full Algorithm 385

11.7 Other Issues 392

11.7.1 Terrain Pages and Memory Management 392
11.7.2 Vertex Attributes 395
11.7.3 Height Calculations 397

11.8 Height Fields from Point Sets or Triangle Meshes 398

11.8.1 Linear Interpolation 398
11.8.2 Quadratic Interpolation 399

Barycentric Coefficients as Areas 399
Inscribed Circles 400
Bézier Triangles 401
Derivatives 402
Derivative Continuity 403
The Algorithm 404

Chapter

12 Spatial Sorting 411

12.1 Quadtrees and Octrees 412

12.2 Portals 413

12.3 Binary Space Partitioning 417

12.3.1 BSP Tree Construction 418
12.3.2 Hidden Surface Removal 420

Back-to-Front Drawing 420
Front-to-Back Drawing 423

12.3.3 Visibility Determination 424
View Space Method 425
Screen Space Method 425

12.3.4 Picking and Collision Detection 425

Eberly final pages 2000/7/14 13:07 p. xvi

Contents xvii

Chapter

13 Special Effects 427

13.1 Lens Flare 427

13.2 Environment Mapping 428

13.3 Bump Mapping 429

13.4 Volumetric Fogging 430

13.5 Projected Lights 430

13.6 Projected Shadows 431

13.7 Particle Systems 432

13.8 Morphing 433

Appendix

A Object-Oriented Infrastructure 435

A.1 Object-Oriented Software Construction 435

A.1.1 Software Quality 436
A.1.2 Modularity 437

The Open-Closed Principle 438
A.1.3 Reusability 439
A.1.4 Functions and Data 440
A.1.5 Object Orientation 441

A.2 Style, Naming Conventions, and Namespaces 442

A.3 Run-Time Type Information 444

A.3.1 Single-Inheritance Systems 444
A.3.2 Multiple-Inheritance Systems 447
A.3.3 Macro Support 450

A.4 Templates 451

A.5 Shared Objects and Reference Counting 453

A.6 Streaming 459

A.6.1 Saving Data 459
A.6.2 Loading Data 460
A.6.3 Streaming Support 461

A.7 Startup and Shutdown 464

Eberly final pages 2000/7/14 13:07 p. xvii

xviii Contents

Appendix

B Numerical Methods 469

B.1 Systems of Equations 469

B.1.1 Linear Systems 469
B.1.2 Polynomial Systems 470

B.2 Eigensystems 472

B.3 Least-Squares Fitting 472

B.3.1 Linear Fitting of Points (x, f (x)) 472
B.3.2 Linear Fitting of Points Using Orthogonal Regression 473
B.3.3 Planar Fitting of Points (x, y, f (x, y)) 474
B.3.4 Hyperplanar Fitting of Points Using Orthogonal Regression 475
B.3.5 Fitting a Circle to 2D Points 476
B.3.6 Fitting a Sphere to 3D Points 478
B.3.7 Fitting a Quadratic Curve to 2D Points 480
B.3.8 Fitting a Quadric Surface to 3D Points 481

B.4 Minimization 481

B.4.1 Methods in One Dimension 481
Brent’s Method 482

B.4.2 Methods in Many Dimensions 482
Steepest Descent Search 483
Conjugate Gradient Search 483
Powell’s Direction Set Method 484

B.5 Root Finding 485

B.5.1 Methods in One Dimension 485
Bisection 486
Newton’s Method 486
Polynomial Roots 486

B.5.2 Methods in Many Dimensions 489
Bisection 490
Newton’s Method 490

B.6 Integration 491

B.6.1 Romberg Integration 491
Richardson Extrapolation 491
Trapezoid Rule 493
The Integration Method 494

B.6.2 Gaussian Quadrature 495

B.7 Differential Equations 496

B.7.1 Ordinary Differential Equations 496
Euler’s Method 497

Eberly final pages 2000/7/14 13:07 p. xviii

Contents xix

Midpoint Method 497
Runge-Kutta Fourth-Order Method 498
Runge-Kutta with Adaptive Step 498

B.7.2 Partial Differential Equations 499
Parabolic: Heat Transfer, Population Dynamics 500
Hyperbolic: Wave and Shock Phenomena 501
Elliptic: Steady-State Heat Flow, Potential Theory 502
Extension to Higher Dimensions 502

B.8 Fast Function Evaluation 503

B.8.1 Square Root and Inverse Square Root 503
B.8.2 Sine, Cosine, and Tangent 504
B.8.3 Inverse Tangent 505
B.8.4 CORDIC Methods 507

Glossary of Terms 509

Bibliography 521

Index 527

About the Author 553

Trademarks 555

Eberly final pages 2000/7/14 13:07 p. xix

List of Figures

2.1 The six possibilities for I × J . 41

2.2 Various level curves Q(s, t)= V . 44

2.3 Partitioning of the st-plane by triangle domainD. 50

2.4 Various level curves Q(s, t)= V . 51

3.1 Relationship between s and s̄. 82

3.2 The standard camera model. 85

3.3 Object with front facing and back facing triangles indicated. 93

3.4 Four configurations for triangle splitting. 94

3.5 Various light sources. 101

3.6 Pixels that form the best line segment between two points. 113

3.7 Pixel selection based on slope. 114

3.8 Deciding which line pixel to draw next. 115

3.9 Deciding which circle pixel to draw next. 118

3.10 Three configurations for clipped triangle. 135

3.11 Three configurations for clipped triangle. 137

4.1 A simple tree with one grouping node. 143

4.2 Examples of culled and unculled objects. 158

4.3 Examples of culled and unculled objects. 160

4.4 Projection of cylinder and frustum plane, no-cull case. 163

4.5 Projection of ellipsoid and frustum plane, no-cull case. 165

5.1 The three cases for clipping when d0 > 0. 173

5.2 The three cases for clipping when d0 < 0. 173

5.3 The two cases for clipping when d0 = 0. 174

5.4 Typical separating axis for a line segment and a box. 176

5.5 Typical situations for a ray and a box. 178

5.6 Partitioning of a line by a capsule. 180

5.7 Partitioning of a line by a lozenge. 181

xxi

Eberly final pages 2000/7/14 13:07 p. xxi

xxii List of Figures

7.1 Parameters: τ = 0, γ = 0, β = 0. 273

7.2 Parameters: τ = 1, γ = 0, β = 0. 273

7.3 Parameters: τ = 0, γ = 1, β = 0. 274

7.4 Parameters: τ = 0, γ = 0, β = 1. 274

7.5 Parameters: τ =−1, γ = 0, β = 0. 275

7.6 Parameters: τ = 0, γ =−1, β = 0. 275

7.7 Parameters: τ = 0, γ = 0, β =−1. 276

7.8 Uniform subdivision of a curve. 277

7.9 Subdivision of a curve by arc length. 277

7.10 Subdivision of a curve by midpoint distance. 279

7.11 Subdivision of a curve by variation. 283

8.1 Polynomial coefficients for n= 2. 297

8.2 Polynomial coefficients for n= 3. 298

8.3 Polynomial coefficients for n= 4. 299

8.4 Subdivisions of parameter space for a rectangle patch. 307

8.5 Subdivision that contains cracking. 316

8.6 Subdivision that has no cracking. 317

8.7 Subdivision that contains more complicated cracking. 318

8.8 Partial subdivision with three subdividing edges. 318

8.9 Partial subdivision illustrating the parent’s topological constraint. 319

8.10 Partial subdivision with two adjacent subdividing edges. 319

8.11 Partial subdivision illustrating the parent’s topological constraint. 320

8.12 Partial subdivision with two opposing subdividing edges. 320

8.13 Partial subdivision with one subdividing edge. 320

8.14 Subdivision based on calculating information in adjacent block. 321

8.15 Subdivisions of parameter space for a triangle patch. 322

8.16 Subdivision of a triangle and the corresponding binary tree. 324

8.17 H-adjacency for triangles A and B. 325

8.18 H-adjacency for triangles A and C. 326

8.19 H-adjacency for triangles A andD. 326

8.20 Pattern for subdivision of a triangle. 327

8.21 Working set of vertices, edges, and triangles. 332

8.22 Subdivided triangle. 332

8.23 Possible orientations of adjacent triangle with central triangle. 336

8.24 Tessellation of parameter space for a tube surface. 339

9.1 A general linearly linked manipulator. 349

Eberly final pages 2000/7/14 13:07 p. xxii

List of Figures xxiii

10.1 Edge contraction. 363

11.1 A 5× 5 height field and quadtree representation. 371

11.2 The topology for a single block. 372

11.3 The seven distinct triangle configurations. 372

11.4 The smallest simplification and highest resolution for four sibling
blocks. 373

11.5 A single block with nine vertices labeled and all eight triangles
drawn. 374

11.6 Special case for optimization when (Dx,Dy)= (1, 0). 379

11.7 Vertex dependencies for an even block (left) and an odd block (right). 382

11.8 Minimal triangulation after block-based simplification. 382

11.9 Triangulation after vertex dependencies are satisfied. 382

11.10 The upper-left block shows one set of dependents for the added
vertex. 383

11.11 The left block is the configuration after block simplification. 384

11.12 Binary tree for the right block in Figure 11.11. 384

11.13 Adjacent triangles forming a nonconvex quadrilateral. 401

11.14 Adjacent Bézier triangle patches. 404

11.15 Control points in triangle subdivision. 405

11.16 The required coaffine subtriangles are shaded in gray. 406

11.17 Illustration for geometric relationships between the vertices. 407

12.1 Illustration of visibility through a portal. 414

12.2 Simple portal example. 416

12.3 L-shaped region in a portal system. 416

12.4 BSP tree partitioning R2. 418

12.5 Two polygons that cannot be sorted. 421

12.6 One-dimensional BSP tree representing drawn pixels on a scan line. 424

13.1 Illustration of environment mapping. 429

A.1 Single-inheritance hierarchy. 445

A.2 Multiple-inheritance hierarchy. 448

Eberly final pages 2000/7/14 13:07 p. xxiii

List of Tables

3.1 Combining a single texture and vertex colors. 111

3.2 Combining multitextures. 112

5.1 Separating axis tests for a line segment and a box. 177

6.1 Relationship between sphere-swept volumes and distance calculators
(pnt, point; seg, line segment; rct, rectangle). 204

6.2 Values for R, R0, and R1 for the separating axis tests. 208

6.3 Values for R, p0, p1, and p2 for the separating axis tests. 209

6.4 Values for pi and qj for the separating axis tests for noncoplanar
triangles. 212

6.5 Values for pi and qj for the separating axis tests for coplanar triangles. 212

6.6 Relationship between sphere-swept volumes and distance calculators
when the second object is moving (pnt, point; seg, line segment;
rct, rectangle; pgm, parallelogram; ppd, parallelepiped;
hex, hexagon). 215

6.7 Values for R, R0, and R1 for the separating axis test R > R0 + R1 for
two boxes in the direction of motion. 218

6.8 Coefficients for unique points of oriented bounding box-oriented
bounding box intersection. 224

6.9 Coefficients for unique points of triangle-OBB intersection for
�N and �Ai. 232

6.10 Coefficients for unique points of triangle-OBB intersection for
�A0 × �Ej . 233

6.11 Coefficients for unique points of triangle-OBB intersection for
�A1 × �Ej . 234

6.12 Coefficients for unique points of triangle-OBB intersection for
�A2 × �Ej . 235

6.13 Coefficients for unique points of triangle-triangle intersection. 243

xxv

Eberly final pages 2000/7/14 13:07 p. xxv

xxvi List of Tables

11.1 Values for rmin and rmax based on eye point location. 378

A.1 Encoding for the various types to be used in identifier names. 444

B.1 Signs of the Sturm polynomials for t3 + 2t2 − 1 at various t values. 489

B.2 Signs of the Sturm polynomials for (t − 1)3 at various t values. 489

B.3 Coefficients for polynomial approximations to Tan−1(z). 506

B.4 Various parameters for the CORDIC scheme. 507

Eberly final pages 2000/7/14 13:07 p. xxvi

Preface

This book is the culmination of many years of reading and participating in the
Internet newsgroups on computer graphics and computer games, most notably
comp.graphics.algorithms and the hierarchy of groups comp.games.development.*. The
focus of my participation has been to provide free source code that solves common
problems that arise in computer graphics, image analysis, and numerical methods,
available through Magic Software at www.magic-software.com. The book is also a tech-
nical summary of my experiences in helping to produce a commercial game engine,
NetImmerse, developed by Numerical Design Limited (NDL), www.ndl.com.

The focus of this book is on understanding that a game engine, or more generally
a real-time computer graphics engine, is a complex entity that consists of more than
simply a rendering layer that draws triangles. It is also more than just a collection
of unorganized techniques. A game engine must deal with issues of scene graph
management as a front end that efficiently provides the input to the back end renderer,
whether it be a software- or hardware-based renderer. The engine must also provide
the ability to process complex and moving objects in a physically realistic way. The
engine must support collision detection, curved surfaces as well as polygonal models,
animation of characters, geometric level of detail, terrain management, and spatial
sorting. Moreover, the engine is large enough that the principles of object-oriented
design must be practiced with great care.

The chapters of this book tend to be fairly mathematical and geometrical. The
intended audience includes anyone who is interested in becoming involved in the de-
velopment of a real-time computer graphics engine. It is assumed that the reader’s
background includes a basic understanding of vector and matrix algebra, linear alge-
bra, multivariate calculus, and data structures.

Many people have directly or indirectly contributed to the book. Most notable are
the engineers at NDL: Lars Bishop, Jon McAllister, Chad Robertson, Rob Phillips,
Tim Preston, Scott Sherman, Ed Holzworth, and Andy Jones. Lars and I are the
primary architects for NetImmerse. He is the renderer expert, especially with regards
to Direct3D, and has been instrumental in helping me to understand many of the
issues for rendering. We also have had many productive design sessions about how best
to incorporate the ideas for scene graph management to properly feed the renderers
and to properly manage renderer state. Chad and Rob are the animation experts.
They did a lot of legwork on understanding how various modeling packages animate
characters and deciding how NetImmerse can best support the animation. Chad also
contributed many good ideas on how to structure the collision detection system to
work well with the hierarchical scene graph system. Jon is the expert on continuous
level of detail and has implemented some of the algorithms mentioned in this book
for NetImmerse. The implementations go well beyond what is discussed here and

xxvii

Eberly final pages 2000/7/14 13:07 p. xxvii

xxviii Preface

addressed practical concerns that some of the research papers did not cover. Jon also
worked with Chad and Rob on the integration of continuous level of detail with the
skin-and-bones system, a nontrivial task. Tim was helpful in reading Chapter 8 and
attempting to implement the top-down algorithm as I originally wrote it. He pointed
out what I had overlooked, leading to some fine discussions about how to properly
tessellate the surfaces without paying for a large memory overhead. The algorithm
as described in this book reflects these discussions. Finally, Bill Baxter was a summer
intern from the University of North Carolina, but in his time at NDL was able to
investigate the topic of inverse kinematics and implement that system in NetImmerse.
Discussions with him led to my understanding of how inverse kinematics should work
in the game engine and is reflected in how I wrote the section on that topic.

I want to thank the reviewers for the book: Ian Ashdown (byHeart Consul-
tants Limited), John Laird (University of Michigan), Jeff Lander (Darwin 3D),
Franz Lanzinger (Actual Entertainment), Peter Lipson (Mindscape), Tomas Möller
(Chalmers), Andrea Pessino (Blizzard Entertainment), and Steve Woodcock (Ray-
theon). They spent a quite large amount of time reading over the two drafts of the
book and provided many helpful comments and criticisms. I also want to thank my
editor, Tim Cox, and his assistant, Brenda Modliszewski, for the time they have put
into helping the book come to completion.

Eberly final pages 2000/7/14 13:07 p. xxviii

C h a p t e r 1

Introduction
I have no fault to find with those who teach geometry. That science is the only one which

has not produced sects; it is founded on analysis and on synthesis and on the calculus;
it does not occupy itself with probable truth; moreover it has the same method in

every country.

— Frederick the Great

1.1 A Brief Motivation

Computer graphics has been a popular area of computer science for the last few
decades. Much of the research has been focused on obtaining physical realism in
rendered images, but generating realistic images comes at a price. The algorithms
tend to be computationally expensive and must be implemented on high-end, special-
purpose graphics hardware affordable only by universities through research funding
or by companies whose focus is computer graphics. Although computer games have
also been popular for decades, for most of that time the personal computers available
to the general public have not been powerful enough to produce realistic images.
The game designers and programmers have had to be creative to produce immersive
environments that draw the attention of the player to the details of game play and yet
do not detract from the game by the low-quality graphics required for running on a
low-end machine.

Chapter opening image is from Prince of Persia. All Prince of Persia images Copyright © 1999, 2000 Mattel
Interactive and Jordan Mechner. All Rights Reserved. Prince of Persia is a registered trademark of Mattel
Interactive.

1

2 Chapter 1 Introduction

Times are changing. As computer technology has improved, the demand for more
realistic computer games that support real-time interaction has increased. Moreover,
the group of computer gamers itself has evolved from a small number of, shall we say,
computer geeks to a very large segment of the population. One of the most popular,
successful, and best-selling games was Myst , created and produced by Cyan Produc-
tions and published through Broderbund. This game and others like it showed that
an entirely new market was possible—a market that included the general consumer,
not just computer-savvy people. The increased demand for games and the potential
size of the market has created an impetus for increased improvement in the computer
technology—a not-so-vicious circle.

One result of the increased demand has been the advent of hardware-accelerated
graphics cards that off-load a lot of the work a CPU normally does for software
rendering. The initial cards were add-ons that handled only the 3D acceleration
and ran only in full-screen mode. The 2D graphics cards were still used for the
standard graphics display interface (GDI) calls. Later-generation accelerators have
been designed to handle both 2D GDI and 3D acceleration within a window that is
not full screen. Since triangle rasterization has been the major bottleneck in software
rendering, the hardware-accelerated cards have acted as fast triangle rasterizers. As of
the time of this writing, the next-generation hardware cards are being designed to off-
load even more work. In particular, the cards will perform point transformations and
lighting calculations in hardware.

Another result of the increased demand for games has been the evolution of the
CPUs themselves to include support for operations that typically arise in game appli-
cations: fast division, fast inverse square roots (for normalizing vectors), and paral-
lelism to help with transforming points and computing dot products. The possibilities
for the evolutionary paths are endless. Many companies are now exploring new ways
to use the 3D technology in applications other than games, for example, in Web com-
merce and in plug-ins for business applications.

And yet one more result of the increased demand is that a lot of people now want
to write computer games. The Internet newsgroups related to computer graphics,
computer games, and rendering application programmer interfaces (APIs) are filled
with questions from eager people wanting to know how to program for games. At its
highest level, developing a computer game consists of a number of factors. First and
foremost (at least in my opinion) is having a good story line and good game play—
without this, everything else is irrelevant. Creation of the story line and deciding
what the game play should be can be categorized as game design. Once mapped out,
artists must build the game content, typically through modeling packages. Interaction
with the content during run time is controlled through game artificial intelligence,
more commonly called game AI . Finally, programmers must create the application to
load content when needed, integrate the AI to support the story line and game play,
and build the game engine that manages the data in the world and renders it on the
computer screen. The last topic is what this book is about—building a sophisticated
real-time game engine. Although games certainly benefit from real-time computer

1.2 A Summary of the Chapters 3

graphics, the ideas in this book are equally applicable to any other area with three-
dimensional data, such as scientific visualization, computer-aided design, and medical
image analysis.

1.2 A Summary of the Chapters

The classical view of what a computer graphics engine does is the rendering of triangles
(or polygons). Certainly this is a necessary component, but it is only half the story.
Viewed as a black box, a renderer is a consumer-producer. It consumes triangles and
produces output on a graphics raster display. As a consumer it can be fed too much
data, too quickly, or it can be starved and sit idly while waiting for something to do. A
front-end system is required to control the input data to the renderer; this process is
called scene graph management. The main function of the scene graph management is
to provide triangles to the renderer, but how those triangles are obtained in the first
place is a key aspect of the front end. The more realistic the objects in the scene, the
more complex the process of deciding which triangles are sent to the renderer. Scene
graph management consists of various modules, each designed to handle a particular
type of object in the world or to handle a particular type of process. The common
theme in most of the modules is geometry.

Chapter 2 covers basic background material on geometrical methods, including
matrix transformations, coordinate systems, quaternions, Euler angles, the standard
three-dimensional objects that occur most frequently when dealing with bounding
volumes, and a collection of distance calculation methods.

The graphics pipeline, the subject of Chapter 3, is discussed in textbooks on
computer graphics to varying degrees. Some people would argue against the inclusion
of some parts of this chapter, most notably the sections on rasterization, contending
that hardware-accelerated graphics cards handle the rasterization for you, so why
bother expounding on the topic. My argument for including these sections is twofold.
First, the computer games industry has been evolving in a way that makes it difficult
for the “garage shop” companies to succeed. Companies that used to focus on creating
games in-house are now becoming publishers and distributors for other companies.
If you have enough programmers and resources, there is a chance you can convince a
publisher to support your effort. However, publishers tend to think about reaching the
largest possible market and often insist that games produced by their clients run on
low-end machines without accelerated graphics cards. And so the clients, interested in
purchasing a third-party game engine, request that software renderers and rasterizers
be included in the package. I hope this trend goes the other way, but the commercial
reality is that it will not, at least in the near future. Second, hardware-accelerated cards
do perform rasterization, but hardware requires drivers that implement the high-level
graphics algorithms on the hardware. The cards are evolving rapidly, and the quality
of the drivers is devolving at the same rate—no one wants to fix bugs in the drivers

4 Chapter 1 Introduction

for a card that will soon be obsolete. But another reason for poor driver quality is
that programming 3D hardware is a much more difficult task than programming
2D hardware. The driver writers need to understand the hardware and the graphics
pipeline. This chapter may be quite useful to that group of programmers.

Chapter 4 introduces scene graph management and provides the foundation
for a hierarchical organization designed to feed the renderer efficiently, whether a
software or hardware renderer. The basic concepts of local and world transforms,
bounding volumes for culling, render state management, and animation support are
covered.

Chapters 5 and 6 discuss aspects of the intersection of objects in the world. Picking
is the process of computing the intersection of a line, ray, or line segment with objects.
Collision detection refers to computing intersections between planar or volumetric
objects. Some people include picking as part of the definition of collision detection,
but the complexity of collision systems for nonlinear objects greatly exceeds that for
picking, so I have chosen to separate the two systems.

Chapters 7 through 12 cover various systems that are supported by the scene graph
management system. Chapters 7 and 8, on curves and surfaces, are somewhat general,
but the emphasis is on tessellation. The next-generation game consoles have power-
ful processors but are limited in memory and bandwidth between processors. The
dynamic tessellation of surfaces is desirable since the surfaces can be modeled with
a small number of control points (reducing memory usage and bandwidth require-
ments) and tessellated to as fine a level as the processors have cycles to spare. The
emphasis will start to shift from building polygonal models to building curved surface
models to support the trend in new hardware on game consoles. Chapter 9 discusses
the animation of geometric data, and in particular, key frame animation, inverse kine-
matics, and skin-and-bones systems. Level of detail is the subject of Chapter 10, with
a special focus on continuous level of detail, which supports dynamic change in the
number of triangles to render based on view frustum parameters.

Chapter 11 presents an algorithm for handling terrain. Although there are other
algorithms that are equally viable, I chose to focus on one in detail rather than briefly
talk about many algorithms. The key ideas in implementing this terrain algorithm are
applicable to implementing other algorithms. High-level sorting algorithms, includ-
ing portals and binary space partitioning trees, are the topic of Chapter 12.

Chapter 13 provides a brief survey of special effects that can be used in a game
engine. The list is not exhaustive, but it does give an idea of what effects are possible
with not much effort.

Building a commercial game engine certainly requires understanding a lot about
computer graphics, geometry, mathematics, and data structures. Just as important is
properly architecting the modules so that they all integrate in an efficient manner. A
game engine is a large library to which the principles of object-oriented design apply.
Appendix A provides a brief review of those principles and includes a discussion on
an object-oriented infrastructure that makes maintenance of the library easier down
the road. These aspects of building an engine are often ignored because it is faster
and easier to try to get the basic engine up and running right away. However, short-

1.3 Text Is Not Enough 5

term satisfaction will inevitably come at the price of long-term pain in maintenance.
Appendix B is a summary of various numerical methods that, in my experience, are
necessary to implement the modules described in Chapters 7 through 12.

1.3 Text Is Not Enough

This book is not like the academic textbooks you would find in the school bookstore
or the popular computer game programming books that you see at your favorite
bookseller. Academic texts on computer graphics tend to be tomes covering a large
number of general topics and are designed for learning the basic concepts, not for
implementing a full-blown system. Algorithmic details are modest in some books and
lacking in others. The popular programming books present the basic mathematics and
concepts, but in no way indicate how complex a process it is to build a good engine.
The technical level in those books is simply insufficient.

A good collection of books that address more of the algorithmic issues for com-
puter graphics is the Graphics Gems series (Glassner 1990; Aarvo 1991; Kirk 1992;
Heckbert 1994; Paeth 1995). Although providing a decent set of algorithms, the col-
lection consists of contributions from various people with no guidance as to how to
incorporate these into a larger integrated package such as a game engine. The first real
attempt at providing a comprehensive coverage of the topics required for real-time
rendering is Möller and Haines (1999), which provides much more in-depth cover-
age about the computer graphics topics relevant to a real-time graphics engine. The
excellent references provided in that book are a way to investigate the roots of many
of the concepts that current-generation game engines incorporate.

But there is one last gap to fill. Textual descriptions of graphics algorithms, no
matter how detailed, are difficult to translate into real working code, even for ex-
perienced programmers. Just try to implement some of the algorithms described in
the ACM SIGGRAPH proceedings! Many of those articles were written after the au-
thors had already worked out the details of the algorithms and implemented them.
That process is not linear. Ideas are formulated, algorithms are designed, then im-
plemented. When the results of the coding point out a problem with the algorithmic
formulation, the ideas and algorithms are reformulated. This natural process iterates
until the final results are acceptable. Written and published descriptions of the algo-
rithms are the final summary of the final algorithm. However, taken out of context
of the idea-to-code environment, they sometimes are just not enough. Because hav-
ing an actual implementation to look at while attempting to learn the ideas can only
accelerate the learning process, a CD-ROM containing an implementation of a game
engine accompanies this book. While neither as feature complete nor as optimized as
a commercial engine, the code should help in understanding the ideas and how they
are implemented. Pointers to the relevant source code files that implement the ideas
are given in the text.

C h a p t e r 4

Hierarchical Scene
Representations

The graphics pipeline discussed in Chapter 3 requires that each drawable object

Library
Engine

Filename

All Files

be tested for culling against the view frustum and, if not culled, be passed to the
renderer for clipping, lighting, and rasterizing. Given a 3D world with a large number
of objects, the simplest method for processing the objects is to group them into a list
and iterate over the items in the list for culling and rendering. Although this approach
may be simple, it is not efficient since each drawable object in the world must be tested
for culling.

A better method for processing the objects is to group them hierarchically ac-
cording to spatial location. The grouping structure discussed in this chapter is a tree.
The tree has leaf nodes that contain geometric data and internal nodes that provide a
grouping mechanism. Each node has one parent (except for the root node, which has
none) and any number of child nodes. It is possible to use a directed acyclic graph as
an attempt to support high-level sharing of objects. Each node in the graph can have
multiple parents, each parent sharing the object represented by the subgraph rooted at
the node. However, the memory costs and code complexity to maintain such a graph
do not justify using it. Sharing should occur at a lower level so that leaf nodes can

141

142 Chapter 4 Hierarchical Scene Representations

share vertices, texture images, and other data that tends to use a lot of memory. The
implied links from sharing are not part of the parent-child relationships in the hier-
archy. Regardless of whether trees or directed acyclic graphs are used, the resulting set
of grouped objects is called a scene graph.

The organization of content in a scene graph is quite important for games in many
ways, of which four are listed here. First, the amount of content to manage is typi-
cally large and is built in small pieces by the artists. The level editor can assemble the
content for a single level as a hierarchy by concentrating on the local items of inter-
est. The global ramifications are effectively the responsibility of the hierarchy itself.
For example, a light in the world can be chosen to illuminate only a subtree of the
graph. The level editor’s responsibility is to assign that light to a node in the graph.
The effect of the light on the subtree rooted at that node is automatically handled by
the scene graph management system. Second, hierarchical organization provides a
form of locality of reference, a common concept in memory management by a com-
puter system. Objects that are of current interest in the game tend to occur in the same
spatial region. The scene graph allows the game program to quickly eliminate other
regions from consideration for further processing. Although minimizing the data sent
to the renderer is an obvious goal to keep the game running fast, focusing on a small
amount of data is particularly important in the context of collision detection. The col-
lision system can become quite slow when the number of potentially colliding objects
is large. A hierarchical scene graph supports grouping only a small number of po-
tentially colliding objects, those objects occurring only in the local region of interest
in the game. Third, many objects are naturally modeled with a hierarchy, most no-
tably humanoid characters. The location and orientation of the hand of a character is
naturally dependent on the locations and orientations of the wrist, elbow, and shoul-
der. Fourth, invariably the game must deal with persistence issues. A player wants to
save the current game, and the game is to be continued at a later time. Hierarchical
organization makes it quite simple to save the state of the world by asking the root
node of the scene graph to save itself, the descendants saving themselves in a naturally
recursive fashion.

Section 4.1 provides the basic concepts for management of a tree-based representa-
tion of a scene, including specification and composition of local and world transforms,
construction of bounding volumes for use both in rapid view frustum culling and fast
determination of nonintersection of objects managed by a collision system, selection
and scope of renderer state at internal or leaf nodes, and control of animated quanti-
ties.

Changes in the world environment of the game are handled by changing various
attributes at the nodes of the tree. A change at a single node affects the subtree for
which that node is the root. Therefore, all nodes in the subtree must be notified of
the change so that appropriate action can be taken. One typical action that requires
an update of the scene graph is moving an object by changing its local transform.
The world transforms of the object’s descendants in the tree must be recalculated.
Additionally, the object’s bounding volume has changed, in turn affecting all the
bounding volumes of its ancestors in the tree. The new bounding volume at a node

4.1 Tree-Based Representation 143

involves computing a single bounding volume that contains all the bounding volumes
of its children, a process called merging. Another typical action that requires an update
of the scene graph is changing renderer state at a node. The renderer state at all the
leaf nodes in the affected tree must be updated. The update process is the topic of
Section 4.2.

After a scene graph is updated, it is ready for processing by the renderer. The
drawing pass uses the bounding volumes to cull entire subtrees at once, thereby
reducing the amount of time the renderer has to spend on low-level processing of
objects that ultimately will not appear on the computer screen. Section 4.3 presents
culling algorithms for various bounding volumes compared to a plane at a time in the
view frustum. The general drawing algorithm for a hierarchy is also discussed.

4.1 Tree-Based Representation

A simple grouping structure for objects in the world is a tree. Each node in the tree has
exactly one parent, except for the root node, which has none. The root is the first node
to be processed when attempting to render objects in the tree. The simplest example
of a tree is illustrated in Figure 4.1. The top-level node is a grouping node (bicycle) and
acts as a parent for the two child nodes (wheels). The children are grouped because
they are part of the same object both spatially and semantically.

To take advantage of this structure, the nodes must maintain spatial and semantic
information about the objects they represent. The main categories of information are
transforms, bounding volumes, render state, and animation state. Transforms are used
to position, orient, and size the objects in the hierarchy. Bounding volumes are used
for hierarchical culling purposes and intersection testing. Render state is used to set
up the renderer to properly draw the objects. Animation state is used to represent any
time-varying node data.

Front wheel

Bicycle

Back wheel

Figure 4.1 A simple tree with one grouping node.

144 Chapter 4 Hierarchical Scene Representations

4.1.1 Transforms

In Figure 4.1, it is not enough to know the semantic information that the two wheels
are part of the bicycle. The spatial information, the location of the wheels, must also
be specified. Moreover, it is necessary to know a coordinate system in which to specify
that information. The parent node has its own coordinate system, and the location of
a child is given relative to its parent’s coordinates.

Local Transforms

The location of a node relative to its parent is represented abstractly as a homoge-
neous matrix with no perspective component. The matrix, called a local transform,
represents any translation, rotation, scaling, and shearing of the node within the par-
ent’s coordinate system. While an implementation of scene graph nodes could directly
store the homogeneous matrix as a 4× 4 array, it is not recommended. The last row of
the matrix is always [0 0 0 1]. Less memory is used if the homogeneous matrix is stored
as a 3× 3 matrix representing the upper-left block and a 3× 1 vector representing the
translation component of the matrix. This also avoids the inefficient general multipli-
cation of homogeneous matrices and vectors since in that multiplication, there would
be three multiplies by 0 and one multiply by 1. Given a homogeneous matrix with no
perspective component, the matrix is denoted by

〈
M

∣∣∣ �T 〉 :=
[
M �T
�0T 1

]
. (4.1)

Using this compressed notation, the product of two homogeneous matrices is

〈
M1

∣∣∣ �T1

〉 〈
M2

∣∣∣ �T2

〉
=
〈
M1M2

∣∣∣M1 �T2 + �T1

〉
(4.2)

and the product of a homogeneous matrix with a homogeneous vector [�V |1]T is

〈
M

∣∣∣ �T 〉 �V =M �V + �T . (4.3)

To keep the update time to a minimum and to avoid using numerical inversion of
matrices in various settings, it is better to require that the local transform have only
translation, rotation, and uniform scaling components. The general form of such a
matrix is

〈
sR

∣∣∣ �T 〉 (4.4)

4.1 Tree-Based Representation 145

and is called an SRT-transform. The uniform scaling factor is s > 0, the rotational
component is the orthogonal matrix R whose determinant is one, and the transla-
tional component is �T . The product of two SRT-transforms is

〈
s1R1

∣∣∣ �T1

〉 〈
s2R2

∣∣∣ �T2

〉
=
〈
s1s2R1R2

∣∣∣ s1R1 �T2 + �T1

〉
, (4.5)

the product of an SRT-transform and a vector �V is

〈
sR

∣∣∣ �T 〉 �V = sR �V + �T , (4.6)

and the inverse of an SRT -transform is

〈
sR

∣∣∣ �T 〉−1 =
〈

1

s
RT

∣∣∣∣−1

s
RT �T

〉
. (4.7)

World Transforms

The local transform at a node specifies how the node is positioned with respect to
its parent. The entire scene graph represents the world itself. The world location of
the node depends on all the local transforms of the node and its predecessors in the
scene graph. Given a parent node P with child node C, the world transform of C is
the product of P ’s world transform with C’s local transform,

〈
M

(C)

world

∣∣∣ �T (C)

world

〉
=
〈
M

(P)

world

∣∣∣ �T (P)

world

〉 〈
M

(C)

local

∣∣∣ �T (C)

local

〉

=
〈
M

(P)

worldM
(C)

local

∣∣∣M(P)

world
�T (C)

local + �T (P)

world

〉
.

The world transform of the root node in the scene graph is just its local transform.
The world position of a node Nk in a path N0 · · · Nk, where N0 is the root node, is
generated recursively by the above definition as

〈
M

(Nk)

world

∣∣∣ �T (Nk)

world

〉
=
〈
M

(N0)

local

∣∣∣ �T (N0)

local

〉
· · ·

〈
M

(Nk)

local

∣∣∣ �T (Nk)

local

〉
.

4.1.2 Bounding Volumes

Object-based culling within a scene graph is very efficient whenever the bounding
volumes of the nodes are properly nested. If the bounding volume of the parent node
encloses the bounding volumes of the child nodes, culling of entire subtrees is sup-
ported. If the bounding volume of the parent node is outside the view frustum, then

146 Chapter 4 Hierarchical Scene Representations

the child nodes must be outside the view frustum and no culling tests need be done
on the children. Hierarchical culling provides a fast way for eliminating large portions
of the world from being processed by the renderer. The same nested bounding vol-
umes support collision detection. If the bounding volume of the parent node does not
intersect an object of interest, then neither do the child nodes. Hierarchical collision
detection provides a fast way for determining that two objects do not intersect. The
bounding volumes that are discussed in this chapter include spheres, oriented boxes,
capsules, lozenges, cylinders, and ellipsoids.

A leaf node containing geometric data will also contain a bounding volume based
on the model space coordinates of the data. However, the leaf node has a world space
representation based on the product of local transforms from scene graph root to that
leaf. That means the leaf node must also contain a world bounding volume, obtained
by applying the world transform to the model bounding volume.

To support the efficiencies of a hierarchical organization of the world, an internal
node requires a world bounding volume that contains the world bounding volumes of
all its children. It is not necessary to maintain a model bounding volume at an internal
node since such a node does not contain its own geometric data. While transforms
are propagated from the root of the scene graph toward the leaf nodes, the bounding
sphere calculations must occur from leaf node to root. A parent bounding volume
cannot be known until its child bounding volumes are known. A recursive traversal
downward allows computation of the world transforms. The upward return from the
traversal allows computation of the world bounding volumes.

4.1.3 Renderer State

Renderer state can also be maintained in a hierarchical fashion. For example, if a
subtree rooted at a node has all leaf nodes that want their textures to be alpha blended,
the node can be tagged with state information that indicates alpha blending should be
enabled for the entire subtree. Alternatively, tagging all the leaf nodes with the same
renderer state information is an efficient use of memory. A traversal along a single
path in the tree from root to leaf node accumulates the renderer state necessary to
draw the geometry of the leaf node. Just before a leaf node is about to be drawn, the
renderer processes the state information at that node and decides whether or not it
needs to change its own internal state. As changes in rendering state can be expensive,
the number of changes should be minimal. A typical expensive change involves using
different textures. If a texture is in system memory but not in video memory, the
texture must be copied to video memory, and that takes time. For sorting purposes,
it is convenient to allow each leaf node to store a copy of the renderer state. A sorter
can select a renderer state for which it wants to minimize changes, then sort the leaf
nodes accordingly.

4.2 Updating a Scene Graph 147

4.1.4 Animation

Animation in the classic sense is the motion of articulated characters and objects in
the scene. If a character is represented hierarchically, each node might represent a
joint (neck, shoulder, elbow, wrist, knee, etc.) whose local transformations change
over time. Moreover, the values of the transformations are usually controlled by
procedural means (see Chapter 9) as compared to the application manually adjusting
the transforms. This can be accomplished by allowing each node to store controllers,
with each controller managing some quantity that changes over time. In the case of
classic animation, a controller might represent the local transform as a matrix function
of time. For each specified time in the application, the matrix is computed by the
controller and the world transform is computed using this matrix.

It is possible to allow any quantity at a node to change over time. For example, a
node might be tagged to indicate that fogging is to be used in its subtree. The fog depth
can be made to vary with time. A controller can be used to procedurally compute the
depth based on current time. In this way animation is controlling any time-varying
quantity in a scene graph.

4.2 Updating a Scene Graph

The scene graph represents the state of the world at a given time. If the state changes for
whatever reason, the scene graph must be updated to represent the new state. Typical
state changes include model data changing at a node, local transforms changing at
a node, the topological structure of the tree changing, renderer state changing, or
some animated quantity changing. Updating the scene graph is only necessary in those
subtrees affected by the changes. For example, if a local transform is changed at a single
node, then only the subtree rooted at that node is affected. The world transforms of
descendants must be recalculated to reflect the new position and orientation of the
subtree’s root node. It is possible that more than one change has been made at different
locations in the scene graph. An implementation of a scene graph manager can attempt
to maintain the minimum number of subtree root nodes that need to be updated. For
example, if the local transforms are changed at nodes A and B, and if B is a descendant
of A, the update of the subtree rooted at node A will automatically update the subtree
rooted at B. It would be inefficient to first update the subtree at B, then update the
subtree at A.

The updating is done in a recursive pass. Transforms are updated on the downward
pass; bounding volumes are updated on the upward pass that is initiated as a return
from the recursive calls. Note that the upward pass should not terminate at the node
at which the initial update call was made. If the bounding volume of this node has
changed as a result of changes in bounding volumes of the descendants, then the
parent’s bounding volume might also change. Thus, the upward pass must proceed

148 Chapter 4 Hierarchical Scene Representations

all the way to the root of the scene graph. If transforms are animated, the update
pass is responsible for asking the controllers to make the necessary adjustments to the
quantities they manage before the world transform is computed. Finally, if renderer
state has changed, that information must be propagated to the leaf nodes (to support
sorting as mentioned earlier). A single update call can be implemented to handle all
changes in the scene graph, but since renderer state tends to change independently of
geometry and transform changes, it might be desirable to have separate update passes.

The computation of model bounding volumes for geometric data was already dis-
cussed in Chapter 2. The main focus in the remainder of this section is on computing
the parent’s bounding volume from the child bounding volumes. The expense and
algorithmic complexity depends on the type of volume used. It is possible to consider
all child bounds simultaneously, but practice has shown that it is easier and faster to
incrementally bound the children. For a node with three or more children, a bound
is found for the first two children. That bound is increased in size to include the third
child bound, and so on.

4.2.1 Merging Two Spheres

The algorithm described here computes the smallest sphere containing two spheres.

Library
Containment

Filename

ContSphere

Let the spheresSi be | �X− �Ci|2= r2
i for i = 0, 1. DefineL= | �C1− �C0| and unit-length

vector �U = (�C1− �C0)/L. The problem can be reduced to one dimension by projecting
the spheres onto the line �C0+ t �U . The projected intervals in terms of parameter t are
[−r0, r0] for S0 and [L− r1, L+ r1] for S1.

If [−r0, r0] ⊆ [L − r1, L + r1], then S0 ⊆ S1 and the two spheres merge into
S1. The test for this case is r0 ≤ L+ r1 and L− r1 ≤ −r0. A single test covers both
conditions, r1 − r0 ≥ L. To avoid the square root in computing L, compare instead
r1 ≥ r0 and (r1 − r0)

2 ≥ L2.
If [L − r1, L + r1] ⊆ [−r0, r0], then S1 ⊆ S0 and the two spheres merge into

S0. The test for this case is L+ r1 ≤ r0 and −r0 ≤ L− r1. A single test covers both
conditions, r1− r0≤−L. Again to avoid the square root, compare instead r1≤ r0 and
(r1 − r0)

2 ≥ L2.
Otherwise, the intervals either have partial overlap or are disjoint. The interval

containing the two projected intervals is [−r0, L + r1]. The corresponding merged
sphere whose projection is the containing interval has radius

r = L+ r1 + r0

2
.

The center t-value is (L+ r1 − r0)/2 and corresponds to the point

�C = �C0 + L+ r1 − r0

2
�U = �C0 + L+ r1 − r0

2L

(�C1 − �C0

)
.

4.2 Updating a Scene Graph 149

The pseudocode is

Input: Sphere(C0,r0) and Sphere(C1,r1)
centerDiff = C1 - C0;
radiusDiff = r1 - r0;
radiusDiffSqr = radiusDiff*radiusDiff;
Lsqr = centerDiff.SquaredLength();
if (radiusDiffSqr >= LSqr)
{

if (radiusDiff >= 0.0f)
return Sphere(C1,r1);

else
return Sphere(C0,r0);

}
else
{

L = sqrt(Lsqr);
t = (L+r1-r0)/(2*L);
return Sphere(C0+t*centerDiff,(L+r1+r0)/2);

}

4.2.2 Merging Two Oriented Boxes

If two oriented boxes were built to contain two separate sets of data points, it is possible

Library
Containment

Filename

ContBox

to build a single oriented bounding box that contains the union of the sets. That box
might not contain the two original oriented boxes—something that is not desired in a
hierarchical decomposition of an object. Moreover, the time it takes to build the single
oriented box could be expensive.

An alternative approach is to construct an oriented box from only the original
boxes and that contains the original boxes. This can be done by interpolation of the
box centers and axes, then growing the box to contain the originals. Let the original two
boxes have centers �Ci for i = 0, 1. Let the box axes be stored as columns of a rotation
matrix Ri. Now represent the rotation matrices by unit quaternions qi such that the
dot product of the quaternions is nonnegative, q0 · q1 ≥ 0. The final box is assigned
center �C = (�C0 + �C1)/2. The axes are obtained by interpolating the quaternions.
The unit quaternion representing the final box is q = (q0 + q1)/|q0 + q1|, where
the absolute value signs indicate length of the quaternion as a four-dimensional
vector. The final box axes can be extracted from the quaternion using the methods
described in Section 2.3. The extents of the final box are computed by projecting the
vertices of the two original boxes onto the final box axes and computing the extreme
values.

150 Chapter 4 Hierarchical Scene Representations

The pseudocode is

// Box has center, axis[3], extent[3]
Input: Box box0, Box box1
Output: Box box

// compute center
box.center = (box0.center + box1.center)/2;

// compute axes
Quaternion q0 = ConvertAxesToQuaternion(box0.axis);
Quaternion q1 = ConvertAxesToQuaternion(box1.axis);
Quaternion q = q0+q1;
Real length = Length(q);
q /= Length(q);
box.axis = ConvertQuaternionToAxes(q);

// compute extents
box.extent[0] = box.extent[1] = box.extent[2] = 0;
for each vertex V of box0 do
{

Point3 delta = V - box.center;
for (j = 0; j < 3; j++)
{

Real adot = |Dot(box0.axis[j],delta)|
if (adot > box.extent[j])

box.extent[j] = adot;
}

}
for each vertex V of box1 do
{

Point3 delta = V - box.center;
for (j = 0; j < 3; j++)
{

Real adot = |Dot(box1.axis[j],delta)|
if (adot > box.extent[j])

box.extent[j] = adot;
}

}

The function ConvertAxesToQuaternion stores the axes as columns of a rotation
matrix, then uses the algorithm to convert a rotation matrix to a quaternion. The
function ConvertQuaternionToAxes converts the quaternion to a rotation matrix,
then extracts the axes as columns of the matrix.

4.2 Updating a Scene Graph 151

4.2.3 Merging Two Capsules

Two capsules may be merged into a single capsule with the following algorithm. If one

Library
Containment

Filename

ContCapsule

capsule contains the other, just use the containing capsule. Otherwise, let the capsules
have radii ri > 0, end points �Pi, and directions �Di for i = 0, 1. The center points of
the line segments are �Ci = �Pi + �Di/2. Unit-length directions are �Ui = �D/| �D|.

The line L containing the final capsule axis is computed below. The origin of
the line is the average of the centers of the original capsules, �C = (�C0 + �C1)/2. The
direction vector of the line is obtained by averaging the unit direction vectors of the
input capsules. Before doing so, the condition �U0 · �U1 ≥ 0 should be satisfied. If it is
not, replace �U1 by−�U1. The direction vector for the line is �U = (�U0+ �U1)/| �U0+ �U1|.

The final capsule radius r must be chosen sufficiently large so that the final capsule
contains the original capsules. It is enough to consider the spherical ends of the
original capsules. The final radius is

r =max{dist(�P0,L)+ r0, dist(�P0+ �D0)+ r0, dist(�P1,L)+ r1, dist(�P1+ �D1,L)+ r1}.

Observe that r ≥ ri for i = 0, 1.
The final capsule direction �D will be a scalar multiple of line direction �U . Let �E0

and �E1 be the end points for the final capsule, so �P = �E0 and �D = �E1 − �E0. The
end points must be chosen so that the final capsule contains the end spheres of the
original capsules. Let the projections of �P0, �P0 + �D0, �P1, and �P1 + �D1 onto �C + t �U
have parameters τ0, τ1, τ2, and τ3, respectively. Let the corresponding capsule radii
be denoted ρi for 0≤ i ≤ 3. Let �Ej = �C + Tj �D for j = 0, 1. The Tj are determined
by “supporting” spheres that are selected from the end point spheres of the original
capsules. If �Q is the center of such a supporting sphere of radius ρ for end point �E1,
then T1 is the smallest root of the equation | �C + T �U − �Q| + ρ = r . Since r ≥ ρ, the
equation can be written as a quadratic

T 2 + 2 �U · (�C − �Q)T + | �C − �Q|2 − (r − ρ)2 = 0.

This equation must have only real-valued solutions. Similarly, if the �Q is the center of
the supporting sphere corresponding to end point �E0, then T0 is the largest root of the
quadratic. The quadratics are solved for all four end points of the original capsules,
and the appropriate minimum and maximum roots are chosen for the final T0 and T1.

4.2.4 Merging Two Lozenges

Two lozenges may be merged into a single lozenge that contains them with the fol-
lowing algorithm. Let the lozenges have radii ri > 0, origins �Pi, and edges �Eji for

i = 0, 1 and j = 0, 1. The center points of the rectangles of the lozenge are �Ci =�Pi + (�E0i + �E1i)/2. Unit-length edge vectors are �Uji = �Eji/| �Eji|. Unit-length nor-

mal vectors are �Ni = �U0i × �U1i.

152 Chapter 4 Hierarchical Scene Representations

The center point of the final lozenge is the average of the centers of the original

Library
Containment

Filename

ContLozenge

lozenges, �C = (�C0 + �C1)/2.
The edge vectors are obtained by averaging the coordinate frames of the origi-

nal lozenges using a quaternion representation. Let qi be the unit quaternion that
represents the rotation matrix [�U0i �U1i �Ni]. If q0 · q1 < 0, replace q1 by −q1. The
final lozenge coordinate frame is extracted from the rotation matrix [�U0 �U1 �N] cor-
responding to the unit quaternion q = (q0 + q1)/|q0 + q1|.

The problem now is to compute r sufficiently large so that the final lozenge
contains the original lozenges. Project the original lozenges onto the line containing
�P and having direction �N . Each projection has extreme points determined by the
corners of the projected rectangle and the radius of the original lozenge. The radius
r of the final lozenge is selected to be the length of the smallest interval that contains
all the extreme points of projection. Observe that r ≥ ri is necessary.

Project the rectangle vertices of original lozenges onto the plane containing �P and
having normal �N . Compute the oriented bounding rectangle in that plane where the
axes correspond to �Ui. This rectangle is associated with the final lozenge and produces
the edges �Ei = Li

�Ui for some scalars Li > 0. The origin point for the final lozenge is
�P = �C − �E0/2− �E1/2.

4.2.5 Merging Two Cylinders

To keep the merging algorithm simple, the original two cylinders are treated as cap-

Library
Containment

Filename

ContCylinder

sules: their representations are converted to those for capsules, end points are �Pi,
directions are �Di, and radii are ri. The capsule merging algorithm is applied to ob-
tain the cylinder radius r . Rather than fitting a capsule to the points �Pi ± ri �U and
�Pi + �Di ± ri �U , the points are projected onto the line �P + t �D, where �P is suitably
chosen from one of the fitting algorithms. The smallest interval containing the pro-
jected points determines cylinder height h.

4.2.6 Merging Two Ellipsoids

Computing a bounding ellipsoid for two other ellipsoids is done in a way similar to that

Library
Containment

Filename

ContEllipsoid

of oriented boxes. The ellipsoid centers are averaged, and the quaternions representing
the ellipsoid axes are averaged and then the average is normalized. The original
ellipsoids are projected onto the newly constructed axes. On each axis, the smallest
interval of the form [−σ , σ] is computed to contain the intervals of projection. The
σ -values determine the minor axis lengths for the final ellipsoid.

4.2.7 Algorithm for Scene Graph Updating

The pseudocode for updating the spatial information in a scene graph is given below.
Three abstract classifications are used: Spatial, Geometry, and Node. In an object-

4.2 Updating a Scene Graph 153

oriented implementation, the last two classes are both derived from Spatial. The

Library
Engine

Filename

Spatial

Geometry

Node

Spatial class manages a link to a parent, local transforms, and a world transform. It
represents leaf nodes in a tree. The Node class manages links to children. It represents
internal nodes in the tree. The Geometry class represents leaf nodes that contain
geometric data. It manages a model bounding volume.

The entry point into the update system for geometric state (GS) is

void Spatial::UpdateGS (float time, bool initiator)
{

UpdateWorldData(time);
UpdateWorldBound();
if (initiator)

PropagateBoundToRoot();
}

The input parameter to the call is set to true by the node at which the update is
initiated. This allows the calling node to propagate the world bounding volume update
to the root of the scene graph.

The function UpdateWorldData is virtual and controls the downward pass that
computes world transforms and updates time-varying quantities:

virtual void Spatial::UpdateWorldData (float time)
{

// update dynamically changing render state
for each render state controller rcontroller do

rcontroller.Update(time);

// update local transforms if managed by controllers
for each transform controller tcontroller do

tcontroller.Update(time);

// Compute product of parent’s world transform with this object’s
// local transform. If no parent exists, the child’s world
// transform is just its local transform.

if (world transform not computed by a transform controller)
{

if (parent exists)
{

worldScale = parent.worldScale*localScale;
worldRotate = parent.worldRotate*localRotate;
worldTranslate = parent.worldTranslate +

parent.worldScale*(parent.worldRotate*localTranslate);
}

154 Chapter 4 Hierarchical Scene Representations

else
{

// node is the root of the scene graph
worldScale = localScale;
worldRotate = localRotate;
worldTranslate = localTranslate;

}
}

}

The functionUpdateWorldBound is also virtual and controls the upward pass and
allows each node object to update its world bounding volume. Base class Spatial
has no knowledge of geometric data and in particular does not manage a model
bounding sphere, so the function is pure virtual and must be implemented both by
Geometry, which knows how to transform a model bounding volume to a world
bounding volume, and by Node, which knows how to merge world bounding volumes
of its children.

Finally, the propagation of world bounding volumes is not virtual and is a simple
recursive call:

void Spatial::PropagateBoundToRoot ()
{

if (parent exists)
{

parent.UpdateWorldBound();
parent.PropagateBoundToRoot();

}
}

The derived classes override the virtual functions. Class Geometry has nothing
more to say about updating world data, but it must update the world bound,

virtual void Geometry::UpdateWorldBound ()
{

worldBound = modelBound.TransformBy(worldRotate,
worldTranslate,worldScale);

}

The model bound is assumed to be correct. If model data is changed, the application
is required to update the model bound.

Class Node updates are as shown:

virtual void Node::UpdateWorldData (float time)
{

Spatial::UpdateWorldData(time);

4.2 Updating a Scene Graph 155

for each child do
child.UpdateGS(false); // child not initiator of

// original UpdateGS call
}

virtual void Node::UpdateWorldBound ()
{

worldBound = firstChild.GetWorldBound();
for each additional child do

worldBound = Merge(worldBound,child.worldBound);
}

The downward pass is controlled by UpdateWorldData. The node first updates its
world transforms by a call to the base class update of world transforms. The children of
the node are each given a chance to update themselves, thus yielding a recursive chain
of calls involving UpdateGS and UpdateWorldData. The update of world bounds is
done incrementally. The world bound is set to the first child’s world bound. As each
remaining child is visited, the current world bound and the child world bound are
merged into a single bound that contains both. Although this approach usually does
not produce the tightest bound, it is much faster than methods that do attempt the
tightest bound. For example, if bounding spheres are used, it is possible to compute
the parent world bound as the minimum volume sphere containing any geometric
data of the descendants. Such a computation is expensive and will severely affect the
frame rate of the application. The trade-off is to obtain a reasonable world bounding
volume for the parent that is inexpensive to compute.

Updating the set of current renderer states at the leaf nodes is also a recursive
system just as UpdateGS is. Class Geometry maintains a set of such states; call that
member stateSet. Each state can be attached to or detached from an object of this
class. A state object itself has information that can be modified at run time. If the
information is changed, then an update must occur starting at that node. The global
renderer state set is maintained by the renderer, so any changes to renderer state by the
objects must be communicated to the renderer. Class Spatial provides the virtual
function foundation for the renderer state (RS) update:

void Spatial::UpdateRS (RenderState parentState)
{

// update render states
if (parentState exists)
{

// parentState must remain intact to restore state after
// recursion
currentState = parentState;
modify currentState with thisState;

}

156 Chapter 4 Hierarchical Scene Representations

else
{

// this object is initiator of UpdateRS, use default
// renderer states
currentState = defaultRenderState;
PropagateStateFromRoot(currentState);

}

UpdateRenderState(currentState);
}

The initial call to UpdateRS is typically applied to a node in the tree that is not
the root node. Any renderer state from predecessors of the initiating node must be
accumulated before the downward recursive pass. The function PropagateState-
FromRoot does this work:

void Spatial::PropagateStateFromRoot (RenderState
currentState)

{
// traverse to root to allow downward state propagation
if (parent exists)

parent.PropagateStateFromRoot(currentState);

// update parent state by current state
modify currentState with thisState;

}

The call UpdateRenderState is pure virtual. Class Geometry implements this
to update its renderer state at leaf nodes. Class Node implements this to perform the
recursive traversal of the call on its children.

void Geometry::UpdateRenderState (RenderState currentState)
{

modify thisState with currentState;
}

void Node::UpdateRenderState (RenderState currentState)
{

for each child do
child.UpdateRS(currentState);

}
}

Notice that UpdateRS and UpdateRenderState form a recursive chain just as
UpdateGS and UpdateWorldData form a recursive chain.

4.3 Rendering a Scene Graph 157

4.3 Rendering a Scene Graph

The renderer manages a camera whose job it is to define the view frustum, the portion
of the world to be viewed. The process of rendering the scene graph in the frustum
at a given instant is typically referred to as the camera click. This process involves a
traversal of the scene graph, and the graph is assumed to be current (as established by
the necessary UpdateGS() and UpdateRS() calls at the relevant nodes).

Scene graph traversal includes object level culling as described earlier. If the world
bounding volume for a node is outside the view frustum, then the subtree rooted at
that node need not be traversed. If a subtree is not culled, then the traversal is recursive.
The renderer states are collected during traversal until a leaf node of the scene graph
is reached. At this point the renderer has all the state information it requires to be
able to properly draw the geometry represented by the leaf node. The leaf node has
the responsibility of providing the renderer with its geometric data such as vertices,
triangle connectivity information, triangle normals (for back face culling), and surface
attributes including vertex normals, colors, and texture coordinates.

Before the actual rendering of the leaf node object, it is useful to allow the object to
perform any preparations that are necessary for proper display. For example, culling is
based on world bounding volumes. The classes derived from Geometry have the lib-
erty of keeping current the world bounding sphere via the UpdateWorldBound call.
If an object is to be culled, then computing any expensive world data in the call to Up-
dateWorldData is wasteful. Instead, the Geometry classes could provide a Boolean
flag indicating whether or not the world data is current. The call to UpdateWorld-
Data updates world transforms, but additionally sets only the Boolean flag indicating
the world data is not current. A prerendering function called after it is determined
that an object is not to be culled can test the Boolean flag, find out the world data is
not current, make the data current, then set the flag to indicate the data is current.

Another use of a prerendering function involves dynamic tessellation of an object.
Chapter 10 discusses objects represented by a triangular mesh whose triangles are
increased or reduced based on a continuous level-of-detail algorithm involving a
preprocessed set of incremental mesh changes. The prerendering function can select
the appropriate level of detail based on the current camera and view frustum. Chapter
8 discusses objects represented by curved surfaces. The prerendering function can
dynamically tessellate the surfaces to the appropriate level of detail.

The complement of a prerendering function is a postrendering function that
gives the object a chance to do any cleanup associated with prerendering and actual
rendering.

4.3.1 Culling by Spheres

The test for intersection of bounding volume with view frustum is performed in
world space since the world bounding information is kept current by the object and
the world view frustum information is kept current by the camera. Let the world

158 Chapter 4 Hierarchical Scene Representations

Not culled Not culled

Culled
View frustum

Figure 4.2 Examples of culled and unculled objects.

bounding sphere have center �C and radius r . Let a view frustum plane be specified by

Library
Intersection

Filename

IntrPlnSphr

�N · �X = d , where �N is a unit-length vector that points to the interior of the frustum.
The bounding sphere does not intersect the frustum when the distance from �C to the
plane is larger than the sphere radius. An object is completely culled if its bounding
sphere satisfies

�N · �C − d <−r (4.8)

for one of the frustum planes. The left-hand side of the inequality is the signed distance
from �C to the plane. The right-hand side is negative and indicates that to be culled,
�C must be on the outside of the frustum plane and must be at least the sphere radius
units away from the plane. The test requires 3 multiplications and 3 additions. The
pseudocode is

bool CullSpherePlane (Sphere sphere, Plane plane)
{

return Dot(plane.N,sphere.C) - plane.d < -sphere.r;
}

It is possible for a bounding sphere to be outside the frustum even if all six culling
tests fail. Figure 4.2 shows examples of an object that is culled by the tests. It also
shows examples of objects that are not culled, one object whose bounding sphere
intersects the frustum and one object whose bounding sphere does not intersect the
frustum. In either case, the object must be further processed in the clipping pipeline.
Alternatively, the exact distance from bounding sphere to frustum can be computed
at greater expense than the distances from sphere to planes.

Better-fitting bounding volumes can lead to rejection of an object when the
bounding sphere does not, thereby leading to savings in CPU cycles. However, the

4.3 Rendering a Scene Graph 159

application must keep the bounding volume current as the object moves about the
world. For each change in a rigid object’s orientation, the bounding volume must be
rotated accordingly. This leads to a trade-off between more time to update bounding
volume and less time to process objects because they are more accurately culled.

The following sections describe the culling algorithms for oriented boxes, capsules,
lozenges, cylinders, and ellipsoids. In each section the frustum plane is �N · �X= d with
unit-length normal pointing to frustum interior.

4.3.2 Culling by Oriented Boxes

An oriented bounding box is outside the frustum plane if all its vertices are outside

Library
Intersection

Filename

IntrPlnBox3

the plane. The obvious algorithm of testing if all eight vertices are on the “negative
side” of the plane requires eight comparisons of the form �N · �V < d . The vertices are
of the form

�V = �C + σ0a0 �A0 + σ1a1 �A1 + σ2a2 �A2,

where |σi| = 1 for all i (eight possible choices, two for each σi). Each test requires
computing signed distances

�N · �V − d = (�N · �C − d)+ σ0a0 �N · �A0 + σ1a1 �N · �A1 + σ2a2 �N · �A2.

The 4 dot products are computed once, each dot product using 3 multiplications
and 2 additions. Each test requires an additional 3 multiplications and 4 additions
(the multiplications by σi are not counted). The eight tests therefore require 36
multiplications and 40 additions.

A faster test is to project the box and plane onto the line �C + s �N . The symmetry
provided by the box definition yields an interval of projection [�C − r �N , �C + r �N].
The interval is centered at �C and has radius

r = a0| �N · �A0| + a1| �N · �A1| + a2| �N · �A2|.

The frustum plane projects to a single point

�P = �C + (d − �N · �C) �N .

The box is outside the plane as long as the projected interval is outside, in which case
�N · �C − d <−r . The test is identical to that of sphere-versus-plane, except that r is
known for the sphere but must be calculated for each test of an oriented bounding
box. The test requires 4 dot products, 3 multiplications, and 3 additions for a total
operation count of 15 multiplications and 11 additions. The pseudocode is

160 Chapter 4 Hierarchical Scene Representations

Not culled Not culled

Culled
View frustum

Figure 4.3 Examples of culled and unculled objects.

bool CullBoxPlane (Box box, Plane plane)
{

r = box.a0*|Dot(plane.N,box.A0)| +
box.a1*|Dot(plane.N,box.A1)| +
box.a2*|Dot(plane.N,box.A2)|;

return Dot(plane.N,box.C) - plane.d < -r;
}

As with the sphere, it is possible for an oriented bounding box not to be culled
when tested against each frustum plane one at a time, even though the box is outside
the view frustum. Figure 4.3 illustrates such a situation.

4.3.3 Culling by Capsules

A capsule consists of a radius r > 0 and a parameterized line segment �P + t �D, where

Library
Intersection

Filename

IntrPlnCap

�D
= �0 and t ∈ [0, 1]. The signed distances from plane to end points are δ0= �N · �P − d

and δ1 = �N · (�P + �D)− d . If either δ0 ≥ 0 or δ1 ≥ 0, then the capsule is not culled
since it is either intersecting the frustum plane or on the frustum side of the plane.
Otherwise, both signed distances are negative. If �N · �D ≤ 0, then end point �P is
closer in signed distance to the frustum plane than is the other end point �P + �D. The
distance between �P and the plane is computed and compared to the capsule radius.
If �N · �P − d ≤ −r , then the capsule is outside the frustum plane and it is culled;
otherwise it is not culled. If �N · �D > 0, then �P + �D is closer in signed distance to
the frustum plane than is �P . If �N · (�P + �D) − d ≤ −r , then the capsule is culled;
otherwise it is not culled. The pseudocode for the culling algorithm is given below.
The Boolean result is true if and only if the capsule is culled.

4.3 Rendering a Scene Graph 161

bool CullCapsulePlane (Capsule capsule, Plane plane)
{

sd0 = Dot(plane.N,capsule.P) - plane.d;
if (sd0 < 0)
{

sd1 = sd0 + Dot(plane.N,capsule.D);
if (sd1 < 0)
{

if (sd0 <= sd1)
{

// P0 closest to plane
return sd0 <= -capsule.r;

}
else
{

// P1 closest to plane
return sd1 <= -capsule.r;

}
}

}

return false;
}

4.3.4 Culling by Lozenges

A lozenge consists of a radius r > 0 and a parameterized rectangle �P + s �E0 + t �E1,

Library
Intersection

Filename

IntrPlnLoz

where �E0
= �0, �E1
= �0, �E0 · �E1 = 0, and (s, t) ∈ [0, 1]2. The four rectangle corners
are �P00 = �P , �P10 = �P + �E0, �P01 = �P + �E1, and �P11 = �P + �E0 + �E1. The signed
distances are δij = �N · �Pij − d . If any of the signed distances are nonnegative, then
the lozenge either intersects the plane or is on the frustum side of the plane and it
is not culled. Otherwise, all four signed distances are negative. The rectangle corner
closest to the frustum plane is determined, and its distance to the plane is compared
to the lozenge radius to determine if there is an intersection. The pseudocode for the
culling algorithm is

bool CullLozengePlane (Lozenge lozenge, Plane P)
{

sd00 = Dot(plane.N,lozenge.P) - plane.d;
if (sd00 < 0)
{

dotNE0 = Dot(plane.N,lozenge.E0);
sd10 = sd00 + dotNE0;

162 Chapter 4 Hierarchical Scene Representations

if (sd10 < 0)
{

dotNE1 = Dot(plane.N,lozenge.E1);
sd01 = sd00 + dotNE1;
if (sd01 < 0)
{

sd11 = sd10 + dotNE1;
if (sd11 < 0)
{

// all rectangle corners on negative side
// of plane
if (sd00 <= sd10)
{

if (sd00 <= sd01)
{

// P00 closest to plane
return sd00 <= -lozenge.r;

}
else
{

// P01 closest to plane
return sd01 <= -lozenge.r;

}
}
else
{

if (sd10 <= sd11)
{

// P10 closest to plane
return sd10 <= -lozenge.r;

}
else
{

// P11 closest to plane
return sd11 <= -lozenge.r;

}
}

}
}

}
}

return false;
}

4.3 Rendering a Scene Graph 163

P + D

N

P

Q

U

Figure 4.4 Projection of cylinder and frustum plane, no-cull case.

4.3.5 Culling by Cylinders

A cylinder consists of a radius r > 0, a height h ∈ [0,∞], and a parameterized line

Library
Intersection

Filename

IntrPlnCyln

segment �C + t �W , where | �W | = 1 and t ∈ [−h/2, h/2]. Figure 4.4 shows a typical
no-cull situation. Let the plane be �N · �X = d , where | �N | = 1. Let �U , �V , and �W
form an orthonormal set of vectors. Any cylinder point �X can be written as �X =
�C + y0 �U + y1 �V + y2 �W , where y2

0 + y2
1 = r2 and |y2|<= h/2. Let y0= r cos(A) and

y1 = r sin(A). Substitute �X in the plane equation to get

−(�N · �W)y2 = (�N · �C − d)+ (�N · �U)r cos(A)+ (�N · �V)r sin(A).

If �N · �W = 0, then the plane is parallel to the axis of the cylinder. The two intersect if
and only if the distance from �C to the plane satisfies

| �N · �C − d| ≤ r .

In this situation the cylinder is culled when �N · �C − d ≤−r .
If �N · �W
= 0, then y2 is a function of A. The minimum and maximum values can

be found by the methods of calculus. The extreme values are

d − �N · �C ±
√

1− (�N · �W)2

�N · �W .

The plane and cylinder intersect if and only if

min(y2)≤ h/2 and max(y2)≥−h/2.

164 Chapter 4 Hierarchical Scene Representations

In this situation the cylinder is culled when the previous tests show no intersection
and �N · �C − d ≤−r . The pseudocode is

bool CullCylinderPlane (Cylinder cylinder, Plane plane)
{

sd0 = Dot(plane.N,cylinder.P) - plane.d;
if (sd0 < 0)
{

dotND = Dot(plane.N,cylinder.D)
sd1 = sd0 + dotND;
if (sd1 < 0)
{

dotDD = Dot(cylinder.D,cylinder.D);
r2 = cylinder.r*cylinder.r;
if (sd0 <= sd1)
{

// P0 closest to plane
return dotDD*sd0*sd0 >= r2*(dotDD-dotND*dotND);

}
else
{

// P1 closest to plane
return dotDD*sd1*sd1 >= r2*(dotDD-dotND*dotND);

}
}

}

return false;
}

The quantities �D · �D and r2 can be precomputed and stored by the cylinder as a way
of reducing execution time for the intersection test.

4.3.6 Culling by Ellipsoids

An ellipsoid is represented by the quadratic equationQ(�X)= (�X− �C)TM(�X− �C)=
Library

Intersection

Filename

IntrPlnElp3

1, where �C is the center of the ellipsoid, where M is a positive definite matrix, and
where �X is any point on the ellipsoid. An ellipsoid is outside a frustum plane whenever
the projection of the ellipsoid onto the line �C + s �N is outside the frustum plane. The
projected interval is [−r , r]. Figure 4.5 shows a typical no-cull situation. The ellipsoid
is culled whenever

4.3 Rendering a Scene Graph 165

N

C

0

Frustum side

C + sN

N•C – d – r N•C – d + rN•C – d

Figure 4.5 Projection of ellipsoid and frustum plane, no-cull case.

�N · �C − d ≤−r .

The construction of r is as follows. The points �X that project to the end points
of the interval must occur where the normals to the ellipsoid are parallel to �N . The
gradient of Q(�X) is a normal direction for the point, �∇Q= 2M(�X − �C). Thus, �X
must be a solution to M(�X − �C) = λ �N for some scalar λ. Inverting M and mul-
tiplying yields �X − �C = λM−1 �N . Replacing this in the quadratic equation yields
1= λ2(M−1 �N)TM(M−1 �N)= λ2 �NTM−1 �N . Finally, r = �N · (�X− �C)= λ �NTM−1 �N ,

so r =
√ �NTM−1 �N . The pseudocode is

bool CullEllipsoidPlane (Ellipsoid ellipsoid, Plane plane)
{

sd0 = Dot(plane.N,ellipsoid.C) - plane.d;
if (sd0 < 0)
{

r2 = Dot(plane.N,ellipsoid.Minverse*plane.N);
return sd0*sd0 >= r2;

}

return false;
}

166 Chapter 4 Hierarchical Scene Representations

4.3.7 Algorithm for Scene Graph Rendering

An abstract class Renderer has a method that is the entry point for drawing a scene

Library
Engine

Filename

Renderer

Spatial

Geometry

Node

TriMesh

graph:

void Renderer::Draw (Spatial scene)
{

scene.OnDraw(thisRenderer);
}

Its sole job is to start the scene graph traversal and pass the renderer for camera access
and for accumulating render state. The method is virtual so that any derived class
renderer can perform any setup before, and any cleanup after, the scene graph is
drawn.

The class Spatial implements

void Spatial::OnDraw (Renderer renderer)
{

if (forceCulling)
return;

savePlaneState = renderer.planeState;

if (!renderer.Cull(worldBound))
Draw(renderer);

renderer.planeState = savePlaneState;
}

The class Spatial provides a Boolean flag to allow the application to force culling of
an object. If the object is not forced to be culled, then comparison of the world bound-
ing volume to the camera frustum planes is done next. As mentioned in Section 3.4, if
the bounding volumes are properly nested, once a bounding volume is inside a frus-
tum plane there is no need to test bounding volumes of descendants against that plane.
In this case the plane is said to be inactive. The renderer keeps track of which planes are
active and inactive (the plane state). The current object must save the current plane
state since the state might change during the recursive pass and the old state must be
restored.

The member function Draw of class Spatial is also a pure virtual function. Class
Geometry manages the leaf node renderer state and uses the Draw function to tell the
renderer about the state it should use for drawing that leaf node. Class Node again
provides for the recursive propagation to its children.

4.3 Rendering a Scene Graph 167

void Geometry::Draw (Renderer renderer)
{

renderer.SetState(thisState);
}

void Node::Draw (Renderer renderer)
{

for each child do
child.OnDraw(renderer);

}

Notice the pattern of recursive chains provided by classes Spatial and Node. In this
case Draw and OnDraw form the recursive chain.

Finally, for a specific class derived from Geometry that has actual data, the ren-
derer must implement how to draw that data. For example, if TriMesh is derived from
Geometry and manages a triangle mesh with vertices, normals, colors, and texture
coordinates, the class must implement the virtual function as

void TriMesh::Draw (Renderer renderer)
{

Geometry::Draw(renderer);
renderer.Draw(this);

}

The call to the base class Draw tells the renderer to use the current rendering state at
the leaf node. The next call allows the renderer to do its specific work with the triangle
mesh. The Draw call in the renderer is a pure virtual function. If class SoftRender is
derived from Renderer and represents software rendering, then the entire geometric
pipeline of transformation, clipping, projection, and rasterizing is encapsulated in
Draw for SoftRender. On the other hand, if class HardRender is derived from
Renderer and represents a hardware-accelerated renderer, then Draw probably does
very little work and can feed the hardware card directly.

