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1 Introduction

This document provides various numerical approaches for computing geodesic curves on an n-dimensional
Riemannian manifold. Such curves arise naturally as shortest-length paths between points on a surface; the
path itself is required to lie on the surface. The classical surfaces are planes and spheres. The shortest-length
path between two points on a plane is the line segment which connects the points. The shortest-length path
between two points on a sphere is the shortest great-circle arc which connects the points. In the plane
example, the path is unique. In the sphere example, the path is not unique when the points are antipodal;
for example, there are infinitely many great-circle arcs connecting the North and South Poles on a sphere,
all such arcs having the same length. The shortest-length paths are examples of geodesic curves. Not all
geodesic curves need be shortest-length paths. In the sphere example, two nonantipodal points are connected
by two great-circle arcs. Both are geodesic curves, one of them the shortest-length path.

1.1 Basic Terminology

The Riemannian manifold has a metric tensor G = [gij ], which is a symmetric n×n matrix. The differential
form associated with the metric is

ds2 = dxT G dx (1)

where x = (x1, . . . , xn) may be thought of as the parameters which define the manifold. The superscript
indices are used to denote contravariant quantities. Subscript indices denote covariant quantities. The
variable s is the arc length parameter.

It is assumed that G is positive definite to avoid null geodesics. The inverse of G is G−1 = [gij ]. The
Christoffel symbols of the first kind are

Γijk = (gjk,i + gki,j − gij,k)/2 (2)

where gij,k = ∂gij/∂x
k. The Christoffel symbols of the second kind are

Γk
ij = Γij` g

`k (3)

The standard convention is used for repeated indices, in this case a summation is implied for the index `,
where 1 ≤ ` ≤ n.

For a parametrically defined manifold P(x) ∈ IRm for some dimension m > n, the metric tensor is

gij =
∂P

∂xi
· ∂P

∂xj
(4)

and the Christoffel symbols of the first kind are

Γijk =
∂2P

∂xi∂xj
· ∂P

∂xk
(5)

1.2 The Geodesic Equations

Various methods are employed to derive a set of ordinary differential equations in x whose solutions are
the geodesic curves. These include variational principles (selecting a curve to minimize the length integral),
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embedding of curves in a parametrically defined manifold (curves are required to have zero curvature), and
purely differential geometric methods (absolute differentiation of ordinary arc-length derivatives). The result
in all cases is the system of equations

d2xk

ds2
+ Γk

ij

dxi

ds

dxj

ds
= 0, 1 ≤ k ≤ n (6)

Once again, the repeated indices imply summations, in this case summations over i and j.

In the remainder of the document, I ignore the contravariant index convention and write the x indices as
subscripts. The superscripts look like powers on x and are somewhat confusing.

Example 1. Consider the (x1, x2) plane with metric tensor G = I, the 2×2 identity matrix. The Christoffel
symbols are all zero, Γijk = 0 and Γk

ij = 0. The geodesic equations are d2x1/ds
2 = 0 and d2x2/ds

2 = 0.
These integrate to produce geodesic curves

(x1, x2) = (a1 + b1s, a2 + b2s)

for constants a1, b1, a2, and b2. The geodesic curves are straight lines. The shortest-length path connecting
two points is a straight line segment. ./

Example 2. Consider the unit sphere centered at the origin in three dimensions, a manifold of two dimen-
sions. If P is a point on the sphere, a parameterization is

P(x1, x2) = (cos(x1) sin(x2), sin(x1) sin(x2), cos(x2))

for x1 ∈ [0, 2π) and x2 ∈ [0, π]. The metric tensor is

gij =

 sin2(x2) 0

0 1


The Christoffel symbols of the first kind are

Γij,1 =

 0 sin(x2) cos(x2)

sin(x2) cos(x2) 0

 , Γij,2 =

 − sin(x2) cos(x2) 0

0 0


The Christoffel symbols of the second kind are

Γ1
ij =

 0 cos(x2)/ sin(x2)

cos(x2)/ sin(x2) 0

 , Γ2
ij =

 − sin(x2) cos(x2) 0

0 0


The geodesic equations are

d2x1

ds2
+ 2

cos(x2)

sin(x2)

dx1

ds

dx2

ds
= 0,

d2x2

ds2
− sin(x2) cos(x2)

(
dx1

ds

)2

= 0

The first equation is trivially satisfied when x1 is a constant (dx1/ds = 0 and d2x/ds2 = 0). The second
equation becomes d2x2/ds

2 = 0, in which case a solution is x2 = s for s ∈ [−π, π]. The equation x1 = c
for a constant c defines a plane through the origin of space. This plane intersects the unit sphere in a great
circle. The value x2 = s moves you around the great circle with unit speed.
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The second equation is trivially satisfied when x2 = π/2. The first equation becomes d2x1/ds
2 = 0, in which

case a solution is x1 = s for s ∈ [0, 2π]. The equation x2 = π/2 defines a plane through the origin of space.
This plane intersects the unit sphere in a great circle. The value x1 = s moves you around the great circle
with unit speed.

Generally, great circles are defined by P(s) = cos(s)U+sin(s)V, where U = (u1, u2, u3) and V = (v1, v2, v3)
are unit-length vectors that are perpendicular, and where s ∈ [0, 2π). The parameterization moves you
around the great circle with unit speed. The equation

(cos(x1) sin(x2), sin(x1) sin(x2), cos(x2)) = cos(s)U + sin(s)V

has the solutions

x1 = tan−1

(
u2 cos(s) + v2 sin(s)

u1 cos(s) + v1 sin(s)

)
, x2 = cos−1 (u3 cos(s) + v3 sin(s))

These may be verified as solutions to the geodesic differential equations. ./

Example 3. A slight variation on Example 2 is to consider an ellipsoid PTDP = 1, whereD = Diag(d1, d2, d3).
The origin is the center of the ellipsoid. The unit sphere centered at the origin is a special case when D = I,
the identity matrix. A parameterization is

P(x1, x2) = (d1 cos(x1) sin(x2), d2 sin(x1) sin(x2), d3 cos(x2))

for x1 ∈ [0, 2π) and x2 ∈ [0, π]. For simplicity of notation, define si = sin(xi) and ci = cos(xi) for i = 1, 2.
The metric tensor is

gij =

 [d2
1s

2
1 + d2

2c
2
1]s2

2 (d2
2 − d2

1)s1c1s2c2

(d2
2 − d2

1)s1c1s2c2 [d2
1c

2
1 + d2

2s
2
1]c22 + d2

3s
2
2


The inverse metric tensor is

gij =
1

∆

 [d2
1c

2
1 + d2

2s
2
1]c22 + d2

3s
2
2 −(d2

2 − d2
1)s1c1s2c2

−(d2
2 − d2

1)s1c1s2c2 [d2
1s

2
1 + d2

2c
2
1]s2

2


where

∆ = s2
2{d2

1d
2
2c

2
2 + d2

3[d2
1s

2
1 + d2

2c
2
1]s2

2}

The Christoffel symbols of the first kind are

Γij,1 =

 (d2
1 − d2

2)s1c1s
2
2 [d2

1s
2
1 + d2

2c
2
1]s2c2

[d2
1s

2
1 + d2

2c
2
1]s2c2 (d2

1 − d2
2)s1c1s

2
2


and

Γij,2 =

 −[d2
1c

2
1 + d2

2s
2
1]s2c2 (d2

2 − d2
1)s1c1c

2
2

(d2
2 − d2

1)s1c1c
2
2 [d2

3 − d2
1c

2
1 − d2

2s
2
1]s2c2


The Christoffel symbols of the second kind are

Γ1
ij =

1

∆

 d2
3(d2

1 − d2
2)s1c1s

4
2 s2c2(d2

1d
2
2c

2
2 + d2

3(d2
1s

2
1 + d2

2c
2
1)s2

2)

s2c2(d2
1d

2
2c

2
2 + d2

3(d2
1s

2
1 + d2

2c
2
1)s2

2) d2
3(d2

1 − d2
2)s1c1s

4
2
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and

Γ2
ij =

1

∆

 −d2
1d

2
2s

3
2c2 0

0 s3
2c2(d2

3(d2
1s

2
1 + d2

2c
2
1)− d2

1d
2
2)


The geodesic equations are somewhat complicated expressions. Naturally, this is not a problem when com-
puting numerically, but the point is that even for something as simple as an ellipsoid, the expressions can be
daunting. The geodesic equations for an ellipsoid generally do not have a closed-form solution, so you must
resort to numerical methods to solve them. Practitioners in the geosciences will have the need for this when
computing shortest paths on the surface of the earth, which is ellipsoidal rather than spherical. ./

The remaining sections discuss various methods for numerically solving the equations (6) to obtain a geodesic
path, and hopefully the shortest-length path, between two points on the Riemannian manifold.

2 Shooting Methods

The equations (6) are written concisely in a vector-valued form as

x′′(s) = F(x(s),x′(s)) (7)

where x = (x1, . . . , xn), x′(s) = dx/ds, and x′′ = d2x/ds2. Again, the subscripts are used rather than
superscripts to avoid confusing them with power operations. The vector-valued function F is just a short
notation for the right-hand side of the geodesic equations.

Given two points a and b on the manifold, the shortest-path geodesic connecting them has a length L, which
at the moment is unknown. Let’s revisit this issue later, but for the sake of the motivation for shooting
methods, just treat L as if it is known. The requirement is that a solution x(s) of equation (7) satisfy the
boundary conditions

x(0) = a, x(L) = b (8)

Taken together, equations (7) and (8) are referred to as a two-point boundary value problem. Numerical
methods for solving such problems are typically more difficult to implement and make robust than for an
initial value problem. The latter problem involves specifying initial conditions,

x(0) = a, x′(0) = v (9)

The starting position and starting velocity are specified for the differential equation. Initial value problems
for systems of first-order ordinary differential equations are easily solved by standard methods such as the
Runge-Kutta Fourth-Order method. Equations (7) are second-order equations, but they may be reduced
to first-order equations in the usual manner by introducing new variables y(s) = x′(s), in which case the
first-order system has twice as many equations as the second-order system, x′(s)

y′(s)

 =

 y(s)

F(s,x(s),y(s))

 ,
 x(0)

y(0)

 =

 a

v

 (10)

If you were really lucky, you might guess the initial direction v for which the solution of the initial value
problem (7)-(9) is also the solution for the boundary value problem (7)-(8). The probability of guessing
correctly is essentially zero. Shooting methods are designed to allow you to start with a presumably incorrect
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initial guess for v, and then iteratively refine it to the correct velocity. The idea is one of shooting an arrow
at a distant target, where the initial elevation and speed of the arrow are key aspects for hitting the target.
If you miss the target on the first shot, you adjust the arrow’s elevation and/or speed slightly and try again.
The adjustments use feedback from the previous attempt to hit the target. If you were close to the target the
first time, the adjustment of the elevation and/or speed will be only slight modifications from the previous
ones.

2.1 The Standard Algorithm

The mathematical description of a shooting method is now given. Let the solution to the initial value
problem be written to indicate its dependence on the initial values as well as on the independent variable s;
that is, write the solution as x(s,a,v). For each choice of a and v, you get a different solution to the initial
value problem. The initial velocity v of interest is the one for which x(L,a,v) = b. Consider this condition
written as

R(v) = x(L,a,v)− b = 0 (11)

The length L, the initial position a, and the final position b never change during the numerical construction.
The only variable here is the initial velocity v. The equation is set up as a root-finding problem: Construct
a root v to the equation R(v) = 0.

The function R is generally not known in closed form, and is obtained only through numerically solving the
initial value problem. However, we may still formally seek a root of the equation using Newton’s Method
(or some other multidimensional root-finding algorithm). Let DR denote the matrix of first-order partial
derivatives of R = (R1, . . . , Rn) with respect to the components of v = (v1, . . . , vn). That is, the (i, j) entry
of the matrix is the partial derivative ∂Ri/∂vj . Newton’s method is

vk+1 = vk −DR−1(vk)R(vk), k ≥ 0 (12)

where v0 is an initial guess to the root. The matrix DR−1 is the inverse of the matrix DR. As k k approaches
infinity, the limiting iteration is (hopefully) a root to the equation. In practive, the iterations are computed
until either R(vk) is sufficiently close to zero or until consecutive iterates have a difference that is sufficiently
close to zero.

The technical challenge is to compute the matrix DR. This is formally written as

DR(v) = xv(s,a,v) (13)

The subscript notation xv is suggestive of taking derivatives of components of x with respect to components
of v. Now consider equation (7) written to show its dependence on other parameters,

x′′(s,a,v) = F(s,x(s,a,v),x′(s,a,v)) (14)

Formally compute the derivative with respect to v to obtain the following, where the arguments are sup-
pressed for clarity:

x′′v = Fx xv + Fx′ x′v (15)

The construction uses the Chain Rule from Calculus. The quantity Fx is the matrix of first-order partial
derivatives of the components of F with respect to the components of x and the quantity Fx′ is the matrix
of first-order partial derivatives of the components of F with respect to the components of x′. The matrix
xv was defined earlier. Its first-order derivative with respect to s is x′v and its second-order derivative with
respect to s is x′′v.
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Equation (15) is referred to as the first variational equation for (7). It is a matrix-valued differential equation
which may be written as a system of first-order equations in a manner similar to how equation (10) was
derived. The initial values may also be formally differentiated to produce

xv(0) = Z, x′v(0) = I (16)

where Z is the n× n zero matrix and I is the n× n identity matrix.

The initial value problem for xv(s,a,v), namely, (15)-(16), is solved using standard methods, such as the
Runge-Kutta Fourth-Order method. The solution is evaluated at s = L, and then inverted so that the
Newton’s iterate in equation (12) may be evaluated; that is,

vk+1 = vk − [xv(L,a,vk)]−1[x(L,a,vk)− b] (17)

This is quite an intensive algorithm to implement. Moreover, I indicated earlier that we would assume that
the geodesic length L is known, which it is not!

2.2 A Modified Algorithm for Geodesics

As indicated, the standard shooting method requires knowing the final parameter s = L for the boundary
point b, but we do not know L since it is the length of the solution we seek. We could attempt to estimate
L, shoot once, and then reestimate L, but be aware that if L is underestimated, the shooting can never
succeed. All the shots must fall short because the estimated L is smaller than the length of the smallest
path connecting a and b.

An overestimate of L apparently has similar problems. Too large an estimate means we will always overshoot
the target no matter what the initial velocity. The flaw in this thinking is that we want to reach the target
exactly at the estimated parameter. This goal is overly restrictive. If L′ is the overestimate of L, that is
L′ > L, then our hope is that a computed geodesic x(s,a,v) of length L′ passes through b. Thus, we are
satisfied if x(s,a,v) = b for s = L < L′, even though the computed curve terminates at a point different
from b.

The standard shooting method must be modified to deal with the new goals. In particular, we will require
a velocity vector v such that the geodesic distance between x(L′,a,v) and b is minimized. Figure 1
illustrates.

Figure 1. Overshooting in hopes of finding the boundary point b.

7



The true distance from a to b is L, but is unknown. The overestimated distance is L′ = L + ∆L0. The
geodesic path from a to c0 is what we want to compute, because it contains b. The numerical algorithm
first computes the geodesic from a to some other point c1. Any path the numerical method constructs will
have length L′. The claim is that the geodesic distance from b to c1 must be larger or equal to the geodesic
distance from b to c0. That is, we claim ∆L1 ≥ ∆0. The direct path from a to c1 is the shortest-length
path connecting the two points. The path from a to c1 which goes through b can only be longer (or same
length), which forces ∆L1 ≥ ∆L0.

The conclusion here is that the guiding factor in refining the estimate on the initial velocity v is to minimize
the geodesic distance from b to the boundary point of any numerically constructed curve. However, this
problem is itself a two-point boundary value problem because it requires computing geodesic paths from b
to other specified points. An approximation to the situation might be fruitful. The geodesic lengths of the
line segments connecting b to the c(v) = x(L′,a,v) points can be used instead to control the refinement of
v. Specifically, the line segment distance is

`(v) =

∫ 1

0

√
(c(v)− b)

T
G ((1− t)b + tc(v)) (c(v)− b) dt (18)

This function may be minimized using Steepest Descent or a Conjugate Gradient method. In either case,
the gradient vector `v must be computed, and it involves the derivative matrix cv, which is just the matrix
xv described earlier in the discussion about the standard shooting method. Thus, the modified shooting
algorithm will itself require numerical solution of xv, just as the standard algorithm did.

One last numerical requirement is producing the overestimate L′. The length of any path connecting a and
b will do since L is the minimum length over all paths connecting these points. It is sufficient to choose L′

to be the geodesic length of the line segment connect a and b. Equation (18) provides the equation, but
with a replacing c(v).

2.3 Another Modified Algorithm for Geodesics

The geodesic equations use arc length parameter s for the independent variable. An alternate parameter t
may be used. Specifically, think of xi(s) = yi(t) for 1 ≤ i ≤ n. Differentiating leads to

dxi
ds

=
dyi
ds

=
dyi
dt

dt

ds
=
y′i
s′

(19)

where s′ = ds/dt and y′i = dyi/dt. Differentiating again,

d2xi
ds2

=
d

ds

(
y′i
s′

)
=

d

dt

(
y′i
s′

)
dt

ds
=
s′y′′i − s′′y′i

(s′)3
(20)

where s′′ = d2s/dt2 and y′′i = d2yi/dt
2.

The differential form in equation (1) gives us the relationship between s and t. Written using tensor notation,
using the summation convention for repeated indices, and using subscripts instead of superscripts for the y
terms,

s′ =
√

y′(t)TG(y(t))y(t) =
√
gijy′iy

′
j (21)

The derivative is

s′′ =
gij(y

′
iy
′′
j + y′′i y

′
j) + gij,`y

′
iy
′
jy
′
`

2
√
gijy′iy

′
j

(22)
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An identity that relates the partial derivatives of the metric tensor to the Christoffel symbols is

gij,` = Γi`j + Γj`i (23)

The geodesic equations (6) are converted to t and y(t) using equations (19) through (23), where a multipli-
cation by (s′)2 was performed to isolate the first of the second-derivative terms,

y′′k −

(
gij(y

′
iy
′′
j + y′′i y

′
j) + (Γi`j + Γj`i)y

′
iy
′
jy
′
`

2gijy′iy
′
j

)
y′k + Γk

ijy
′
iy
′
j = 0. 1 ≤ k ≤ n (24)

Notice that the equations must be manipulated to solve explicitly for the second-derivative terms. This
step may be performed numerically. We may choose the domain for t as we like, let’s say t ∈ [0, 1]. The
boundary conditions for the two-point boundary value problem are then y(0) = a and y(1) = b. The
standard shooting method may be applied to this problem, but at the expense of many more calculations to
evaluate the differential equation terms.

3 Continuous Relaxation by Partial Differential Equations

As we have seen, shooting methods are quite difficult to formulate for the geodesic equations because of the
lack of knowledge of the total length L. An alternative approach is to compute the geodesics by relaxation,
in particular as the steady-state solution to a system of parabolic partial differential equations corresponding
to equations (6):

∂xk
∂t

=
∂2xk
∂s2

+ Γk
ij

∂xi
∂s

∂xj
∂s

= 0, 1 ≤ k ≤ n (25)

Any solution depends on the arc length s and the introduced time parameter t, call it x(s, t). Parabolic
PDEs require initial conditions and boundary conditions. The initial condition for this system is chosen as
some curve connecting the points a and b. That is,

x(s, 0) = c(s), 0 ≤ s ≤ L (26)

The boundary conditions are
x(0, t) = a, x(L, t) = b, t ≥ 0 (27)

Theoretically, one hopes that there is a unique solution to the PDE such that

x(s,∞) = lim
t→∞

x(s, t)

is a solution to the original geodesic equations (6).

As formulated, the parabolic PDE has the same problem as the shooting method. We do not know L. The
problem needs to be slightly modified to introduce a moving boundary. The left boundary remains s = 0, but
the right boundary is some curve s = `(t). The initial curve is c(s) for 0 ≤ s ≤ L′ = `(0) for an overestimate
L′ of the geodesic length. The line segment connecting the boundary points is as good a guess as any. The
boundary conditions are now

x(0, t) = a, x(`(t), t) = b, t ≥ 0 (28)

This still begs the question in that it is not clear how one could choose `(t), especially since you need
`(∞) = limt→∞ `(t) = L, and L is unknown. Regardless, a numerical scheme based on finite difference
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approximations to partial derivatives may be used. A polyline is used to approximate x(s, t), and the
vertices of the polyline are updated over time. The process itself creates the moving boundary `(t), but it
is not important what that boundary is, only that in the limit you get a geodesic curve and the moving
boundary approaches L.

The finite difference estimates included a forward difference in time,

∂xk(s, t)

∂t

.
=
xk(s, t+ ∆t)− xk(s, t)

∆t
(29)

and a centered difference in space,

∂xk(s, t)

∂s

.
=
xk(s+ ∆s, t)− xk(s−∆s, t)

2∆s
(30)

and
∂2xk(s, t)

∂s2

.
=
xk(s+ ∆s, t)− 2xk(s, t) + xi(s−∆s, t)

(∆s)2
(31)

Replacing these in equation (25) and solving for the xk(s, t+ ∆t) term produces

xk(s, t+ ∆t) = xk(s, t) + ∆t
(∆s)2 [xk(s+ ∆s, t)− 2xk(s, t) + xk(s−∆s, t)

+0.25Γk
ij (xi(s+ ∆s, t)− xi(s−∆s, t)) (xj(s+ ∆s, t)− xj(s−∆s, t))

] (32)

The initial curve is a line segment, decomposed into a polyline with equally spaced points (Euclidean distance
for spacing, not geodesic). The end points are the boundary points and are never modified. An interior
polyline point has two adjacent points. The interior point is represented by x(s, 0), the two neighbors by
x(s±∆s, 0). The interior points are modified and stored in temporary memory (rather than a replacement
in current memory) according to the difference equation (32). The point x(s, 0) is updated to x(s,∆t). After
all interior points are updated, they are copied back into the original memory locations and the process is
repeated for the next time step.

The numerical stability of the algorithm will depend on the size of ∆t/(∆s). The smaller the value, the more
likely the algorithm is stable. However, the smaller the value, the longer it takes to converge (if it does at
all). This is the usual trade off with numerical methods for parabolic PDEs. Another issue is that ∆s is an
approximation to the geodesic distance between adjacent polyline points. During the evolution, if adjacent
points move far apart, ∆s is no longer a good estimate and the finite difference approximations (30) and
(31) are no longer accurate. In this case your alternatives are (1) to insert more polyline vertices between
the two that have moved far apart or (2) use a different approximation for the derivatives. Choice (1) is
preferable, but increases the computational time for the algorithm.

This approach should work reasonably well when the initial curve is a good approximation to the geodesic
curve. The line segment I proposed is not always a good choice. Moreover, if you choose a line segment and
the polyline representing it has a large number of vertices, the updates of the vertices are rather minor and
the method generally fails to converge to a solution. My instinct originally was that I want to start with
a large number of vertices, but experiments verified the polyline really is stiff–the vertices cannot move far
during the relaxation. An attempt for one vertex to move far from the others increases the total geodesic
length of the polyline, which the evolution is designed to inhibit!
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4 Discrete Relaxation by Dijkstra’s Algorithm

A computationally expensive approach, but one guaranteed to give you good approximations to the geodesic
curves, is based on generating a grid of samples. The grid points are the nodes in a weighted graph and
pairs of adjacent grid points are the arcs in that graph. Each arc weight is the geodesic distance between
the adjacent grid points of the arc. Naturally, this is a circular problem because we are trying to compute
the geodesic path (and therefore distance) between points. The idea, though, is to have a high-resolution
grid so that the geodesic lengths of line segments connecting adjacent grid points are good approximations
to the true geodesic distances. The grid is assumed to have the fullest topology possible. For example, in
2D, the center point of a 3 × 3 lattice of grid points has 8 adjacent neighbors. In 3D, the center point of a
3× 3× 3 lattice has 26 neighbors. In n dimensions, the center point of a 3n-lattice has 3n − 1 neighbors.

Once the weighted graph is established, Dijkstra’s Algorithm is used to compute the minimum-weight path
connecting the two manifold points of interest. The algorithm is discussed in standard computer science
textbooks, for example, “Introduction to Algorithms” by Cormen et al. The usual implementation processes
all pairs of points. For the problem at hand, this can be quite expensive, especially when the dimension of
the Riemannian manifold is large (the grid grows exponentially in size with linear increase in dimension).
Instead, the full grid does not have to be physically allocated in memory and the arc weights are computed
only when needed. A Bresenham’s integer-based line algorithm is used to identify a sequence of grid points
that act as a polyline connecting a and b. This set of grid points is dilated by one unit. In 2D, a grid point is
dilated to include its 3×3 neighborhood. In 3D, a grid point is dilated to include its 3×3×3 neighborhood.
In n dimensions, a grid point is dilated to include its 3n-lattice neighborhood.

The dilated polyline obtained by the method described is treated as a weighted graph and all the arc weights
are calculated. Dijkstra’s algorithm is applied to compute the minimum-weight path through the graph. If
all the path points are interior to the weighted graph, that is, if all 3n − 1 neighbors of each path point
are in the graph, then this path is the approximation to the geodesic path connecting a and b. Otherwise,
some of the path points are on the boundary of the current set of grid points. The next set of grid points
is obtained by dilating the current path by one unit. The update of the grid point set may be done in a
manner to preserve weights already computed. A boundary point that is not on the current path and is not
an immediate neighbor of a path point may be discarded from the current set of grid points. A boundary
point that is on the current path is dilated and the weights computed with the newly added neighbors. Once
the next grid point set is known, the process is repeated.

5 Hierarchical Relaxation

This section presents an algorithm I devised based on experimenting with the other methods and under-
standing their limitations. I have never had much success with shooting methods. The continuous relaxation
does not appear to tie in differential geometric information into the updates, especially since the finite dif-
ference approximations are analytical and not geometrical. The continuous relaxation does not perform
well when you start with a poorly approximating initial curve with even a moderate number of samples.
Dijkstra’s algorithm is robust, but is very computationally expensive. By design, it appears to need a lot
of grid points, giving the convergence behavior a flavor of the continuous relaxation. What appears to be
needed is a multiscale approach, one which quickly evolves the initial guess curve to produce a reasonable
approximation to the geodesic, and then refines this result at a smaller scale.

The algorithm constructs a polyline approximation to the geodesic curve. Each segment of the polyline is
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subdivided into two segments. The common point of these segments is selected to reduce the geodesic length
of the original segment. Given two points a and b, the line segment connecting them is (1 − t)a + tb for
t ∈ [0, 1]. The geodesic length is

L =

∫ 1

0

√
(b− a)

T
G ((1− t)a + tb) (b− a) dt (33)

The midpoint of the segment is m = (a+b)/2. Let L0 denote the geodesic length of the segment connecting
x0 and m and let L1 denote the geodesic length of the segment connecting m and x1. The total length L is
the sum of the lengths L0 and L1, which may be written in a form to suggest L is a function of m,

L(m) =
∫ 1

0

√
(m− a)

T
G ((1− t)a + tm) (m− a) dt

+
∫ 1

0

√
(m− b)

T
G ((1− t)b + tm) (m− b) dt

=
∫ 1

0

√
(mi − ai)Tgij ((1− t)a` + tm`) (mj − aj) dt

+
∫ 1

0

√
(mi − bi)Tgij ((1− t)b` + tm`) (mj − aj) dt

(34)

The goal now is to choose a new value for m which will minimize L(m), or at least to decrease the initial
value of L by a significant amount. Once a new m is chosen, the original line segment is now a polyline
of two line segments. Each subsegment may be further subdivided using the same algorithm. The level
of subdivision is at the user’s discretion, perhaps automatically terminating when the geodesic length of a
segment is smaller than a prescribed tolerance.

There are many methods for minimization. One that seems practical here is just a simple steepest descent.
If m0 is the current choice for m, the next choice is of the form

m1 = m0 − r∇L(m0) (35)

for some r > 0. The vector −∇L(m0) is the direction in which L(m) (instantaneously) decreases the most
at the point m0. Thus, we need to compute the gradient of L. Moreover, we need to do a 1-dimensional
search of the ray of equation (35) to compute a minimum for f(r) = L(m0 − r∇L(m0)). Or for practical
reasons, we just need a search to produce some r which makes L smaller than the value at m0.

The gradient of L, written using tensor notation, is

L,k =
∫ 1

0

2g0
ij(mj−aj)+tg0

ij,k(mi−ai)(mj−aj)

2
√

(mi−ai)Tg0
ij(mi−ai)

+
2g1

ij(mj−bj)+tg1
ij,k(mi−bi)(mj−bj)

2
√

(mi−bi)Tg1
ij(mi−bi)

dt (36)

where

g0
ij = gij ((1− t)a + tm)

g0
ij,k = gij,k ((1− t)a + tm)

g1
ij = gij ((1− t)b + tm)

g1
ij,k = gij,k ((1− t)b + tm)
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The identity (23) is used for evaluating the gij,k terms.

The scheme which appears to be reasonable numerically is to do all the segment subdivisions first, each
subdivision using the steepest descent algorithm once. Once you have a fine enough subdivision, then iterate
over the polyline vertices and refine each one using the steepest descent algorithm. The number of iterations
over the vertices is at the user’s discretion. Also, the steepest descent algorithm may be applied multiple
times at a vertex, not just once.

13


	1 Introduction
	1.1 Basic Terminology
	1.2 The Geodesic Equations

	2 Shooting Methods
	2.1 The Standard Algorithm
	2.2 A Modified Algorithm for Geodesics
	2.3 Another Modified Algorithm for Geodesics

	3 Continuous Relaxation by Partial Differential Equations
	4 Discrete Relaxation by Dijkstra's Algorithm
	5 Hierarchical Relaxation

