
Polysolids and Boolean Operations

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: August 23, 1999
Last Modified: June 5, 2021

Contents

1 Introduction 2

2 Topological Concepts 2

3 Polysolids 3

3.1 Polysolids in R1 . 3

3.2 Polysolids in R2 . 4

3.3 Polysolids in Rn . 5

4 Boolean Operations on Polysolids 6

4.1 Canonical Form for a Polysolid . 7

4.1.1 Color Selection . 7

4.1.2 Requirements for Graph Features . 7

4.1.3 Requirements for Polyface Normals . 8

4.2 Normalization of the Input Polysolids . 8

4.3 Acceptance of Polyfaces for the Output Polysolid . 8

5 Boolean Operations on Polysolids in R2 11

5.1 Normalization . 11

5.2 Acceptance . 13

1

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

1 Introduction

This document is based on notes from Professor Hugh Maynard and Professor Lucio Tavernini in the Com-
puter Science Department at the University of Texas at San Antonio. It is also based on my recollection of
the ideas when I attended as a visitor a seminar by Professor Maynard.

The framework for polysolids was developed by them in the early 1980s, but they never published their
work. At that time, the seminal book Computational Geometry: An Introduction by Franco P. Preparata
and Michael Ian Shamos was published. The Maynard–Tavernini ideas are important for Boolean operations
in constructive planar geometry (2D) and in constructive solid geometry (3D). Moreover, the ideas easily
extend to higher dimensions and reduce to the 2D problem by recursion in dimension. Boolean operations
on polysolids require no special-case handling as the framework is concise and powerful.

The original title of this document was Polysolids and Boolean Operations, but I renamed it to emphasize
the focus on Boolean operations. I also have taken the liberty to present the ideas in a modified form to
emphasize the design and implementation of the Boolean operations. During the process of revisiting the
material I have restricted the definition of polysolids to those having a bounded component, which is all that
is needed for Boolean operations in standard applications. Any interpretations or misinterpretations of the
Maynard–Tavernini concepts are my own without their input.

2 Topological Concepts

The discussion is restricted to Rn, the set of n-tuples with n ≥ 1 and whose components are real numbers.
For n = 1, R is typically used to denote the set of real numbers rather than R1, although the latter still
refers to the set of real numbers.

The set Rn is a metric space with a distance function d(x, y) = |x−y| for x, y ∈ Rn, which is the square root
of the sum of squared differences of the components of x and y. The distance function satisfies d(x, y) = 0
if and only if x = y. It is symmetric because d(x, y) = d(y, x). Finally, the triangle inequality is satisfied,
d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ Rn.

A ball in Rn has center c and radius r > 0 and is defined by B(c, r) = {x ∈ S : |x− c| < r}. A set S ⊂ Rn is
open if every point c ∈ S has a ball of center c and radius r > 0 for which B(c, r) ⊂ S. The union of open
sets is an open set and the intersection of a finite number of open sets is an open set. The empty set ∅ is
considered to be an open set and Rn itself is considered to be an open set. The collection of open sets in Rn
is said to be a topology.

Open intervals are sets of the form (a, b) = {x ∈ R : a < x < b}, where −∞ ≤ a < b ≤ +∞. The endpoints a
and b are not elements of the open interval. The intervals (−∞, b) for b < +∞ and (a,+∞) for −∞ < a are
referred to as semiinfinite intervals and are unbounded sets. The infinite interval is (−∞,+∞) = R. Open
intervals are open sets. For example, (a, b) for finite a and b is open because given any c ∈ (a, b), choose
radius r = min{|c− a|, |c− b|}. It is the case that B(c, r) ⊂ (a, b).

The complement of a set S ⊂ Rn is the set difference Rn \ S = {x ∈ R : x 6∈ S}. This is denoted
Complement(S).

A set S ⊂ Rn is a closed set when its complement Rn \ S is an open set.

Closed intervals are sets of the form [a, b] = {x ∈ R : a ≤ x ≤ b}, where −∞ < a < b < +∞. The endpoints

2

a and b are elements of the closed interval. The complement of [a, b] is the set R \ [a, b] = (−∞, a)∪ (b,+∞),
the right-hand side the union of two semiinfinite open intervals which makes it an open set. Because the
complement of [a, b] is an open set, [a, b] is a closed set.

Given a set S ⊂ Rn, the point x ∈ Rn is a limit point of S when for each ball B(x, r), there exists
y ∈ S ∩ B(x, r). For example, consider S = [a, b] ⊂ R. The endpoint a is limit point of S because B(a, r)
for any r > 0 contains a point y ∈ [a, b]. One such choice for y when r ≤ b− a is y = a+ r/2. The limit as
r approaches 0 is a, which explains the use of the term limit point. An equivalent definition for a closed set
is that is a set that contains all its limit points.

Given any S ⊂ Rn, the closure of S is the union of S and its limit points. This is denoted Closure(S), and
the closure of a set is necessarily a closed set.

Given a set S ⊂ Rn, the interior of S is the union of all its open subsets. This is denoted Interior(S), and
the interior of a set is necessarily an open set.

3 Polysolids

A polysolid is a generalization of the concept of polygonal regions in 2D and polyhedral regions in 3D. The
ideas apply in dimensions larger than three, reduced to the 2D problem using recursion in dimension. The
intersection of a hyperplane with an n-dimensional polysolid is an (n− 1)-dimensional polysolid within that
hyperplane. The base case of the recursive definition is 1D, where the motivation is provided first in the
next section. One may actually recurse to 0-dimensional polysolids, which are simply points, but this is not
useful in practical applications. This document contains a discussion of Boolean operations of polysolids in
2D and in 3D.

3.1 Polysolids in R1

Let L = {`1, . . . , `m} ⊂ R1 be a finite set of real numbers. The complement of L is

R1 \ L =

m⋃
i=0

Ui (1)

where the Ui are the open intervals U0 = (−∞, `1), Ui = (`i, `i+1) for 1 ≤ i ≤ m− 1 and Um = (`m,+∞). A
graph associated with L is GL = (VL, EL), where the graph vertices are VL = {Ui}mi=0 and the graph edges
are EL = {(Ui, Ui+1) : 0 ≤ i ≤ m− 1}.

GL is a connected 2-colorable graph with colors 0 and 1. Define cL : VL → {0, 1} to be the unique 2-coloring
of GL such that cL(U0) = 1. For example, if L = {`0}, then U0 = (−∞, `0) and U1 = (`0,+∞) with
cL(U0) = 1 and cL(U1) = 0. If L = {`0, `1}, then U0 = (−∞, `0), U1 = (`0, `1) and U2 = (`1,+∞) with
cL(U0) = 1, cL(U1) = 0 and cL(U2) = 1. Finally, if L = {`0, `1, `2}, then U0 = (−∞, `0), U1 = (`0, `1),
U2 = (`1, `2) and U3 = (`2,+∞) with cL(U0) = cL(U2) = 1 and cL(U1) = cL(U3) = 0.

L defines two complementary polysolids,

Pα(L) = {U ∈ VL : cL(U) = α} (2)

for α ∈ {0, 1}. For example, if L = {`0, `1, `2}, then P0(L) = (−∞, `0) ∪ (`1, `2) and P1(L) = (`0, `1) ∪
(`2,+∞). Both P0(L) and P1(L) are unbounded sets. If L = {`0, `1}, then P0(L) = (−∞, `0) ∪ (`1,+∞)

3

and P1(L) = (`0, `1). P0(L) is unbounded and P1(L) is bounded. Generally, if L has an odd number of
points, then both polysolids are unbounded. If L has an even number of points, then P0(L) is unbounded
and P1(L) is bounded. In this case, P0(L) is said to be cobounded ; its complement R1 \ P0(L) is a bounded
set.

The set of 1-dimensional polysolids in R1 is defined by

P1(R1) = {Pα(L) : L ⊂ R1 is finite and α ∈ {0, 1}} (3)

The definition extends to lines embedded in spaces of dimension d > 1. If H ⊂ Rd is a 1-flat, then P1(H) is
defined to be the image of P1(R1) under any affine transformation of R1 onto H. The set of all 1-dimensional
polysolids in Rd is

P1(Rd) =
⋃
{P1(H) : H is a 1-flat in Rd} (4)

An important subset of P1(R1) is the collection of pairs of bounded-cobounded polysolids, denoted P1
b (R1).

As noted previously, these polysolids are generated by finite sets L with an even number of points. The
set of bounded-cobounded polysolids corresponding to a 1-flat H in Rd is denoted P1

b (H) and the set of
bounded-cobounded polysolids in Rd is denoted P1

b (Rd).

3.2 Polysolids in R2

Let L ⊂ P1(R2) have a finite number of elements, each element a 1-dimensional polysolid. The set

R2 \ Closure(L) = R2 \
⋃
e∈L

Closure(e) (5)

is an open set that is a disjoint union of a finite number of open connected sets, VL = {Ui}mi=0.

The set L is said to be decomposing in R2 if and only if VL is composed of open sets U , each satisfying the
topological condition

Interior(Closure(U)) = U (6)

An open set U satisfying this condition is said to be regular. The use of decomposing finite sets avoids
dangling line segments. For example, the 1-dimensional bounded polysolids (x, 0), (x, 1), (0, y) and (1, y)
with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 form a set L that is decomposing. The set ∪e∈LClosure(e) is the perimeter
of the unit square [0, 1]2. The two regions inside and outside the square are regular sets; see Figure 1 (a).
However if L additionally contains the polysolid (x, x) for 0 ≤ x ≤ 1/2, then L is not decomposing. The
diagonal edge is a dangling line segment for the polysolid; see Figure 1 (b).

Figure 1. Decomposing and nondecomposing sets. In each of (a) and(b), the set L is shown on the left and
the set R2 \ Closure(L) is shown on the right.

(a) L is decomposing. (b) L is not decomposing.

4

A graph associated with L is GL = (VL, EL), where (Ui, Uj) ∈ EL if and only if Ui∪Uj is not a regular open
set. Intuitively, Ui and Uj are separated by a 1-dimensional piecewise linear curve.

The set L is said to be generating in R2 if and only if it is decomposing and GL is 2-colorable. For example,
the four polysolids mentioned previously whose union of closures forms the unit square is generating; see
Figure 2 (a). If L additionally contains the polysolid (x, x) for 0 ≤ x ≤ 1, then L is decomposing but not
generating because the graph GL is not 2-colorable; see Figure 2 (b).

Figure 2. Generating and nongenerating sets. In each of (a) and(b), the set L is shown on the left and the
set R2 \ Closure(L) is shown on the right.

(a) L is generating. (b) L is decomposing but not generating.

A generating set L defines two complementary polysolids,

Pα(L) = {U ∈ VL : c(U) = α} (7)

where c : VL → {0, 1} is a 2-coloring of GL. In this context L is referred to as the set of polyfaces of Pα(L).
The set of 2-dimensional polysolids in R2 is defined by

P2(R2) = {Pα(L) : L ∈ P1(R1) is finite and α ∈ {0, 1}}. (8)

The definition extends to planes embedded in spaces of dimension d > 2. If H ⊂ Rd is a 2-flat, then P2(H) is
defined to be the image of P2(R2) under any affine transformation of R2 onto H. The set of all 2-dimensional
polysolids in Rd is

P2(Rd) =
⋃
{P2(H) : H is a 2-flat in Rd} (9)

An important subset of P2(R2) is the collection of pairs of bounded-cobounded polysolids, denoted P2
b (R2).

These polysolids are generated by sets L of bounded 1-dimensional polysolids. The set of bounded-cobounded
polysolids corresponding to a 2-flat H in Rd is denoted P2

b (H) and the set of 2-dimensional bounded-
cobounded polysolids in Rd is denoted P2

b (Rd).

3.3 Polysolids in Rn

Let L ⊂ Pn−1(Rn) have a finite number of elements, each element an (n− 1)-dimensional polysolid. The set

Rn \ Closure(L) = Rn \
⋃
e∈L

Closure(e) (10)

is an open set that is a disjoint union of a finite number of open connected sets, VL = {Ui}mi=0.

The set L is said to be decomposing in Rn if and only if VL is composed of regular open sets. A graph
associated with L is GL = (VL, EL), where (Ui, Uj) ∈ EL if and only if Ui ∪ Uj is not a regular open set.
The set L is said to be generating in Rn if and only if it is decomposing and GL is 2-colorable.

5

A generating set L defines two complementary polysolids

Pα(L) = {U ∈ VL : c(U) = α} (11)

where c : VL → {0, 1} is a 2-coloring of GL. In this context the set L is referred to as the set of polyfaces of
Pα(L).

The set of n-dimensional polysolids in Rn is defined by

Pn(Rn) = {Pα(L) : L ∈ Pn−1(Rn−1) is finite and α ∈ {0, 1}} (12)

The definition extends to hyperplanes in spaces of dimension d > n. If H ⊂ Rd is an n-flat, then Pn(H) is
defined to be the image of Pn(Rn) under any affine transformation of Rn onto H. The set of all n-dimensional
polysolids in Rd is

Pn(Rd) =
⋃
{Pn(H) : H is an n-flat in Rd} (13)

An important subset of Pn(Rn) is the collection of pairs of bounded-cobounded polysolids, denoted Pnb (Rn).
These polysolids are generated by sets L of bounded (n − 1)-dimensional polysolids. The set of bounded-
cobounded polysolids corresponding to an n-flat H in Rd is denoted Pkb (H) and the set of n-dimensional
bounded-cobounded polysolids in Rd is denoted Pnb (Rd).

For general dimension n, a polysolid π ∈ Pn(Rn) is described by its polyfaces L = f(π) and the color of the
polysolid c(π). The implementation of Boolean operations on polysolids needs to determine both polyfaces
and color.

4 Boolean Operations on Polysolids

Given polysolids in Pn(H), Boolean operations are defined on these using the topological nature of the
polysolid definitions. Let π = Pα(L), π1 = Pα1

(L1) and π2 = Pα2
(L2) denote polysolids where L, L1 and L2

are generating sets and the polyfaces of the polysolids, L = f(π), L1 = f(π1) and L2 = f(π2). The colors of
the polysolids are cL = c(π), cL1

(π1) and cL2
(π2). Boolean operations are defined by

Negation: ¬π = P1−α(L)

Intersection: π1 ∧ π2 = π1 ∩ π2
Union: π1 ∨ π2 = Interior(Closure(π1 ∪ π2))

Difference: π1¬π2 = π1 ∩ Complement(Closure(π2))

Exclusive-Or: π1 ⊕ π2 = (π1¬π2) ∪ (π2¬π1).

The algorithm for computing a Boolean operation of two polysolids, say, π = B(π1, π2), is briefly described
next. Specific details for the 2D and 3D cases are provided later in the document.

The subsection on normalization involves decomposition of the polyfaces L1 and L2 into subsets whose
elements are not intersecting. This is accomplished by a segmentation of each polyface of one polysolid
relative to the other polysolid. The segmentation is recursive through dimension, reaching dimension 2 as
the base case.. The essential work is done in segmenting a line containing an edge of one polysolid relative
to the edges of a 2-dimensional polysolid.

6

The subsection on acceptance involves selecting normalized polyfaces from the input polysolids to combine
into the polyfaces for the output. This is accomplished by maintaining tags for the segmented polyfaces of
one polysolid relative to another polysolid.

4.1 Canonical Form for a Polysolid

The Maynard-Tavernini framework does not include the material of this section, but in practice it is useful
to have a canonical form for the polysolids. The canonical form involves requirements for the color of the
polysolids, for the features of the graph data structure representing the polysolid, requirements and for the
directions of the normals to polyfaces.

4.1.1 Color Selection

Determination of the color c(π) turns out to be trivial. The convention I use is that the bounded region of
a polysolid has color 1 and the cobounded region of a polysolid has color 0. In this sense you can imagine
rendering a 2D polysolid into a binary image of background pixels (0-valued) and foreground pixels (1-
valued). The convention does not apply to the negation operator. The cobounded region of π is P0(L), the
open sets having color 0. The bounded region of π is P1(L), the open sets having color 1. The cobounded
region of the negation ¬π is P1(L), the open sets having color 1. The bounded region of ¬π is P0(L), the
open sets having color 0. However, the negation operator is effectively used only for computing the Boolean
difference and the Boolean exclusive-or, the output of these operations satisfying the convention.

4.1.2 Requirements for Graph Features

TODO: This section needs some figures to illustrate the ideas.

In 2D, a graph data structure for a polysolid will contain a set of vertices (positions) {V i} and a set of
edges {〈V i0 ,V i1〉}. Depending on the graph implementation, the edges might be undirected or directed.
The vertices and edges are referred to as the graph features.

A requirement is that the edges be directed so that as you traverse an edge, the bounded region adjacent
to the edge is to your left. This is consistent with the definition of a simple polygon whose vertices are
counterclockwise ordered. The edges of a simple polygon form a single closed polyline. On the other hand,
polysolids can have multiple closed polylines. A simple polygon (outer polygon) with one ore more disjoint
simple polygons (inner polygons) strictly contained in the outer polygon is such an example. These are
usually referred to as polygons with holes. A bow-tie formed by two solid triangles that overlap only at a
single vertex is another example. Let the vertices be V 0 = (0, 0), V 1 = (2, 0), V 2 = (1, 1), V 3 = (0, 2) and
V 4 = (2, 2). The directed edges are E0 = 〈V 0,V 1〉, E1 = 〈V 1,V 2〉, E2 = 〈V 2,V 3〉, E3 = 〈V 3,V 4〉 and
E4 = 〈V 4,V 1〉. As you traverse the directed edges, the bounded region is always to your left.

Another requirement is that the set of vertices are the only points at which edges can intersect. For example,
consider the set of vertices V 0 = (0, 0), V 1 = (2, 0), V 2 = (0, 2) and V 3 = (2, 2) and the set of directed
edges E0 = 〈V 0,V 1〉, E1 = 〈V 1,V 2〉, E2 = 〈V 2,V 3〉 and E3 = 〈V 3,V 0〉. This not a polysolid in canonical
form because the edges E1 and E3 intersect at the point (1, 1), but this point is not listed in the set of
vertices.

An example of a bounded polysolid representing a triangle with vertices V 0 = (0, 0), V 1 = (2, 0) and V 2 =

7

(0, 2) with edges E0 = 〈V 0,V 1〉, E1 = 〈V 1,V 2〉 and E2 = 〈V 2,V 0〉 has generating set L = {E0, E1, E2},
where the edges are considered to be open in the sense that the endpoints are not included. Include an
additional vertex V 3 = (0, 1) and choose the edges to be E0 = 〈V 0,V 1〉, E1 = 〈V 1,V 2〉, E2 = 〈V 2,V 3〉
and E3 = 〈V 3,V 0〉. The triangle has generating set L′ = {E0, E1, E2, E3}. The line containing vertices V 2,
V 3 and V 0 is a 1-dimensional polysolid whose generating set has an even number of elements. As mentioned
previously, the graph GL is 2-colorable, but each colored component is unbounded. It is better to require
that the generating set consist of an odd number of elements. But even this is perhaps still not desirable.
If one were to add yet another vertex V 4 = (0, 1/2) and replace edges E2 and E3 by E2 = 〈V 2,V 3〉,
E3 = 〈V 3,V 4〉 and E4 = 〈V 4,V 0〉, the line containing vertices V 2, V 3, V 4 and V 0 has a generating set
with 4 elements, so the polyline has a bounded component and an unbounded component. Unfortunately,
the interval corresponding to E3 is a subset of the unbounded component. Although this does not cause
problems in an implementation of Boolean operations, it is not desirable (as will become clear in 3D).
Therefore, colinear vertices that are irrelevant to the topology of the 2D polysolid (the triangle) should be
discarded from the graph data structure.

In 3D, a typical graph data structure for a polysolid will contain a set of vertices {V i}, a set of edges
{〈V i0 ,V i1〉} and a set of triangles {〈V i0 ,V i1 ,V i2}. Usually the triangles are required to have ordered
vertices as viewed by an observe close to the triangle, either counterclockwise or clockwise ordered. The
edges are undirected because an edge shared by two triangles has different ordered vertices depending on
the triangle used to visit it. For example, two consistently ordered triangles 〈V 0,V 1,V 2〉 and 〈V 3,V 2,V 1〉
share the edge (V 1,V 2), but visiting the edge via the first triangle gives a directed edge 〈V 1,V 2〉 and
visiting the edge via the second triangle gives a directed edge 〈V 2,V 1〉. It is possible to store both edge
representations, but this comes at the cost of greater complexity in managing the graph data structure.

An additional complication using a vertex-edge-triangle graph is that adjacent and coplanar triangles can
form a polygonal face. A simple example is a square face formed by the union of two triangles. The shared
diagonal edge allows the two triangles to be decomposing regarding 2D polysolids, but not generating. A
better choice to support for Boolean operations with polysolids is to represent the 3D polysolid with a graph
data structure that has a set of 2D polysolids for the faces, each face represented by a set of 1D polysolids
for the edges. In this sense, the vertices are the 0D polysolids that form the edges.

4.1.3 Requirements for Polyface Normals

4.2 Normalization of the Input Polysolids

4.3 Acceptance of Polyfaces for the Output Polysolid

1. Determine the color α of the result of the function. This step is trivial in the implementation.

2. Determine which subelements of L1 and L2 can be used to define the generating set L for the result of
the function. This step requires the following.

(a) Normalization. Decompose the polyfaces L1 and L2 into components which are non-intersecting.

(b) Acceptance. Determine which of the normalized polyfaces to keep for the specified Boolean
operation. This is accomplished by maintaining tags on the segmented polyfaces relative to a
polysolid according to the following relationships.

8

o The polyface is outside the polysolid.

i The polyface is inside the polysolid.

+ The polyface is a positive boundary of the polysolid. That is, the polyface lies on
the boundary of the polysolid with the interior of the polysolid to the positive side
of the hyperplane in which the polyface lives.

- The polyface is a negative boundary of the polysolid. That is, the polyface lies on
the boundary of the polysolid with the interior of the polysolid to the negative side
of the hyperplane in which the polyface lives.

The tags form the Klein-4 group whose binary operation is defined in the table below.

(t0, t1) o i - +

o o i - +

i i o + -

- - + o i

+ + - i o

The group operation of two elements t0 (select row) and t1 (select column) is denoted t2 = (t0, t1);
for example, i = (−,+). The algorithm involves building four lists of polyfaces, one list per tag.
The lists are merged according to the Boolean operation, the final list yielding the resulting
polysolid.

Figure 3. Segmentation of two bounded polysolids.

To briefly illustrate, consider two polysolids, π1 a square and the π2 an s-shaped object. They are shown
normalized and superimposed in Figure 3 with the various tags on the edges. The union, intersection,
difference, and exclusive-or are shown in Figure 4.

9

Figure 4. Boolean operations of the two polysolids in Figure 3. Union of the two polysolids.

union intersection

difference exclusive-or

In the notes from Maynard and Tavernini, the line shown is drawn as an oriented line with normal pointing
to the right. That oriented line was used for segmentation for both polysolids. In my implementation, the
line normal is chosen to point to the side containing the bounded part of the segmenting polysolid. As such,
my tags differ from theirs on a subedge which has the bounded parts of the two polysolids to opposite sides
of that subedge There is one such subedge in Figure 3. The Maynard algorithm will mark the subedge with
a + and a −. My algorithm marks it with a + and a +. When comparing two subedges for acceptance into a
union, the Maynard algorithm sees that the subedge tags multiply to i and is rejected. In my algorithm, the
subedge tags multiply to o, but the edge is still rejected because I compare the two subedges assuming that
the end points are ordered. That is, the line has a specific direction vector determined from its normal vector
and the subedges are constructed in the segmentation using the line direction to order the end points. While
the subedges have the same tags, they have opposite directions. In the Maynard algorithm, the subedges

10

have different tags and the same direction.

5 Boolean Operations on Polysolids in R2

5.1 Normalization

Each polysolid is segmented against the edges of the other polysolid. If P and Q are the two polysolids,
segmenting Q against P is given by the pseudocode of Listing 1.

Listing 1. Pseudocode for segmenting one polysolid against the edges of another polysolid.

f o r each edge E o f Q do
{

L = d i r e c t e d l i n e c o n t a i n i n g E ;
S = segmenta t i on o f L by P ;
i f S i s not empty then
{

// L i n t e r s e c t s P
S = S i n t e r s e c t e d wi th E ;
i f S i s not empty then
{

compute tagged=edge l i s t s T[o] , T[i] , T[+] and T[i] from S ;
}

}
e l s e // S i s empty
{

// L does not i n t e r s e c t P , E i s o u t s i d e
add E to tagged=edge l i s t T[o] ;

}
}

The tagged edge lists are used in the acceptance phase, the topic of the next subsection.

The key operation is the segmentation of a line L by a polysolid P . This is done by iterating over all edges
of P and determining if and edge E amd L (1) intersect at an interior point of E, (2) intersect at an end
point of E, or (3) do not intersect. In case (1) the tag on the intersection is i. In case (2) the tag on the
intersection is + if E is on the positive side of the line (the side to which the normal vector points) or i if E
is on the negative side of the line. If E is contained in L, then no tagging is necessary (edges of P parallel
to L need not be processed).

Figure 5 shows a line and a polysolid consisting of three components, the last of which has a hole. The
normal vector for the line is drawn and the positive side of the line is that side pointed to by the normal.
The tagging of the intersection points is described for the four points labeled a, b, c, and d. The shading is
used to help visual how the polysolid is built from the edges and which parts are above or below the line.

11

Figure 5. Polysolid segmenting a line.

At point a there are two edges intersecting the line. The common intersection point has tag + from the
first edge and tag + from the second edge. The final tag on the intersection point is the Klein-4 product of
the tags, o = + · +. At point b there are three edges intersecting the line. The tags are −, −, and i. The
final tag is the product i = − · − · i. At point c there are two edges, but one edge is contained in the line
and can be ignored. The final tag is −, the tag generated from the other edge. At point d there are two
edges intersecting the line, both with a i tag. The final tag is the product o = i · i. Figure 6 shows the four
situations.

Figure 6. Computation of point tags.

For the entire line there are 16 points of intersection (counting only the two end points for each edge contained
in the line). The intervals are tagged starting with the left-most half-infinite interval having tag o. Traversing
from left to right, the tag on the next interval is the tag of the previous interval times the tag of the point
separating the two intervals. Figure 7 shows the point and interval tags.

12

Figure 7. Point and interval tags.

This shows how the Klein-4 group multiplications allow the tagging of higher dimensional structures from
the lower dimensional ones. This idea carries over into polysolids in higher dimensions.

5.2 Acceptance

After normalization we have four lists of tagged edges corresponding to the o, i, +, and − tags for each of
the two polysolids. These lists are merged as described below to obtain the various Boolean combinations
of the polysolids. It is instructive to apply these rules to the polysolids in Figure 1 to obtain the Boolean
results in Figure 2.

� Union. All o tagged edges are in the union. Pairs of edges having the same direction and both + tags
or both − tags are in the union.

� Intersection. All i tagged edges are in the intersection. All + tags are in the intersection (duplicates
between the two + lists must be avoided).

� Difference. Let the polysolids be labeled P and Q. The difference is P \ Q. This can be thought
of as the intersection of P and ¬Q where the negation indicates to change the color of the polysolid.
When comparing P against Q, the tags on P are computed based on the bounded portion of Q. To
compare against ¬Q requires the tags on P to be negated (in a sense). Thus, all o tagged edges of P
and all i tagged edges of Q are in the difference. When merging, the directions of the i tagged edges of
Q must be reversed. Also, all + tagged edges are kept in an intersection, but because we are comparing
against ¬Q, the − tagged edges of P and the + tagged edges of Q are in the difference (duplicates
between these two lists must be avoided).

� Exclusive Or. For polysolids P and Q, this is simply computed as the union of the differences P \Q
and Q \ P .

13

	1 Introduction
	2 Topological Concepts
	3 Polysolids
	3.1 Polysolids in R1
	3.2 Polysolids in R2
	3.3 Polysolids in Rn

	4 Boolean Operations on Polysolids
	4.1 Canonical Form for a Polysolid
	4.1.1 Color Selection
	4.1.2 Requirements for Graph Features
	4.1.3 Requirements for Polyface Normals

	4.2 Normalization of the Input Polysolids
	4.3 Acceptance of Polyfaces for the Output Polysolid

	5 Boolean Operations on Polysolids in R2
	5.1 Normalization
	5.2 Acceptance

