Computing Orthonormal Sets in 2D, 3D, and 4D

David Eberly
Geometric Tools, LLC
Copyright © 1998-2015. All Rights Reserved.

Created: March 22, 2010
Last Modified: August 11, 2013

Contents

1 Introduction
2 Orthonormal Sets in 2D
3 Orthonormal Sets in 3D
 3.1 One Vector from Two Inputs
 3.2 Two Vectors from One Input
4 Orthonormal Sets in 4D
 4.1 One Vector from Three Inputs
 4.2 Two Vectors from Two Inputs
 4.3 Three Vectors from One Input
5 An Application to 3D Rotations
6 An Application to 4D Rotations
7 Implementations
 7.1 2D Pseudocode
 7.2 3D Pseudocode
 7.3 4D Pseudocode

<table>
<thead>
<tr>
<th>1 Introduction</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Orthonormal Sets in 2D</td>
<td>2</td>
</tr>
<tr>
<td>3 Orthonormal Sets in 3D</td>
<td>3</td>
</tr>
<tr>
<td>3.1 One Vector from Two Inputs</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Two Vectors from One Input</td>
<td>4</td>
</tr>
<tr>
<td>4 Orthonormal Sets in 4D</td>
<td>5</td>
</tr>
<tr>
<td>4.1 One Vector from Three Inputs</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Two Vectors from Two Inputs</td>
<td>5</td>
</tr>
<tr>
<td>4.3 Three Vectors from One Input</td>
<td>6</td>
</tr>
<tr>
<td>5 An Application to 3D Rotations</td>
<td>6</td>
</tr>
<tr>
<td>6 An Application to 4D Rotations</td>
<td>7</td>
</tr>
<tr>
<td>7 Implementations</td>
<td>8</td>
</tr>
<tr>
<td>7.1 2D Pseudocode</td>
<td>9</td>
</tr>
<tr>
<td>7.2 3D Pseudocode</td>
<td>9</td>
</tr>
<tr>
<td>7.3 4D Pseudocode</td>
<td>10</td>
</tr>
</tbody>
</table>
1 Introduction

A frequently asked question in computer graphics is: Given a unit-length vector \(\mathbf{N} = (x, y, z) \), how do you compute two unit-length vectors \(\mathbf{U} \) and \(\mathbf{V} \) so that the three vectors are mutually perpendicular? For example, \(\mathbf{N} \) might be a normal vector to a plane, and you want to define a coordinate system in the plane, which requires computing \(\mathbf{U} \) and \(\mathbf{V} \). There are many choices for the vectors, but for numerical robustness, I have always recommended the following algorithm.

Locate the component of maximum absolute value. To illustrate, suppose that \(|x| \) is this value, so \(|x| \geq |y|\) and \(|x| \geq |z|\). Swap the first two components, changing the sign on the second, and set the third component to 0, obtaining \((y, -x, 0)\). Normalize this to obtain

\[
\mathbf{U} = \frac{(y, -x, 0)}{\sqrt{x^2 + y^2}} \tag{1}
\]

Now compute a cross product to obtain the other vector,

\[
\mathbf{V} = \mathbf{N} \times \mathbf{U} = \frac{(xz, yz, -x^2 - y^2)}{\sqrt{x^2 + y^2}} \tag{2}
\]

As you can see, a division by \(\sqrt{x^2 + y^2} \) is required, so it is necessary that the divisor not be zero. In fact it is not, because of how we choose \(x \). For a unit-length vector \((x, y, z)\) where \(|x| \geq |y|\) and \(|x| \geq |y|\), it is necessary that \(|x| \geq 1/\sqrt{3}\). The division by \(\sqrt{x^2 + y^2} \) is therefore numerically robust—you are not dividing by a number close to zero.

In linear algebra, we refer to the set \(\{ \mathbf{U}, \mathbf{V}, \mathbf{N} \} \) as an orthonormal set. By definition, the vectors are unit length and mutually perpendicular. Let \(\langle \mathbf{N} \rangle \) denote the span of \(\mathbf{N} \). Formally, this is the set

\[
\langle \mathbf{N} \rangle = \{ t\mathbf{N} : t \in \mathbb{R} \} \tag{3}
\]

where \(\mathbb{R} \) is the set of real numbers. The span is the line that contains the origin \(0 \) with direction \(\mathbf{N} \). We may define the span of any number of vectors. For example, the span of \(\mathbf{U} \) and \(\mathbf{V} \) is

\[
\langle \mathbf{U}, \mathbf{V} \rangle = \{ s\mathbf{U} + t\mathbf{V} : s \in \mathbb{R}, t \in \mathbb{R} \} \tag{4}
\]

This is the plane that contains the origin and has unit-length normal \(\mathbf{N} \); that is, any vector in \(\langle \mathbf{U}, \mathbf{V} \rangle \) is perpendicular to \(\mathbf{N} \). The span of \(\mathbf{U} \) and \(\mathbf{V} \) is said to be the orthogonal complement of the span of \(\mathbf{N} \). Equivalently, the span of \(\mathbf{N} \) is said to be the orthogonal complement of the span of \(\mathbf{U} \) and \(\mathbf{V} \). The notation for orthogonal complement is to add a superscript “perp” symbol. \(\langle \mathbf{N} \rangle^\perp \) is the orthogonal complement of the span of \(\mathbf{N} \) and \(\langle \mathbf{U}, \mathbf{V} \rangle^\perp \) is the orthogonal complement of the span of \(\mathbf{U} \) and \(\mathbf{V} \). Moreover,

\[
\langle \mathbf{U}, \mathbf{V} \rangle^\perp = \langle \mathbf{N} \rangle, \quad \langle \mathbf{N} \rangle^\perp = \langle \mathbf{U}, \mathbf{V} \rangle \tag{5}
\]

2 Orthonormal Sets in 2D

The ideas in the introduction specialize to two dimensions. Given a unit-length vector \(\mathbf{U}_0 = (x_0, y_0) \), a unit-length vector perpendicular to it is \(\mathbf{U}_1 = (x_1, y_1) = (y_1, -x_1) \). The span of each vector is a line and the two lines are perpendicular; therefore,

\[
\langle \mathbf{U}_0 \rangle^\perp = \langle \mathbf{U}_1 \rangle, \quad \langle \mathbf{U}_1 \rangle^\perp = \langle \mathbf{U}_0 \rangle \tag{6}
\]
The set \(\{U_0, U_1\} \) is an orthonormal set.

A fancy way of constructing the perpendicular vector is to use a symbolic cofactor expansion of a determinant. Define \(E_0 = (1, 0) \) and \(E_1 = (0, 1) \). The perpendicular vector is

\[
U_1 = \det \begin{bmatrix} E_0 & E_1 \\ x & y \end{bmatrix} = yE_0 - xE_1 = (y, -x) \quad (7)
\]

Although overkill in two dimensions, the determinant concept is useful for larger dimensions.

The set \(\{U_0, U_1\} \) is a left-handed orthonormal set. The vectors are unit length, perpendicular, and the matrix \(M = [U_0 \quad U_1] \) whose columns are the two vectors is orthogonal with \(\det(M) = -1 \). To obtain a right-handed orthonormal set, negate the last vector: \(\{U_0, -U_1\} \).

3 Orthonormal Sets in 3D

3.1 One Vector from Two Inputs

Define \(E_0 = (1, 0, 0), E_1 = (0, 1, 0), \) and \(E_2 = (0, 0, 1) \). Given two vectors \(V_0 = (x_0, y_0, z_0) \) and \(V_1 = (x_1, y_1, z_1) \), the cross product may be written as a symbolic cofactor expansion of a determinant,

\[
V_2 = V_0 \times V_1 = \det \begin{bmatrix} E_0 & E_1 & E_2 \\ x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \end{bmatrix} = \begin{cases} y_0z_1 - y_1z_0 \end{cases}E_0 - \begin{cases} x_0z_1 - x_1z_0 \end{cases}E_1 + \begin{cases} x_0y_1 - x_1y_0 \end{cases}E_2
\]

If either of the input vectors is the zero vector or if the input vectors are nonzero and parallel, the cross product is the zero vector. If the input vectors are unit length and perpendicular, then the cross product is guaranteed to be unit length and \(\{V_0, V_1, V_2\} \) is an orthonormal set.

If the input vectors are linearly independent (not zero and not parallel), we may compute a pair of unit-length vectors that are orthogonal using Gram-Schmidt orthonormalization,

\[
U_0 = \frac{V_0}{|V_0|}, \quad U_1 = \frac{V_1 - (U_0 \cdot V_1)U_0}{|V_1 - (U_0 \cdot V_1)U_0|} \quad (9)
\]

\(U_0 \) is a unit-length vector obtained by normalizing \(V_0 \). We project out the \(U_0 \) component of \(V_1 \), which produces a vector perpendicular to \(U_0 \). This vector is normalized to produce \(U_1 \). We may then compute the cross product to obtain another unit-length vector, \(U_2 = U_0 \times U_1 \).

If we start with two unit-length vectors that are perpendicular, we can obtain a third vector using the cross product. And we have shown that

\[
\langle U_2 \rangle = \langle U_0, U_1 \rangle^\perp \quad (10)
\]
3.2 Two Vectors from One Input

If we start only with one unit-length vector U_2, we wish to find two unit-length vectors U_0 and U_1 such that \{U_0, U_1, U_2\} is an orthonormal set, in which case

$$\langle U_0, U_1 \rangle = \langle U_2 \rangle^\perp$$ \hspace{1cm} (11)

But we have already seen how to do this—in the introduction section. Let us be slightly more formal and use the symbolic determinant idea. This idea allows us to generalize to four dimensions.

Let $U_2 = (x, y, z)$ be a unit-length vector. Suppose that x has the largest absolute value of the three components. We may construct a determinant whose last row is one of the basis vectors E_i that does not have a zero in its first component (the one corresponding to the location of x). Let us choose $(0, 0, 1)$ as this vector; then

$$\det \begin{bmatrix} E_0 & E_1 & E_2 \\ x & y & z \\ 0 & 0 & 1 \end{bmatrix} = y E_0 - x E_1 + 0 E_2 = (y, -x, 0)$$ \hspace{1cm} (12)

which matches the construction in the introduction. This vector cannot be the zero vector, because we know that x has largest absolute magnitude and so cannot be zero (the initial vector is not the zero vector). Normalizing this vector, we have $U_0 = (y, -x, 0)/\sqrt{x^2 + y^2}$. We may then compute $U_1 = U_2 \times U_0$.

If y has the largest absolute magnitude, then the last row of the determinant can be either $(1, 0, 0)$ or $(0, 0, 1)$; that is, we may not choose the Euclidean basis vector with a 1 in the same component that corresponds to y. For example,

$$\det \begin{bmatrix} E_0 & E_1 & E_2 \\ x & y & z \\ 1 & 0 & 0 \end{bmatrix} = 0 E_0 + z E_1 - y E_2 = (0, z, -y)$$ \hspace{1cm} (13)

Once again the result cannot be the zero vector, so we may robustly compute $U_0 = (0, z, -y)/\sqrt{y^2 + z^2}$ and $U_1 = U_2 \times U_0$.

And finally, let z have the largest absolute magnitude. We may compute

$$\det \begin{bmatrix} E_0 & E_1 & E_2 \\ x & y & z \\ 0 & 1 & 0 \end{bmatrix} = -z E_0 + 0 E_1 + x E_2 = (-z, 0, x)$$ \hspace{1cm} (14)

which cannot be the zero vector. Thus, $U_0 = (-z, 0, x)/\sqrt{x^2 + z^2}$ and $U_1 = U_2 \times U_0$. Of course, we could have also chosen the last row to be $(1, 0, 0)$.

The set \{U_0, U_1, U_2\} is a right-handed orthonormal set. The vectors are unit length, mutually perpendicular, and the matrix $M = [U_0 \ U_1 \ U_2]$ whose columns are the three vectors is orthogonal with $\det(M) = +1$. To obtain a left-handed orthonormal set, negate the last vector: \{U_0, U_1, $-U_2$\}.
4 Orthonormal Sets in 4D

This section shows how the concepts in three dimensions extend to four dimensions.

4.1 One Vector from Three Inputs

Consider three vectors \(V_i = (x_i, y_i, z_i, w_i) \) for \(i = 0, 1, 2 \). If the vectors are linearly independent, then we may compute a fourth vector that is perpendicular to the three inputs. This is a generalization of the cross product method in 3D for computing a vector that is perpendicular to two linearly independent vectors. Specifically, define \(E_0 = (1, 0, 0, 0) \), \(E_1 = (0, 1, 0, 0) \), \(E_2 = (0, 0, 1, 0) \), and \(E_3 = (0, 0, 0, 1) \). We may compute a symbolic determinant

\[
V_3 = \det \begin{bmatrix} E_0 & E_1 & E_2 & E_3 \\ x_0 & y_0 & z_0 & w_0 \\ x_1 & y_1 & z_1 & w_1 \\ x_2 & y_2 & z_2 & w_2 \end{bmatrix}
\]

\[
= \det \begin{bmatrix} y_0 & z_0 & w_0 \\ y_1 & z_1 & w_1 \\ y_2 & z_2 & w_2 \end{bmatrix} E_0 - \det \begin{bmatrix} x_0 & z_0 & w_0 \\ x_1 & z_1 & w_1 \\ x_2 & z_2 & w_2 \end{bmatrix} E_1 + \det \begin{bmatrix} x_0 & y_0 & w_0 \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix} E_2 - \det \begin{bmatrix} x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix} E_3
\]

(15)

If the input vectors \(U_0 \), \(U_1 \), and \(U_2 \) are unit length and mutually perpendicular, then it is guaranteed that the output vector \(U_3 \) is unit length and that the four vectors form an orthonormal set. If the input vectors themselves do not form an orthonormal set, we may use Gram-Schmidt orthonormalization to generate an input orthonormal set:

\[
U_0 = \frac{V_0}{|V_0|}; \quad U_i = \frac{V_i - \sum_{j=0}^{i-1} (U_j \cdot V_i) U_j}{|V_1 - \sum_{j=0}^{i-1} (U_j \cdot V_i) U_j|}, \quad i \geq 1
\]

(16)

4.2 Two Vectors from Two Inputs

Let us consider two unit-length and perpendicular vectors \(U_i = (x_i, y_i, z_i, w_i) \) for \(i = 0, 1 \). If the inputs are only linearly independent, we may use Gram-Schmidt orthonormalization to obtain the unit-length and perpendicular vectors. The inputs have six associated \(2 \times 2 \) determinants: \(x_0 y_1 - x_1 y_0 \), \(x_0 z_1 - x_1 z_0 \), \(x_0 w_1 - x_1 w_0 \), \(y_0 z_1 - y_1 z_0 \), \(y_0 w_1 - y_1 w_0 \), and \(z_0 w_1 - z_1 w_0 \). It is guaranteed that not all of these determinants are zero when the input vectors are linearly independent. We may search for the determinant of largest absolute magnitude, which is equivalent in the three-dimensional setting when searching for the largest absolute magnitude component.

For simplicity, assume that \(x_0 y_1 - x_1 y_0 \) has the largest absolute magnitude. The handling of other cases is similar. We may construct a symbolic determinant whose last row is either \((0, 0, 1, 0)\) or \((0, 0, 0, 1)\). The idea is that we need a Euclidean basis vector whose components corresponding to the \(x \) and \(y \) locations are zero.
We did a similar thing in three dimensions. To illustrate, let us choose \((0, 0, 0, 1)\). The determinant is

\[
\det \begin{bmatrix}
E_0 & E_1 & E_2 & E_3 \\
x_0 & y_0 & z_0 & w_0 \\
x_1 & y_1 & z_1 & w_1 \\
0 & 0 & 0 & 1
\end{bmatrix} = (y_0 z_1 - y_1 z_0)E_0 - (x_0 z_1 - x_1 z_0)E_1 + (x_0 y_1 - x_1 y_0)E_2 + 0E_3 \tag{17}
\]

This vector cannot be the zero vector, because we know that \(x_0 y_1 - x_1 y_0\) has the largest absolute magnitude and is not zero. Moreover, we know that this vector is perpendicular to the first two row vectors in the determinant. We can choose the unit-length vector

\[
U_2 = (x_2, y_2, z_2, w_2) = \frac{(y_0 z_1 - y_1 z_0, x_1 z_0 - x_0 z_1, x_0 y_1 - x_1 y_0, 0)}{\sqrt{x_0^2 + y_0^2}} \tag{18}
\]

Observe that \((x_2, y_2, z_2)\) is the normalized cross product of \((x_0, y_0, z_0)\) and \((x_1, y_1, z_1)\), and \(w_2 = 0\).

We may not compute

\[
U_3 = \det \begin{bmatrix}
E_0 & E_1 & E_2 & E_3 \\
x_0 & y_0 & z_0 & w_0 \\
x_1 & y_1 & z_1 & w_1 \\
x_2 & y_2 & z_2 & 0
\end{bmatrix} \tag{19}
\]

which is guaranteed to be unit length. Moreover,

\[
\langle U_2, U_3 \rangle = \langle U_0, U_1 \rangle \perp \tag{20}
\]

That is, the span of the output vectors is the orthogonal complement of the span of the input vectors.

4.3 Three Vectors from One Input

Let \(U_0 = (x_0, y_0, z_0, w_0)\) be a unit-length vector. Similar to the construction in three dimensions, search for the component of largest absolute magnitude. For simplicity, assume it is \(x_0\). The other cases are handled similarly.

Choose \(U_1 = (y_0, -x_0, 0, 0)/\sqrt{x_0^2 + y_0^2}\), which is not the zero vector. \(U_1\) is unit length and perpendicular to \(U_0\). Now apply the construction of the previous section to obtain \(U_2\) and \(U_3\).

The set \(\{U_0, U_1, U_2, U_3\}\) is a \textit{left-handed orthonormal set}. The vectors are unit length, mutually perpendicular, and the matrix \(M = [U_0 U_1 U_2 U_3]\) whose columns are the four vectors is orthogonal with \(\det(M) = -1\).

To obtain a \textit{right-handed orthonormal set}, negate the last vector: \(\{U_0, U_1, U_2, -U_3\}\).

5 An Application to 3D Rotations

In three dimensions, a rotation matrix \(R\) has an axis of rotation and an angle about that axis. Let \(U_2\) be a unit-length direction vector for the axis and let \(\theta\) be the angle of rotation. Construct the orthogonal complement of \(U_2\) by computing vectors \(U_0\) and \(U_1\) for which \(\langle U_0, U_1 \rangle = \langle U_2 \rangle \perp\).
The rotation does not modify the axis; that is, \(R \mathbf{U}_2 = \mathbf{U}_2 \). Using set notation,

\[
R(\langle \mathbf{U}_2 \rangle) = \langle \mathbf{U}_2 \rangle \tag{21}
\]

which says the span of \(\mathbf{U}_2 \) is invariant to the rotation.

The rotation does modify vectors in the orthogonal complement, namely,

\[
R (x_0 \mathbf{U}_0 + x_1 \mathbf{U}_1) = (x_0 \cos \theta - x_1 \sin \theta) \mathbf{U}_0 + (x_0 \sin \theta + x_1 \cos \theta) \mathbf{U}_1 \tag{22}
\]

This is a rotation in the plane perpendicular to the rotation axis. In set notation,

\[
R(\langle \mathbf{U}_0, \mathbf{U}_1 \rangle) = \langle \mathbf{U}_0, \mathbf{U}_1 \rangle \tag{23}
\]

which says the span of \(\mathbf{U}_0 \) and \(\mathbf{U}_1 \) is invariant to the rotation. This does not mean that individual elements of the span do not move—in fact they all do (except for the zero vector). The notation says that the plane is mapped to itself as an entire set.

A general vector \(\mathbf{V} \) may be written in the coordinate system of the orthonormal vectors, \(\mathbf{V} = x_0 \mathbf{U}_0 + x_1 \mathbf{U}_1 + x_2 \mathbf{U}_2 \), where \(x_i = \mathbf{U}_i \cdot \mathbf{V} \). The rotation is

\[
R \mathbf{V} = (x_0 \cos \theta - x_1 \sin \theta) \mathbf{U}_0 + (x_0 \sin \theta + x_1 \cos \theta) \mathbf{U}_1 + x_2 \mathbf{U}_2 \tag{24}
\]

Let \(U = [\mathbf{U}_0 \ \mathbf{U}_1 \ \mathbf{U}_2] \) be a matrix whose columns are the specified vectors. The previous equation may be written in coordinate-free format as

\[
R \mathbf{V} = R \mathbf{X} = U \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{X} = U \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} U^T \mathbf{V} \tag{25}
\]

The rotation matrix is therefore

\[
R = U \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} U^T \tag{26}
\]

If \(\mathbf{U}_2 = (a, b, c) \), then \(\mathbf{U}_0 = (b, -a, 0)/\sqrt{a^2 + b^2} \) and \(\mathbf{U}_1 = (ac, bc, -a^2 - b^2)/\sqrt{a^2 + b^2} \). Define \(\sigma = \sin \theta \) and \(\gamma = \cos \theta \). Some algebra will show that the rotation matrix is

\[
R = \begin{bmatrix} a^2(1 - \gamma) + \gamma & ab(1 - \gamma) - c\sigma & ac(1 - \gamma) + b\sigma \\ ab(1 - \gamma) + c\sigma & b^2(1 - \gamma) + \gamma & bc(1 - \gamma) - a\sigma \\ ac(1 - \gamma) - b\sigma & bc(1 - \gamma) + a\sigma & c^2(1 - \gamma) + \gamma \end{bmatrix} \tag{27}
\]

6 An Application to 4D Rotations

A three-dimensional rotation has two invariant sets, a line and a plane. A four-dimensional rotation also has two invariant sets, each a two-dimensional subspace. Each subspace has a rotation applied to it, the
first by angle θ_0 and the second by angle θ_1. Let the first subspace be $\langle U_0, U_1 \rangle$ and the second subspace be $\langle U_2, U_3 \rangle$, where $\{U_0, U_1, U_2, U_3\}$ is an orthonormal set. A general vector may be written as

\[V = x_0 U_0 + x_1 U_1 + x_2 U_2 + x_3 U_3 = U X \]

(28)

where U is the matrix whose columns are the U_i vectors. Define $\gamma_i = \cos \theta_i$ and $\sigma_i = \sin \theta_i$ for $i = 0, 1$. The rotation of V is

\[RV = (x_0 \gamma_0 - x_1 \sigma_0)U_0 + (x_0 \sigma_0 + x_1 \gamma_0)U_1 + (x_2 \gamma_1 - x_3 \sigma_1)U_2 + (x_2 \sigma_1 + x_3 \gamma_1)U_3 \]

(29)

Similar to the three dimensional case, the rotation matrix may be shown to be

\[
R = U \begin{bmatrix}
\gamma_0 & -\sigma_0 & 0 & 0 \\
\sigma_0 & \gamma_0 & 0 & 0 \\
0 & 0 & \gamma_1 & -\sigma_1 \\
0 & 0 & \sigma_1 & \gamma_1
\end{bmatrix} U^T
\]

(30)

In a numerical implementation, you specify U_0 and U_1 and the angles θ_0 and θ_1. The other vectors U_2 and U_3 may be computed using the ideas shown previously in this document.

For example, to specify a rotation in the xy-plane, choose $U_0 = (1,0,0,0)$, $U_1 = (0,1,0,0)$, and $\theta_1 = 0$. The angle θ_0 is the rotation angle in the xy-plane and $U_2 = (0,0,1,0)$ and $U_3 = (0,0,0,1)$.

Another example is to specify a rotation in xyz-space. Choose $U_0 = (x,y,z,0)$, where (x,y,z) is the 3D rotation axis. Choose $U_1 = (0,0,0,1)$ and $\theta_0 = 0$, so that all vectors in the span of U_0 and U_1 are unchanged by the rotation. The other vectors are $U_2 = (y, -x, 0,0)/\sqrt{x^2 + y^2}$ and $U_3 = -(xz,yz,-x^2-y^2)/\sqrt{x^2 + y^2}$, and the angle of rotation in their plane is θ_1.

7 Implementations

The Gram-Schmidt orthonormalization can be expressed in general dimensions, although for large dimensions it is not the most numerically robust approach. Iterative methods of matrix analysis are better.

```c
// The vector v is normalized in place. The length of v before normalization
// is the return value of the function.
template <int N, typename Real>
Real Normalize (Vector<N, Real>& v);

// The function returns the smallest length of the unnormalized vectors
// computed during the process. If this value is nearly zero, it is possible
// that the inputs are linearly dependent (within numerical round-off errors).
// On input, 1 <= numElements <= N and v[0] through v[numElements-1] must be
// initialized. On output, the vectors v[0] through v[numElements-1] form
// an orthonormal set.
template <int N, typename Real>
Real Orthonormalize (int numInputs, Vector<N, Real> v[N])
{
    if (1 <= numInputs && numInputs <= N)
    {
        Real minLength = Normalize(v[0]);
        for (int i = 1; i < numInputs; ++i)
        {
            Real dot = Dot(v[i], v[i-1]);
```
7.1 2D Pseudocode

template <typename Real>
// Compute the perpendicular using the formal determinant.
// perp = det(e0,e1, x0,x1) = (x1,-x0)
// where e0 = (1,0), e1 = (0,1), and v = (x0,x1).
Vector2<Real> Perp(Vector2<Real> const& v)
{
return Vector2<Real>(v[1], -v[0]);
}

// Compute a right-handed orthonormal basis for the orthogonal complement
// of the input vectors. The function returns the smallest length of the
// unnormalized vectors computed during the process. If this value is nearly
// zero, it is possible that the inputs are linearly dependent (within
// numerical round-off errors). On input, numInputs must be 1 and v[0]
// must be initialized. On output, the vectors v[0] and v[1] form an
// orthonormal set.
template <typename Real>
Real ComputeOrthogonalComplement(int numInputs, Vector2<Real> v[2])
{
if (numInputs==1)
{
v[1] = -Perp(v[0]);
return Orthonormalize<2,Real>(2, v);
}
return (Real)0;
}

// Create a rotation matrix (angle is in radians). This is not what you
// would do in practice, but it shows the similarity to constructions in
// other dimensions.
Matrix2x2<Real> CreateRotation(Vector2<Real> u0, Real angle)
{
Vector2<Real> v[2];
v[0] = u0;
ComputeOrthogonalComplement(1, v);
Real cs = cos(angle), sn = sin(angle);
Matrix2x2<Real> M(v[0], v[1]);
Matrix2x2<Real> R = U*U.Transpose(U);
return R;
}

7.2 3D Pseudocode

// Compute the cross product using the formal determinant:
// cross = det(e0,e1,e2, x0,x1,x2, y0,y1,y2)
// where e0 = (1,0,0), e1 = (0,1,0), e2 = (0,0,1), v0 = (x0,x1,x2), and
// v1 = (y0, y1, y2).

```cpp
template <typename Real>
Vector3<Real> Cross (Vector3<Real> const& v0, Vector3<Real> const& v1)
{
    return Vector3<Real>(
        v0[2] * v1[0] - v0[0] * v1[2],
        v0[0] * v1[1] - v0[1] * v1[0]);
}
```

// Compute a right-handed orthonormal basis for the orthogonal complement
// of the input vectors. The function returns the smallest length of the
// unnormalized vectors computed during the process. If this value is nearly
// zero, it is possible that the inputs are linearly dependent (within
// numerical round-off errors). On input, numInputs must be 1 or 2 and
// v[0] through v[numInputs-1] must be initialized. On output, the

```cpp
template <typename Real>
Real ComputeOrthogonalComplement (int numInputs, Vector3<Real> v[3])
{
    if (numInputs == 1)
    {
        if (fabs(v[0][0]) > fabs(v[0][1]))
            v[1] = Vector3<Real>(-v[0][2], (Real)0, +v[0][0]);
        else
            v[1] = Vector3<Real>(+v[0][2], (Real)0, -v[0][1]);
        numInputs = 2;
    }
    if (numInputs == 2)
    {
        v[2] = Cross(v[0], v[1]);
        return Orthonormalize<3,Real>(3, v);
    }
    return (Real)0;
}
```

// Create a rotation matrix (angle is in radians). This is not what you
// would do in practice, but it shows the similarity to constructions in
// other dimensions.

```cpp
Matrix3x3<Real> CreateRotation (Vector3<Real> u0, Real angle)
{
    Vector3<Real> v[3];
    v[0] = u0;
    ComputeOrthogonalComplement(1, v);
    Real cs = cos(angle), sn = sin(angle);
    Matrix3x3<Real> U(v[0], v[1], v[2]);
    Matrix3x3<Real> M(
        cs, -sn, (Real)0,
        sn, cs, (Real)0,
        (Real)0, (Real)0, (Real)1);
    Matrix3x3<Real> R = U*M*Transpose(U);
    return R;
}
```

7.3 4D Pseudocode

// Compute the hypercross product using the formal determinant:
// hcross = det{(e0, e1, e2, e3), {x0, x1, x2, x3}, {y0, y1, y2, y3}, {z0, z1, z2, z3}}
// where e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1),
// v0 = (x0, x1, x2, x3), v1 = (y0, y1, y2, y3), and v2 = (z0, z1, z2, z3).


```c

// Compute a right-handed orthonormal basis for the orthogonal complement
// of the input vectors. The function returns the smallest length of the
// unnormalized vectors computed during the process. If this value is nearly
// zero, it is possible that the inputs are linearly dependent (within
// numerical round-off errors). On input, numInputs must be 1, 2, or 3 and
// v[0] through v[numInputs-1] must be initialized. On output, the vectors

template<typename Real>
Real ComputeOrthogonalComplement (int numInputs, Vector4<Real> v[4])
{
  if (numInputs == 1)
  {
    int maxIndex = 0;
    Real maxAbsValue = fabs(v[0][0]);
    for (int i = 1; i < 4; ++i)
    {
      Real absValue = fabs(v[0][i]);
      if (absValue > maxAbsValue)
      {
        maxIndex = i;
        maxAbsValue = absValue;
      }
    }
    if (maxIndex < 2)
    {
      v[1][0] = -v[0][0];
      v[1][1] = +v[0][0];
      v[1][2] = (Real)0;
      v[1][3] = (Real)0;
    }
    else
    {
      v[1][0] = (Real)0;
      v[1][1] = (Real)0;
      v[1][2] = +v[0][3];
      v[1][3] = -v[0][2];
    }
    numInputs = 2;
  }
  if (numInputs == 2)
  {
    Real det[6] =
    {
      v[0][0]*v[1][1] - v[1][0]*v[0][1],
      v[0][0]*v[1][2] - v[1][0]*v[0][2],
      v[0][0]*v[1][3] - v[1][0]*v[0][3],
      v[0][1]*v[1][2] - v[1][1]*v[0][2],
      v[0][1]*v[1][3] - v[1][1]*v[0][3],
      v[0][2]*v[1][3] - v[1][2]*v[0][3]
    };
  }
```
```cpp
int maxIndex = 0;
Real maxAbsValue = fabs(det[0]);
for (int i = 1; i < 6; ++i)
{
    Real absValue = fabs(det[i]);
    if (absValue > maxAbsValue)
    {
        maxIndex = i;
        maxAbsValue = absValue;
    }
}
if (maxIndex == 0)
{
    v[2] = Vector4<Real>(-det[4], +det[2], (Real)0, -det[0]);
}
else if (maxIndex <= 2)
{
    v[2] = Vector4<Real>(+det[5], (Real)0, -det[2], +det[1]);
}
else
{
    v[2] = Vector4<Real>((Real)0, -det[5], +det[4], -det[3]);
}
numInputs = 3;
if (numInputs == 3)
{
    v[3] = HyperCross(v[0], v[1], v[2]);
    return Orthonormalize<4,Real>(4, v);
}
return (Real)0;
}
```