Intersection of Convex Objects: The Method of
Separating Axes

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: January 28, 2001
Last Modified: June 20, 2022

Contents

1 Introduction

2 Separation by Projection onto a Line

3 Separation of Convex Polygons in 2D

4 Separation of Convex Polyhedra in 3D
5 Separation of Convex Polygons in 3D

6 Separation of Moving Convex Objects

7 Contact Set for Moving Convex Objects
8 Example: Two Moving Triangles in 2D

9 Example: Two Moving Triangles in 3D

12

13

18

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

1 Introduction

A set is converz if given any two points P and @ in the set, the line segment (1 — ¢)P + tQ for t € [0, 1]
is also in the set. In 1 dimension, both [0,1] and [0,1) are convex. Lines, rays and segments are convex in
any dimension. In 2 dimensions, the classic examples are polygons whose interior angles are smaller than
7w radians. Triangles automatically satisfy this definition, so they are convex. Squares and rectangles are
convex. A chevron is a quadrilateral with one vertex having interior angle larger than 7 radians, so it is
not convex. A circle is not convex, but a disk that has a circular boundary is convex. In 3 dimensions, any
2-dimensional convex object living in a plane in 3 dimensions remains convex. Polyhedra can be partitioned
into two subsets, one consisting of convex polyhedra and the other not convex. A halfspace consists of an
unbounded region of points all lying on a plane or on the same side of the plane; these are convex. Solid
spheres and ellipsoids are also convex.

Although the ideas in this document can be applied to unbounded convex objects, I restrict attention to the
most common cases where the objects are bounded. Moreover, the objects are closed sets. In 1 dimension,
the intervals [0,1) and [0, 1] are convex and bounded. The interval [0, 1) is not closed because the limiting
point 1 is not in the set. The interval [0, 1] is closed and bounded. The interval [0, 400) is closed but not
bounded. Generally, a set is compact if it is closed and bounded.

This document describes the method of separating azes, a method for determining whether two stationary
convex objects are intersecting. The ideas can be extended to handle moving convex objects and are useful
for predicting collisions of the objects and for computing the first time of contact. The current focus of
this document is the test intersection geometric query which indicates whether an intersection exists or will
occur when the objects are moving. The problem of computing the set of intersection is a find intersections
geometric query and is generally more difficult to implement than the test intersection query. Information
from the test query can help determine the contact set that the find query must construct. This document
will describe in what way the test query information can be used.

2 Separation by Projection onto a Line

A test for nonintersection of two convex objects is simply stated: If there exists a line for which the intervals
of projection of the two objects onto that line do not intersect, then the objects are do not intersect. Such
a line is called a separating line or, more commonly, a separating axis.

The translation of a separating line is also a separating line, so mathematically it is sufficient to consider
lines that contain the origin. However, in practice, a line is chosen that contains a point of one of the objects.
This is helpful to reduce problems caused by rounding errors when computing with floating-point arithmetic.

Given a line containing the origin and with unit-length direction D, the projection of a compact and convex
set C onto the line is the interval

I =[Dnin(D), Amax(D)] = min{D - X : X € C},max{D - X : X € C}] (1)
Two compact convex sets Cy and C; are separated if there exists a direction D for which the projection

intervals Iy and I; do not intersect. Specifically they do not intersect when

A% (D) > 2D (D) or AO (D) < A2 (D) (2)

min max ax min

The superscript corresponds to the index of the convex set. Although the comparisons are made where D
is unit length, the comparison results are invariant to changes in length of the vector. This follows from

Amin(tD) = tAnin (D) and Apax (tD) = tAmax (D) for £ > 0. The Boolean value of the pair of comparisons is
also invariant when D is replaced by the opposite direction —D. This follows from Apin(—D) = —Apax(D)
and Apax(—D) = —Anin (D). When D is not unit length, the intervals obtained for the separating axis tests
are not the projections of the object onto the line, rather they are scaled versions of the projection intervals.
I make no distinction in this document between the scaled projection and regular projection. I will also use
the terminology that the direction vector for a separating axis is called a separating direction, which is not
necessarily unit length.

The ideas in this document apply to closed convex sets whether bounded or unbounded, but I restrict the
discussion to the common case where the sets are convex polygons or convex polyhedra.

3 Separation of Convex Polygons in 2D

For a pair of convex polygons in 2D, only a finite set of direction vectors needs to be considered for separation
tests. That set includes the normal vectors to the edges of the polygons. The left picture in Figure 1 shows
two nonintersecting polygons that are separated along a direction determined by the normal to an edge of
one polygon. The right picture shows two polygons that intersect; there are no separating directions.

Figure 1. Nonintersecting convex polygons (left). Intersecting convex polygons (right).

(]

5] D et —

L 1 r 1

T T T T
rojection{C0 rojection{C1 . .

prel (c0) prel (C1) nao separation on any axis

separation

The intuition for why only edge normals must be tested is based on having two convex polygons just touching
with no interpenetration. Figure 2 shows the three possible configurations: edge-edge contact, vertex-edge
contact, and vertex-vertex contact.

Figure 2. Edge-edge contact (left), vertex-edge contact (middle), and vertex-vertex contact.

edge-edge wertex-edge vertex-vertex

The blue lines are perpendicular to the separation lines that would occur for the object translated away from
the other by an infinitesimal distance.

For j = 0 and j = 1, let C; be the convex polygons with vertices {Vl(j)}ga ! that are counterclockwise
ordered. The number of vertices for polygon j is n;. The direct implementation for a separation test for
direction D involves computing the extreme values of the projection and compares them. That is, compute

)\gi)n(D) = Ming<j<pno{D - ng)} and M)y (D) = Maxo<;<n, {D - ng)} and test the inequalities in equation

2. The algorithm is potentially slow because all the vertices are projected onto the line and then sorted to
determine the extreme projection values.

Instead, we can choose the candidate separating axis to be the line with direction D and that passes through
a vertex P of one of the polygons. Moreover, that vertex is an endpoint of an edge that provided the direction
D, and we can choose D to point to the outside of the polygon. The chosen polygon that contains P is
convex, so the projection of that polygon’s vertices onto the line P + ¢D is an interval of the form [T, 0] for
some T < 0. We can then project the other polygon’s vertices onto the line one at a time. If we encounter a
vertex for which the projection is t < 0, then the line is not a separating axis, but if all the projections have
values t > 0, the line is separating and the polygons do not intersect.

This algorithm of the previous paragraph is a reasonable modification when the polygons have a large number
of nonparallel edges. For triangles or rectangles, the direct implementation is a better choice. In particular,
it is a better choice when the rectangles are represented by a center point, two orthonormal axes, and
two half-width measurements; the projection intervals are trivial to compute with this representation. The
assumption is that the polygon vertices are listed in counterclockwise order. Given an edge direction (zg, 1),
an outward pointing normal is (xg, 1)+ = (71, —z0). Listing 1 contains pseudocode for the separating axis
tests.

Listing 1. The separating axis tests for convex polygons in 2 dimensions.

struct Vector2 { Real x, y; };

// The vertices are listed in counterclockwise order.
struct ConvexPolygon2 { int numVertices; Vector2 vertex[]; };

Vector2 Perp(Vector2 v) { return Vector2(v.y, —v.x); }

// This function is generic in the sense that it the interface ConvexSet<N>

// has a member 'numVertices' and an array ’'vertex[]’' of N—tuples.

int WhichSide(ConvexSet<N> C, Vector<N> P, Vector<N> D)

{
// The vertices are projected to the form P + t % D. The return value is +1 if all t > 0,
// —1 if all t < 0, but 0 otherwise, in which case the line splits the polygon projection.
int positive = 0, negative = 0;
for (int i = 0; i < C.numVertices 4++i)

// Project a vertex onto the line.
Real t = Dot(D, C.vertex[i] — P);

if (t>0)
{

++positive;
}
else if (t < 0)
{

++negative;

if (positive && negative)
// The polygon has vertices on both sides of the line, so the line is not a separating axis.

// Time is saved by not having to project the remaining vertices.
return 0;

}

// Either positive > 0 or negative > 0 but not both are positive.

return (positive > 0 ? +1 : —1);

// The function returns ’'true' when the polygons intersect.
bool Testlntersection(ConvexPolygon2 CO, ConvexPolygon2 C1)

{
// Test edges of CO for separation. Because of the counterclockwise ordering , the
// projection interval for CO is [T,0] where T < 0. Determine whether Cl is on the
// positive side of the line.
for (int i0 = 0, il = CO.numVertices — 1; i0 < CO.numVertices; il = i0++)
{
Vector2 P = CO.vertex[i0];
Vector2 D = Perp(CO.vertex[i0O] — CO.vertex[il]); // outward pointing
if (WhichSide(C1, P, D) > 0)
// Cl is entirely on the positive side of the line P+ t * D.
return false;
}
}
// Test edges of Cl for separation. Because of the counterclockwise ordering, the
// projection interval for Cl1 is [T,0] where T < 0. Determine whether CO is on the
// positive side of the line.
for (int i0 = 0, il = Cl.numVertices — 1; i0 < Cl.numVertices; il = i0++)
{
Vector2 P = Cl.vertex[i0];
Vector2 D = Perp(CO.vertex[i0O] — CO.vertex[il]); // outward pointing
if (WhichSide(CO, P, D) > 0)
// CO is entirely on the positive side of the line P + t % D.
return false;
}
}
return true;
}

4 Separation of Convex Polyhedra in 3D

For a pair of convex polyhedra in 3D, only a finite set of direction vectors needs to be considered for separation
tests. That set includes the normal vectors to the faces of the polyhedra and vectors generated by a cross
product of two edges, one from each polyhedron. The intuition is similar to that of convex polygons in 2D. If
the two polyhedra are just touching with no interpenetration, then the contact is one of face-face, face-edge,
face-vertex, edge-edge, edge-vertex, or vertex-vertex.

mg—

For j =0 and j = 1, let C; be the convex polyhedra with vertices {VEJ)}?ial, edges {Ez('j)}i:O ! and faces
{FE-J)}fi_ol. Let the faces be planar convex polygons whose vertices are counterclockwise ordered as you
view the face from outside the polyhedron. Outward pointing normal vectors can be stored with each face
as a way of representing the orientation. The pseudocode for 3D that is similar to that in 2D is provided in
Listing 2. It is assumed that each face has queries which allow access to the face normal and to a vertex on
the face. It is also assumed that each edge has a query that allows access to a vertex on the edge.

Listing 2. The separating axis tests for convex polyhedra in 3 dimensions. The WhichSide function is the
one of Listing 1 but for dimension N = 3.

struct Vector3 { Real x, y, z; }
struct Edge3 { Vector3 vertex[2]; };

struct Face3 { int numVertices; Vector3 vertex[]; Vector3 normal; };

struct ConvexPolyhedron3

{
int numVertices, numEdges, numFaces;
Vector3 vertex [];
Edge3 edge[];
Face3 face[];
I

// The function returns ’'true ' when the polyhedra intersect.
bool Testintersection3 (ConvexPolyhedron CO, ConvexPolyhedron C1)
{
// Test faces of CO for separation. Because of the counterclockwise ordering, the
// projection interval for CO is [T,0] where T < 0. Determine whether Cl1 is on the
// positive side of the line.
for (int i = 0; i < CO.numFaces; ++i)
{
Vector3 P = C0.face[i].vertex[0];
Vector3 N = CO0.face[i].normal; // outward pointing
if (WhichSide(C1, P, N) > 0)

// Cl is entirely on the positive side of the line P + t % N.
return false;

}

// Test faces of Cl for separation. Because of the counterclockwise ordering , the
// projection interval for Cl is [T,0] where T < 0. Determine whether CO is on the
// positive side of the line.
for (int i = 0; i < Cl.numFaces; ++i)
{

Vector3 P = Cl.face[i].vertex;

Vector3 N = Cl.face[i].normal; // outward pointing

if (WhichSide(CO, P, N) > 0)

// CO is entirely on the positive side of the line P + t % N.
return false;

}

// Test cross products of pairs of edge directions, one edge direction from each polyhedron.
for (int i0 = 0; i0 < CO.numEdges; ++i0)

Vector3 DO = CO.edge[i0].vertex[1] — CO.edge[i0].vertex [0];
Vector3 P = CO.edge[i0].vertex [0];
for (int il = 0; il < Cl.numEdges; ++il)
{
Vector3 D1 = Cl.edge[il].vertex[1l] — Cl.edge[il].vertex[O];
Vector3 N = Cross (DO, D1);

if (N != Vector3(0, 0, 0))

{
int side0 = WhichSide(CO, P, N);
if (side0 = 0)
{
continue;
int sidel = WhichSide(C1, P, N);
if (sidel = 0)
{
continue;
}
if (side0 * sidel < 0)
// The projections of CO and Cl1 onto the line P + t x N are on
// opposite sides of the projection of P.
return false;
}
}

}

return true;

5 Separation of Convex Polygons in 3D

For a pair of convex polygons in 3D, again only a finite set of direction vectors needs to be considered for
separation tests. For j = 0 and j = 1, let C; be the convex polygons with vertices {VEJ)}7;’0_1 with the

index wrap-around convention Vggz = Véj). Each set of vertices is necessarily coplanar. The edges for the
polygons are El(,j) = Vl(i)l — ng) for 0 <i<m;. Let N) be normal vectors for those planes, chosen so
that when an observer on the side of the plane to which the normal is directed, the observer sees the triangle

vertices listed in counterclockwise order.

The polygons normals are potential separating directions. If either normal direction separates the polygons,
then no intersection occurs. If neither normal direction separates the polygons, then two possibilities exist
for the remaining potential separating directions.

The first case is that the polygons are coplanar—effectively the 2D case—and the remaining potential
separating directions are those vectors in the common plane and that are perpendicular to the polygon
edges, EEJ) x N for 0 < j <1and 0 <7< my,a total of 2m; vectors. By the convention for choosing the
normal vectors, each cross product is in the plane of the polygon and points to the outside of the polygon
for its corresponding edge.

The second case is that the polygon planes are not parallel and that each polygon is split by the plane of
the other polygon. The remaining potential separating directions are the cross products EZ(-O) X E;l) for
0 <i<mpand0<j<mq, a total of mgm; vectors.

Listing 3 contains pseudocode for the test-intersection query.

Listing 3. The separating axis tests for convex polygons in 3 dimensions. The function WhichSide is the
one defined in Listing 2.

struct ConvexPolygon3

int numVertices;
Vector3 vertex [];

Vector3 normal; // ... to the plane of the polygon
I
bool Testlntersection(ConvexPolygon3 CO, ConvexPolygon3 C1)
{
// Test the normal to the plane of CO for separation. The projection

// of CO onto the normal line P + t = N produces the degenerate
// interval [0,0].

Vector3 P = C0.vertex [0];

Vectord N = CO.normal;

if (WhichSide(C1, P, N) != 0)

// Cl is entirely on one side of the plane of CO.
return false;

// Test the normal to the plane of Cl1 for separation. The projection
// of C1 onto the normal line P + t x N produces the degenerate

// interval [0,0].

P = Cl.vertex [0];

N = Cl.normal;

if (WhichSide(CO, P, N) != 0)

{

// CO is entirely on one side of the plane of CI.
return false;

// If the planes of the polygons are parallel but separated, the previous
// code will generate a return (when testing the normal to the plane of CO0).
// Therefore, the remaining cases are that the planes are not parallel or
// they are the same plane. The distinction is made simply be testing

// whether the normals are nonparallel or parallel, respectively.

Vector3 NOxN1 = Cross(CO.normal, Cl.normal);

if (NOxN1 != Vector3(0, 0, 0)) // The planes are not parallel.
{
for (int i0 = 0; i0 < CO.numEdges; ++i0)
{
Vector3 DO = CO.edge[i0].vertex[1] — CO.edge[i0].vertex[0];
Vector3 P = CO.edge[i0]. vertex[O0];
for (int il = 0; il < Cl.numEdges; ++il)
{
Vector3 D1 = Cl.edge[il].vertex[1] — Cl.edge[il].vertex[0];
Vector3 N = Cross(D0, D1);
if (N != Vector3(0, 0, 0))
int side0 = WhichSide(CO, P, N);
if (side0 = 0)
{
continue;
}
int sidel = WhichSide(C1l, P, N);
if (sidel = 0)
{ :
continue;
if (side0 * sidel < 0)
// The projections of CO and Cl1 onto the line P + t % N are on
// opposite sides of the projection of P.
return false;
}
}
}
}

else // The polygons are coplanar.

// Test edges of CO for separation.
for (int i0 = 0; i0 < CO.numEdges; ++i0)

Vector3 P = C0.edge[i0]. vertex[0];
Vector3 D Cross(CO.edge[i0], CO.normal); // outward pointing
if (WhichSide(Cl, P, D) > 0)

// Cl is entirely on the positive side of the line P + t % D.
return false;

}

// Test edges of Cl for separation.
for (int il = 0; il < Cl.numEdges; ++il)
{
Vector3 P = Cl.edge[il].vertex[0];
Vector3 D = Cross(Cl.edge[il], Cl.normal); // outward pointing

if (WhichSide(CO, P, D) > 0)

// CO is entirely on the positive side of the line P + t % D.
return false;

}

return true;

6 Separation of Moving Convex Objects

The method of separating axes can be extended to handle convex objects moving with constant linear velocity
and no angular velocity. If Cy and C; are convex objects with linear velocities W and Wy, then it can be
determined via projections whether the objects will intersect for some time T° > 0. Moreover, if they do,
the first time of contact can be computed. Without loss of generality, it is enough to work with a stationary
object Cy and a moving object C; with velocity W since one can always use W = W1 — W to perform
the calculations as if C were not moving.

If the Cy and C1 are initially intersecting, then the first time of contact is 7' = 0. The set of intersection is
itself convex, but computing the set is complicated depending on the nature of the objects themselves. For
example, if Cy and C are convex polygons in 2 dimensions and that overlap initially, the set of intersection
is a convex polygon. However, if Cj is a convex polygon and C] is a solid ellipse that overlap in a region of
positive area, the set of intersection has a boundary consisting of line segments and elliptical arcs. For many
physics simulations, the objects are initially placed so that they are not overlapping.

Let the convex objects be separated initially. The projection of C; onto a line with direction D is an
interval that is moving with speed s = (W - D)/|D|?. If the projection interval of C; moves away from
the projection interval of Cj, then the two objects will never intersect. The interesting cases are when the
projection intervals for C7 move towards those of Cj.

The intuition for how to predict an intersection is much like that for selecting the potential separating
directions in the first place. If the two convex objects intersect at a first time g5 > 0, then their projections
are not separated along any line. An instant before first contact, the objects are separated. Consequently
there must be at least one separating direction for the objects for Tg.s; — € for small € > 0. Similarly, if the
two convex objects intersect at a last time Ti,s > 0, then their projections are also not separated at that
time along any line, but an instant after last contact, the objects are separated. Consequently there must
be at least one separating direction for the objects for Tj.s; + € for small € > 0. Both Th.s¢ and Tt can
be tracked as each potential separating axis is processed. After all directions are processed, if Tpst < Tlast,
then the two objects intersect with first contact time Tgyst. It is also possible that Tgyst > Tlast in which case
the two objects cannot intersect. This algorithm is attributed to Ron Levine in a post to the SourceForge
game developer algorithms mailing list [1].

Let Sy and S; denote the set of potential separating directions and let W and W denote the velocities
for Cy and C1, respectively. Listing 4 contains pseudocode for testing for intersection of two moving convex
objects.

Listing 4. The separating axis tests to determine first time of contact and point (or points) of contact

for convex objects moving with constant linear velocities but no angular velocity. The first time of contact
tFirst and the last time of contact tLast are valid only when TestIntersection returns true.
1 bool Testlntersection(Convex CO, Convex Cl, Real& tFirst, Real& tlLast)

2 {
3 Vector W= C1.W— CO.W; // process as if CO is stationary, Cl is moving
4 Set<Vector> S = Union(C0.S, C1.S); // all potential separating axes
5 tFirst = —infinity;

6 tLast = infinity;

7 for each D in S do

8

9 Real speed = Dot(D, W);

10

11 // Project CO onto the separating axis at time 0.

12 Real min0 = min(Dot(D, CO.vertices[i]); // min computed over all i

13 Real max0 = max(Dot(D, CO.vertices[i]); // max computed over all i

14

15 // Project Cl1 onto the separating axis at time 0.

16 Real minl = min(Dot(D, Cl.vertices[i]); // min computed over all i

17 Real maxl = max(Dot(D, Cl.vertices[i]); // max computed over all i

18

19 if (maxl < min0)

20 {

21 // The interval (Cl1) is initially on the left of the interval (CO).

22 if (speed <= 0)

23

24 // The intervals are moving apart.

25 return false;

26 }

27

28 // Update the first time of contact.

29 Real t = (min0 — maxl) / speed;

30 if (t > tFirst)

31 {

32 tFirst = t;

33 }

34

35 // Update the last time of contact.

36 t = (max0 — minl) / speed;

37 if (t < tLast)

38

39 tlast = t;

40 }

41

42 // Test whether the first and last times of contact are valid.

43 if (tFirst > tlast)

44 {

45 return false;

46 }

a7 }

48 else if (max0 < minl)

49 {

50 // The interval (Cl) is initially on the right of the interval (CO0).

51 if (speed >= 0)

52

53 // The intervals are moving apart

54 return false;

55 }

56

57 // Update the first time of contact.

58 Real t = (max0 — minl) / speed;

59 if (t > tFirst)

60 {

61 tFirst = t;

62 }

63

64 // Update the last time of contact.

65 t = (min0 — maxl) / speed;

66 if (t < tLast)

67

68 tlast = t;

69 }

10

70

71 // Test whether the first and last times of contact are valid.
72 if (tFirst > tlast)

73 {

74 return false;

75 }

76 }

77 else

78 {

79 // The interval (C0) and interval (Cl1) overlap. It is possible that
80 // the objects separate at a later time, so the last time of contact
81 // potentially needs updating.

82 if (speed > 0)

83 {

84 // Update the last time of contact.

85 Real t = (max0 — minl) / speed;

86 if (t < tLast)

87 {

88 tLast = t;

89 }

90

91 // Test whether the first and last times of contact are valid.
92 if (tFirst > tLast)

93 {

94 return false;

95 }

26

97 else if (speed < 0)

98

99 // Update the last time of contact.

100 Real t = (min0 — maxl) / speed;

101 if (t < tLast)

102 {

103 tLast = t;

104 }

105

106 // Test whether the first and last times of contact are valid.
107 if (tFirst > tLast)

108 {

109 return false;

110 }

111 }

112 }

113 }

114 return true;

115 }

The following example illustrates the ideas. The first box is the unit cube 0 < x <1 and 0 <y <1 and is
stationary. The second box is initially 0 <z <1 and 1+ 6 <y < 24§ for some § > 0. Let its velocity be
(1, —1). Whether or not the second box intersects the first box depends on the value of §. The only potential
separating axes are (1,0) and (0,1). Figure 3 shows the initial configuration for three values of §, one where
there will be an edge-edge intersection, one where there will be a vertex-vertex intersection, and one where
there is no intersection.

11

Figure 3. Edge-edge intersection predicted (left). Vertex-vertex intersection predicted (middle). No inter-
section predicted (right).

s d Z2+d
2+d 14d 1+d -
1+d
1 1 1
]]]
o 1 o 1 o 1
0=d=1 d=1 d=1

The black box is stationary. The blue box is moving. The green vector indicates the direction of motion.
The red boxes indicate where the moving box first touches the stationary box. In the right image in the
figure, the dotted red line indicates that the moving box will miss the stationary box. For D = (1,0), the
pseudocode produces min0 = 0, max0 = 1, minl = 0, maxl = 1, and speed = 1. The projected intervals are
initially overlapping. Because the speed is positive, t = (max0-minl)/speed = 1 < tLast = INFINITY and tLast is
updated to 1. For D = (0, 1), the pseudocode produces min0 = 0, max0 = 1, minl = 1+delta, maxl = 2+delta,
and speed = -1. The moving projected interval is initially on the right of the stationary projected interval.
Because the speed is negative, t = (max0-minl)/speed = delta > tFirst = 0 and tFirst is updated to delta. The
next block of code sets t = (min0-maxl)/speed = 2+delta. The value tlLast is not updated because 2 + 4§ < 1
cannot happen for § > 0. On exit from the loop over potential separating directions, tpi;st = 0 and tas; = 1.
The objects intersect if and only if tg.5¢ < f1ast, or 6 < 1. This condition is consistent with the images in
Figure 3. The left image has § < 1 and the middle image has 6 = 1, intersections occurring in both cases.
The right image has 6 > 1 and no intersection occurs.

7 Contact Set for Moving Convex Objects

Given two moving convex objects Cy and C; with velocities W and W that are initially not intersecting,
the material in the last section showed how to compute the first time of contact T, if it exists. Assuming
it does, the sets Co +TWy ={X +TW;,: X € Cp} and C1 +TW ={X +TW, : X € (4} are just
touching with no interpenetration. Figure 2 shows the various configurations for 2D.

The TestIntersection function of Listing 4 can be modified to keep track of which vertices, edges, and /or faces
are projected to the endpoints of the projection interval. At the first time of contact, this information can
be used to determine how the two objects are positioned with respect to each other. In 2D, if the contact
is vertex-edge or vertex-vertex, the contact set is a single point, a vertex. If the contact is edge-edge, the
contact set is a line segment that contains at least one vertex. In 3D, if the contact is vertex-vertex, vertex-
edge, or vertex-face, then the contact set is a single point, a vertex. If the contact is edge-edge, the contact
set is a single point (the intersection of the two lines containing the edges) or a line segment (the edges are
on the same line). If the contact is edge-face, then the contact set is a line segment. Otherwise, the contact
is face-face and the contact set is the intersection of two planar convex polygons.

12

8 Example: Two Moving Triangles in 2D

Consider two triangles, (Uo,U1,Us) and (V, V1, Vs), both having counterclockwise ordering. For the
sake of indexing notation, define Us = Uy and V3 = V. The edge directions are E; = U;y; — U; and
F, =V, -V, for 0 <i <2 Define (z,9)* = (y,—x). Outward pointing normals to the edges are
N, = Ef and M; = Ff for 0 <4 < 2. The six normals are the potential separating directions. Let the
triangle velocities be W and W.

In Listing 4 for testing for intersection of two moving convex objects, Cy and C; represent the two trian-
gles. The calculation of the minimum and maximum projections for the triangles can be computed so that
additional information is known about how the two triangles are oriented with respect to each other. Three
cases occur for the projection:

1. Two vertices project to the minimum of the interval and one vertex projects to the maximum.
2. One vertex projects to the minimum of the interval and two vertices project to the maximum.
3. One vertex projects to the minimum, one vertex projects to the maximum, and one vertex projects to

an interior point of the interval defined by the minimum and maximum.

A flag can be associated with each triangle to indicate which of these three cases occurs for a given potential
separating direction D; call the flag values M21, M12, and M11. It is also necessary to remember the indices
of the vertices that project to the extreme values. Listing 5 shows a convenient data structure.

Listing 5. A data structure to support the computation of contact points. The flag Mij refers to i points
projecting to the minimum and j points projecting to the maximum; for example, M21 indicates that 2
points project to the minimum and 1 point projects to the maximum. The number index|0] is the index into
the array of three triangle vertices for a vertex that maps to the min projection. The number index[2] is the
index of that vertex that maps to the max projection. The number index|[1] is that of the remaining vertex
that can map to the minimum, maximum or some number between them depending on the orientation of
the triangle.

enum ProjectionMap { M21, M12, M1l };
struct Configuration { ProjectionMap map; int index[3]; Real min, max; };

In the Testlntersection function of Listing 4, two configuration objects are declared, cfg0 for the U-triangle
(the CO polygon) and cfgl for the V-triangle (the C1 polygon). To illustrate for the specific case D = Ny,
the lines 12, 13, 16 and 17 of Listing 4 are shown in Listing 6 for the specific case of two triangles.

Listing 6. Lines 12, 13, 16 and 17 of Listing 4, where CO0 is the U-triangle and C1 is the V-triangle, where
U[i] denotes U; and V[i] denotes V.

Real min0 = min(Dot(D,U[i])); // min computed over i = 0,1,2
Real max0 = max(Dot(D,U[i])); // max computed over i = 0,1,2
Real minl = min(Dot(D,V[i])); // min computed over i = 0,1,2
Real maxl = max(Dot(D,V[i])); // max computed over i = 0,1,2

This code is replaced by that of Listing 7.

13

Listing 7. The replacement code specific for computing the extreme projections of the U-triangle onto
the outer-pointing normal perpendicular to the edge of (U, U;). The edge direction is Eg = Uy — U, and
the normal is No = Ej.

Configuration cfg0; // the configuration for the U—triangle
Configuration cfgl; // the configuration for the V—triangle

// U2 maps to minimum, U0 and Ul map to maximum
cfg0.map = M12;

cfg0.index [0] = 2; cfg0.index[1] = 0; cfg0.index[2] = 1;

cfg0.min = —Dot(NO,E2);

cfg0.max = 0;

// Compute min and max of interval for second triangle. Keep track of

// vertices that project to min and max.
Real d0 = Dot(NO,V0-U0); dl1 = Dot(NO,V1-U0); d2 = Dot(NO,V2-U0);
if (d0 <= d1)

if (d1 <= d2) // d0 <= d1 <= d2

if (do 1= d1)

cfgl.map = (dl1 != d2 ? M1l : M12);
else
cfgl.map = M21;
ifgl.index[o] = 0; cfgl.index[1] = 1; «cfgl.index[2] = 2;
cfgl.min = d0; «cfgl.max = d2;
](;Ise if (d0 <= d2) // d0 <= d2 < d1
if (do 1= d2)

cfgl.map = M11,;
cfgl.index[0] = 0; «cfgl.index[1] = 2; cfgl.index[2] = 1;

else
{

cfgl.map = M21;

cfgl.index[0] = 2; «cfgl.index[1] = 0; cfgl.index[2] = 1;
cfgl.min = dO; cfgl .max = dl;

}
else // d2 < d0 <= dI

cfgl .map = (dO != d1 ? M12 : MI11);
cfgl.index[0] = 2; cfgl.index[1] = 0; cfgl.index[2] = 1;
cfgl.min = d2; cfgl.max = d1;

}

else

if (d2 <=d1) // d2 <= dl < do
if (d2 1= d1)

cfgl.map = M11;
cfgl.index[0] = 2; «cfgl.index[1] = 1; cfgl.index[2] = 0;
}

else

{
cfgl.map = M21;
cfgl.index[0] = 1; «cfgl.index[1] = 2; cfgl.index[2] = 0;

cfgl.min = d2; cfgl .max = dO;

14

else if (d2 <=d0) // dI < d2 <= d0

{
cfgl .map = (fD2 != fDO ? M1l : MI12);
cfgl.index[0] = 1; «cfgl.index[1] = 2; cfgl.index[2]
cfgl.min = fD1; cfgl.max = fDO;

Il
o

}
else // dl < d0 < d2

cfgl.map = M11;
cfgl.index[0] = 1; «cfgl.index[1] = 0; cfgl.index[2] = 2;
cfgl.min = fD1; cfgl.max = fD2;

Similar blocks of code can be written for other potential separating directions.

The conditional statements starting at line 19 of Listing 4 comparing minima and maxima must be modified
to keep track of the relative location of the moving interval to the stationary one. The input configurations
are for the current potential separating axis. If this axis direction becomes the new candidate for first time
of contact, we need to remember its configurations to be used in the function that computes the contact set.
Listing 8 contains pseudocode for tracking the configurations. It also shows how we must keep track of how
the intervals intersect (if at all) along a separating axis.

Listing 8. The replacement code for the comparisons of the extremes of the projections. We need to
keep track of the configurations for the current separating axis test. We also need to keep track of global
configurations for the two triangles related to the first time of contact (if any). Finally, we also need to keep
track of the relative position of the U-triangle projection interval and the V -triangle projection interval; that
is, we need to how the intervals approach each other for the current separating axis test. The enumeration
for this is Side.

enum Side = { NONE, LEFT, RIGHT };

// The following thee variables are global, outside the loop over all
// potential separating axes. The contact configurations need not be
// initialized , because they are consumed only when there is separation
// at which time the contact configurations are assigned values.

Side side = NONE;

Configuration contactCfg0, contactCfgl;

// Replacement code for the current separating axis test. The complete
// code has a loop over all potential separating axis tests.
if (cfgl.max < cfg0.min)

// The V—interval is initially on the left of the U-interval.
if (speed <= 0)

// The intervals are moving apart.
return false;

}

// Update the first time of contact.
Real t = (cfg0.min — cfgl.max) / speed;
if (t > tFirst)

tFirst = t;
side = LEFT;
contactCfg0 = cfg0;
contactCfgl = cfgl;

}

// Update the last time of contact.

15

t = (cfg0.max — cfgl.min) / speed;
if (t < tlLast)

tLast = t;

}

// Test whether the first and last times of contact are valid.
if (tFirst > tlLast)

{
return false;
}
}
else if (cfg0.max < cfgl.min)
{
// The V—interval is initially on the right of the U—interval.
if (speed >= 0)
// The intervals are moving apart.
return false;
}
// Update the first time of contact.
Real t = (cfg0.max — cfgl.min) / speed;
if (t > tFirst)
tFirst = t;
side = RIGHT;
contactCfg0 = cfg0;
contactCfgl = cfgl;
}
// Update the last time of contact.
t = (cfg0.min — cfgl.max)/speed;
if (t < tlLast)
tLast = t;
}
// Test whether the first and last times of contact are valid.
if (tFirst > tlast)
{
return false;
}
}
else
{

// The U—interval and V—interval overlap. It is possible that

// the objects separate at a later time, so the last time of contact
// potentially needs updating.

if (speed > 0)

{
// Update the last time of contact.
Real t = (cfg0.max — cfgl.min) / speed;
if (t < tLast)
tlast = t;
}
// Test whether the first and last times of contact are valid.
if (tFirst > tlLast)
{
return false;
}
}

else if (speed < 0)
// Update the last time of contact.
T = (cfg0.min — cfgl.max) / speed;
if (t < tlLast)

tLast = t;

16

// Test whether the first and last times of contact are valid.
if (tFirst > tlast)

{
}

return false;

If Ny is the last separating axis an instant before first time of contact, then the TConfig string contains one
of VOV1, V1VO, VOV2, V2V0, V1V2, V2V1, VOF1, F1V0, VIF2, F2V1, V2F0, or FOV2. Figure 4 illustrates four
configurations that match the pseudocode (given after the figure).

Figure 4. Four configurations for the first time of contact. Although the labels use the original vertex
names, the vertices are actually the original ones moved by their corresponding velocities.

1 W Wi

1

z
z
1 WE

a

a

W1

(a) case Yol (b)Y case FOWZ
V1

Ui UL yp

uz

Vo

Vo
W2 Ho vz ua
(o) contact on left (dyinitially intersecting
of U-triangle

The following pseudocode shows how to construct the contact set. Again, the use of strings is just for
illustration and most likely not how you would implement this.

if (side =— RIGHT)
if (TConfig[0] = 'V')
{

// vertex—edge configuration [Figure 8.1 (a)]
contactSet = { Vi + TFirst«W1 }; // i is number in TConfig[1]

}
else // TConfig[0] = 'F’

// Edge—edge configuration. See discussion after this code.
// Vi0 is the first vertex and Vil is the last vertex of edge Fi
// where i is the number in TConfig[1]. [Figure 8.1 (b)]
min = Dot (EO, Vil—UO+TFirst+W)/Dot(E0,EQ);
max = Dot (EO, Vi0o—UO+TFirst+W)/Dot(E0,EQ);
| = intersection ([0,1],[min,max]); // guaranteed not empty
contactSet = U0 + TFirst*W1 + IxEO0; // point or line segment
b
}
else if (side = LEFT)

17

// vertex—edge configuration [Figure 4 (c)]
contactSet = { U2 + TFirst*W0 };

else // triangles were initially intersecting

// Intersection set is a convex set: a point, a line segment, or a
// convex polygon with at most six sides. [Figure 8.1 (d)]

Point UMove[3] = { UO+TFirst«+W0, Ul+TFirst«W0, U2+TFirst*W0 };
Point VMove[3] = { VO+TFirst«W1, V1+TFirst«W1l, V2+TFirst*W1 };
contactSet = TriTrilntersection (UMove, VMove);

}

In the case of edge-edge contact, after motion the two triangles touch at either a point or line segment. Let
T denote the contact time. For the sake of argument, suppose that the contact edge for the second triangle
is Flg. The touching edges are parameterized by Uy + TW 4 sEj for s € [0,1] and Vo + TW + sE| for
s € [po, 1] where

(Vi+TWy)— (Ug+TWy) (Vo+TW4) — (Ug+TWy)

= and = .
ZE i | Eol?

Ho

The overlap of the two edges occurs for 5 € I = [0, 1] N [uo, 1] # 0. The corresponding points in the contact
set are Ug +TW + SE).

In the event the two triangles are initially overlapping, the contact set is more expensive to construct. It can
be a single point, a line segment, or a convex polygon with at most six sides. This set can be constructed
by standard methods involving Boolean operations on polygons.

9 Example: Two Moving Triangles in 3D

Consider two triangles, (Uo,U1,U>) and (V, V1, V). For the sake of indexing notation, define Uz = U,
and V3 = V. The edges are E; =U,;11 —U; and F; =V ;11 — V,; for 0 < i < 2. A normal for the first
triangle is N = FE(y x E; and a normal for the second triangle is M = Fy x F';. If the triangles are not
coplanar, then the potential separating directions are N, M, and E; x F; for 0 <¢ <2and 0 < j < 2.
If the triangles are parallel, but are not in the same plane, then IV is a separating direction and the other
directions need not be tested. Moreover, if N and M do not separate non-coplanar triangles, then the
vectors E; x F'j cannot be zero. If the triangles are coplanar, then the potential separating directions are
N x E; and N x F; for 0 < ¢ < 2. This is exactly the 2D situation discussed earlier.

If D is a potential separating direction, then the block for computing the intervals of projection is more
complex than that of its 2D counterpart. Both triangles are projected onto the separating axis. Each
projection interval must be sorted to determine the appropriate configuration. The left/right relationship
of the two projection intervals must be determined. The set of configurations for the projection of a single
triangle consists of the following:

e 3: All three vertices project to the same point. This happens when D is a normal vector to one of the
triangles.

e 2-1: Two vertices project to the minimum point of the interval, one vertex projects to the maximum
point.

e 1-2: One vertex projects to the minimum point of the interval, two vertices project to the maximum
point.

18

e 1-1-1: The three vertices project to distinct points in the interval.

The tables below summarize the possibilities. The symbols U, E, and N refer to the first triangle’s vertices,
edges, and full triangle. The indices after the U or E symbols indicate the specific vertex or edge that is
involved in the contact. This information is calculated during the sorting of the projected points. The
symbols V, F, and M refer to the second triangle’s vertices, edges, and full triangle.

Uleft \ Vright | 3 2-1 1.2 1-1-1 Vleft\ Uright | 3 21 12 111
3 NM NF; NV; NV, 3 MN ME; MU; MU,

1-2 EM EF; EV, EV; 1-2 F,N F,E; FU FU;

21 UM UF; UV, UYV; 21 V,N V;E. VUi ViU

1-1-1 UM UF;, UV, UYV; 1-1-1 V,N V,E;, VUi VU

The intersection set for any table entry containing U; or Vj is just that point. Each table contains 12 such
cases. The intersection set for any table entry containing E; or F; but not containing U; or Vj is a line
segment (possibly degenerating to a point). Each table contains 3 such cases. Finally, the table entries N M
and M N correspond to coplanar triangles that intersect. The intersection set is a point, line segment, or a
convex polygon with at most six sides.

Pseudocode for handling the sorting and storing information for later code that determines contact sets is
given below.
typedef enum { m3, m21, ml2, mlll } ProjectionMap;

typedef struct

ProjectionMap map; // how vertices map to projection interval
int index[3]; // the sorted indices of the vertices
float min, max; // the interval is [min, max]

}

Config;

Config GetConfiguration (Point D, Point U[3])

// D is potential separating direction
// U[3] are the triangle vertices

Configuration config;
d0 = Dot(D,U[0]), d1 = Dot(D,U[1]), d2 = Dot(D,U[2]);
if (do<=d1l)

if (dl<=d2) // d0<=dl <= d2

{
config.index[0] = 0; config.index[1] = 1; config.index[2] = 2;
config.min = d0; config.max = d2;
if (do != d1)
config.map = (dl != d2 ? mlll : ml2);
else
config.map = (dl != d2 ? m2l : m3);
else if (d0<=d2) // do<= d2 < dI
{
config.index[0] = 0; config.index[1] = 2; config.index[2] = 1;

config.min = d0; config.max = dl;
config.map = (dO != d2 ? mlll : m2l);

}
else // d2 < d0 <= d1
{

19

Il
—

config.index[0] = 2; config.index[1] = 0; config.index[2]
config.min = d2; config.max = dl;
config.map = (d0O != dl1 ? ml2 : mlll);

}
}
else
{
if (d2<=dl1) // d2<=d1 < doO
config.index[0] = 2; config.index[1] = 1; config.index[2] = 0;
config.min = d2; config.max = d0O;
config.map = (d2 != dl1 ? mlll : m21);
}
else if (d2<=d0) // dl < d2 <= doO
{
config.index[0] = 1; config.index[1] = 2; config.index[2] = 0;
config.min = dl; config.max = d0;
config.map = (d2 != d0 ? mlll : ml2);
}
else // dlI < d0 < d2
{
config.index[0] = 1; config.index[1] = 0; config.index[2] = 2;
config.min = dl; config.max = d2;
config.map = mlll;
}
}

return config;

Pseudocode for determining how the projection intervals relate to each other is given below.

bool Update (Config UC, Config VC, float speed,
Side& side, Config& TUC, Config& TVC, float& TFirst, float& Tlast)

if (VC.max < UC.min) // V—interval initially on 'left’' of U-interval

{
if (speed <=0) return false; // intervals moving apart
T = (UC.min — VC.max)/speed;
if (T> TFirst) { TFirst = T; side = LEFT; TUC = UC; TVC = VC; }
T = (UC.max — VC.min)/speed; if (T < TlLast) TlLast = T;
if (TFirst > TLast) return false;
}
else if (UC.max < VC.min) // V—interval initially on ‘right’' of U—interval
{

if (speed >= 0) return false; // intervals moving apart

T = (UC.max — VC.min)/speed;

if (T> TFirst) { TFirst = T,; side = RIGHT; TUC = UC; TVC = VC; }
T= (UC.min — VC.max)/speed; if (T < TLast) TlLast = T;

if (TFirst > TLast) return false;

else // U-interval and V—interval overlap
if (speed > 0)
T = (UC.max — VC.min)/speed;
if (T< TLast) TLast = T; if (TFirst > TlLast) return false;
]t;lse if (speed < 0)
T = (UC.min — VC.max)/speed;

if (T< TLast) TLast = T; if (TFirst > TlLast) return false;
}

return true;

It is assumed that the following routines exist for use in contact determination:

e Intersection of two line segments, call it SegSeglntersection.

20

e Intersection of line segment and triangle that are coplanar, call it SegTrilntersection.
e Intersection of triangle and triangle that are coplanar, call it CoplanarTriTrilntersection.

e Intersection of two stationary triangles, call it TriTrilntersection. This routine will contain a call to the
coplanar intersection routine if the triangles happen to be coplanar.

Pseudocode for computing the contact set is given below.

ContactSet GetFirstContact (Point U[3], Point WO, Point V[3], Point WI,
Side side, Config TUC, Config TVC, float TFirst)
{

// move triangles to first contact
Point UTri[3] = { U[0]+ TFirst*W0, U[1]+ TFirst*WO0, U[2]+ TFirst«W0 }

Point VTri[3] = { V[0]+ TFirst«W1, V[1]+ TFirst+W1, V[2]+ TFirst«W1 }:
Segment USeg, VSeg;

if (side = RIGHT) // V—interval on right of U—interval
{
if (TUC.map = m21 || TUC.map =— mlll)
return UTri[TUC. index [2]];

if (TVC.map = ml2 || TVC.map = mlll)
return VTri[TVC.index [0]];

if (TUC.map = ml2)

USeg = <UTri[TUC. index [1]] ,UTri[TUC. index [2]] >;

if (TVC.map = m21)

{
VSeg = <VTri[TVC.index [0]],VTri[TVC.index[1]] >;
return SegSeglntersection (USeg,VSeg);

}

else // TVC.map =— m3

return SegTrilntersection (USeg,VTri);

}
else // TUC.map =— m3
if (TVC.map = m21)

VSeg = <VTri[TVC.index [0]] ,VTri[TVC.index[1]] >;
return SegTrilntersection (VSeg,UTri);

}
else // TVC.map =— m3

return CoplanarTriTrilntersection(UTri,VTri);

}
}
}
else if (side = LEFT) // V—interval on left of U-interval
{

if (TVC.map = m21 || TVC.map = mlll)
return VTri[TVC.index [2]];

if (TUC.map = ml2 || TUC.map = mlll)
return UTri[TUC.index [0]];

if (TVC.map = ml2)
{

VSeg = <VTri[TVC.index [1]],VTri[TVC.index[2]] >;
if (TUC.map = m21)

USeg = <UTri[TUC.index [0]] ,UTri[TUC. index[1]] >;
return SegSeglntersection (USeg,VSeg);

}
else // TUC.map =— m3

21

return SegTrilntersection (VSeg,UTri);

}
else // TVC.map =— m3
if (TUC.map = m21)

USeg = <UTri[TUC.index [0]] ,UTri[TUC. index[1]] >;
return SegTrilntersection (USeg,VTri);

}
else // TUC.map =— m3

return CoplanarTriTrilntersection(UTri,VTri);

else // triangles were initially intersecting

return TriTrilntersection(UTri,VTri);

The pseudocode that puts all this together is

bool Trianglesintersect (Point U[3], Point WO, Point V[3], Point W1,
float& TFirst, float& TLast, ContactSet& contact)

{
W = W1 — W0;
S = set of all potential separating axes;
TFirst = 0; TLast = INFINITY;
side = NONE;
Config TUC, TVC;
for each D in S do
{
speed = Dot(D,W);
Config UC = GetConfiguration(D,U);
Config VC = GetConfiguration(D,V);
if (!Update(UC,VC,speed,side ,TUC,TVC, TFirst, TLast))
return false;
}
contact = GetFirstContact(U,W0,V,W1,side ,TUC,TVC, TFirst);
return true;
}
References

[1] Ron Levine. Collision of moving objects. On the game developer algorithms list at www . sourceforce.net,
November 2000.

22

	1 Introduction
	2 Separation by Projection onto a Line
	3 Separation of Convex Polygons in 2D
	4 Separation of Convex Polyhedra in 3D
	5 Separation of Convex Polygons in 3D
	6 Separation of Moving Convex Objects
	7 Contact Set for Moving Convex Objects
	8 Example: Two Moving Triangles in 2D
	9 Example: Two Moving Triangles in 3D

