## Derivative Approximation by Finite Differences

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: May 30, 2001
Last Modified: February 1, 2020

## Contents

1 Introduction ..... 2
2 Derivative Approximations for Univariate Functions ..... 2
3 Derivative Approximations for Bivariate Functions ..... 4
4 Derivative Approximations for Multivariate Functions ..... 4
5 Table of Approximations for First-Order Derivatives ..... 4
6 Table of Approximations for Second-Order Derivatives ..... 5
7 Table of Approximations for Third-Order Derivatives ..... 6
8 Table of Approximations for Fourth-Order Derivatives ..... 7

## 1 Introduction

This document shows how to approximate derivatives of functions $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ using finite differences. The independent variables are $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and the dependent variable is $y=F(\mathbf{x})$. The function is said to be univariate when $n=1$, bivariate when $n=2$, or generally multivariate for $n>1$.

The derivative of order $m \geq 0$ for univariate $y=F(x)$ is represented by $F^{(m)}(x)$. The function itself occurs when $m=0$.

A bivariate function $y=F\left(x_{1}, x_{2}\right)$ can be differentiated $m_{1} \geq 0$ times with respect to $x_{1}$ and $m_{2} \geq 0$ time with respect to $x_{2}$. The order of the derivative is $m_{1}+m_{2}$ and the derivative is represented by $F^{\left(m_{1}, m_{2}\right)}\left(x_{1}, x_{2}\right)$. The function itself occurs when $\left(m_{1}, m_{2}\right)=(0,0)$.

Generally, a multivariate function $y=F\left(x_{1}, \ldots, x_{n}\right)$ can be differentiated $m_{i} \geq 0$ times with respect to $x_{i}$ for each $i$. The order of the derivative is $\sum_{i=1}^{n} m_{i}$ and the derivative is represented by $F^{\left(m_{1}, \ldots, m_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)$. The function itself occurs when $m_{i}=0$ for all $i$. Multiindex notation can be used to obtain more concise notation. Define $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ be a multiindex with nonnegative components. The zero multiiindex is $\mathbf{0}$ which has all zero components. Define $\|\mathbf{m}\|=\sum_{i=1}^{n} m_{i}$. The derivative is represented by $F^{(\mathbf{m})}(\mathbf{x})$ and has order $\|\mathbf{m}\|$. The function itself occurs when $\mathbf{m}=\mathbf{0}$.

## 2 Derivative Approximations for Univariate Functions

Given a small number $h>0$, the derivative of order $m$ for a univariate function satisfies the following equation,

$$
\begin{equation*}
\frac{h^{m}}{m!} F^{(m)}(x)=\sum_{i=i_{\min }}^{i_{\max }} C_{i} F(x+i h)+O\left(h^{m+p}\right) \tag{1}
\end{equation*}
$$

where $p>0$ and where the extreme indices $i_{\text {min }}$ and $i_{\text {max }}$ are chosen subject to the constraints $i_{\min }<i_{\max }$ and $i_{\text {max }}-i_{\text {min }}+1=m+p$. A formal Taylor series for $F(x+i h)$ is

$$
\begin{equation*}
F(x+i h)=\sum_{k=0}^{\infty} i^{k} \frac{h^{k}}{k!} F^{(k)}(x)=\sum_{k=0}^{m+p-1} i^{k} \frac{h^{k}}{k!} F^{(k)}(x)+O\left(h^{m+p}\right) \tag{2}
\end{equation*}
$$

The second equality is valid for any $m>0$ and $p>0$. Replacing this in equation (1),

$$
\begin{align*}
\frac{h^{m}}{m!} F^{(m)}(x) & =\sum_{i=i_{\min }}^{i_{\max }} C_{i} \sum_{k=0}^{\infty} i^{k} \frac{h^{k}}{k!} F^{(k)}(x)+O\left(h^{m+p}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=i_{\min }}^{i_{\max }} i^{k} C_{i}\right) \frac{h^{k}}{k!} F^{(k)}(x)+O\left(h^{m+p}\right)  \tag{3}\\
& =\sum_{k=0}^{m+p-1}\left(\sum_{i=i_{\min }}^{i_{\max }} i^{k} C_{i}\right) \frac{h^{k}}{k!} F^{(k)}(x)+O\left(h^{m+p}\right)
\end{align*}
$$

In equation (3), the only term in the sum on the right-hand side that contains $\left(h^{m} / m!\right) F^{(m)}(x)$ occurs when $k=m$, so the coefficient of that term must be 1 . The other terms must vanish, so the coefficients of those terms must be 0 . Therefore, it is necessary that

$$
\sum_{i=i_{\min }}^{i_{\max }} i^{k} C_{i}= \begin{cases}0, & 0 \leq k \leq m+p-1 \text { and } k \neq m  \tag{4}\\ 1, & k=m\end{cases}
$$

where $0^{0}$ is defined to be 1 (when $i=0$ and $k=0$ ). This is a set of $m+p$ linear equations in $i_{\max }-i_{\min }+1$ unknowns. If the number of unknowns is $m+p$, obtained by constraining $i_{\max }-i_{\min }+1=m+p$, the linear system has a unique solution. Define $\mathbf{C}=\left(C_{i_{\min }}, \ldots C_{i_{\max }}\right)$, which is formatted as an $(m+p) \times 1$ vector in linear algebraic operations. Define $W$ to be the $(m+p) \times(m+p)$ matrix of coefficients of the linear system. Define e to be the zero-indexed $(m+p) \times 1$ vector whose $m$ th component is 1 and all other components are 0 . The linear system is $W \mathbf{C}=\mathbf{e}$ and can be solved for $\mathbf{C}=W^{-1} \mathbf{e}$.

The derivative approximation is obtained by solving for $F^{(m)}(x)$ in equation (1),

$$
\begin{equation*}
F^{(m)}(x)=\frac{m!}{h^{m}} \sum_{i=i_{\min }}^{i_{\max }} C_{i} F(x+i h)+O\left(h^{p}\right)=\sum_{i=i_{\min }}^{i_{\max }} \frac{R_{i} F(x+i h)}{h^{m}}+O\left(h^{p}\right) \tag{5}
\end{equation*}
$$

where the $R_{i}$ are rational numbers. Each rational number can be written in canonical form, $R_{i}=\hat{N}_{i} / \hat{D}_{i}$, where the greatest common divisior of $\hat{N}_{i}$ and $\hat{D}_{i}$ is 1 . Compute the least common multiple $D$ of the denominators. The rational numbers are then $R_{i}=N_{i} / D$, where $D$ and $N_{i}=\hat{N}_{i} D / \hat{D}_{i}$ are integers. The final form of the derivative approximation is

$$
\begin{equation*}
F^{(m)}(x) \doteq \sum_{i=i_{\min }}^{i_{\max }} \frac{N_{i} F(x+i h)}{D h^{m}}+O\left(h^{p}\right) \tag{6}
\end{equation*}
$$

A forward-difference approximation occurs when $i_{\min } \geq 0$. A backward-difference approximation occurs when $i_{\max } \leq 0$. A mixed-difference approximation occurs when $i_{\min }<0<i_{\max }$.

A special case of a mixed-difference approximation is a centered-difference approximation, where $i_{\max }=$ $-i_{\min }$. The number of unknowns $m+p$ must be odd so that $\ell=(m+p-1) / 2$ is an integer. The extreme indices are $i_{\min }=-\ell$ and $i_{\max }=\ell$. The linear system $W \mathbf{C}=\mathbf{e}$ can be reduced to linear subsystems whose solutions are combined to determine $\mathbf{C}$.

When $m$ is odd, $C_{i}=-C_{-i}$ for all $i$, which forces $C_{0}=0$. When $m$ is even, $C_{i}=C_{-i}$ for all $i$. To see this, define $s_{i}=C_{i}+C_{-i}$ and $d_{i}=C_{i}-C_{-i}$ for $1 \leq i \leq \ell$. Define $\mathbf{s}$ to be the $\ell \times 1$ vector whose components are the $s_{i}$ and define $\mathbf{d}$ to be the $\ell \times 1$ vector whose components are the $d_{i}$. The linear system has an equation $\sum_{i=-\ell}^{\ell} C_{i}=0$. It also has $2 \ell$ equations for powers $k>0$, where each equation has coefficient 0 for the variable $C_{0}$. Half of the equations involve even powers $k=2 r$ and half of the equations involve odd powers $k=2 r-1$ for $1 \leq r \leq \ell$. The left-hand side terms in the equations are combined to form

$$
\begin{equation*}
\sum_{i=-\ell}^{\ell} i^{2 r} C_{i}=\sum_{i=1}^{\ell} i^{2 r} S_{i}, \quad \sum_{i=-\ell}^{\ell} i^{2 r-1} C_{i}=\sum_{i=1}^{\ell} i^{2 r} D_{i} \tag{7}
\end{equation*}
$$

The linear system $W \mathbf{C}=\mathbf{e}$ reduces to the equation $\sum_{i=-\ell}^{\ell} C_{i}=0$ and two linear subsystems, each with $\ell$ equations in $\ell$ unknowns. Define $U$ to be the $\ell \times \ell$ matrix of coefficients for the even-power equations, define $V$ be the $\ell \times \ell$ matrix of coefficients for the odd-power equations and define $\mathbf{f}$ to have 1 in the component corresponding to $m$ and all other components 0 . If $m$ is odd, the subsystems are $U \mathbf{s}=\mathbf{0}$ and $V \mathbf{d}=\mathbf{f}$. The first subsystem has solution $\mathbf{s}=\mathbf{0}$, which implies $C_{i}+C_{-i}=0$ for all $i$. In particular, $C_{0}=0$. The second subsystem has solution $\mathbf{d}=V^{-1} \mathbf{f}$. The outcome is that all the $C_{i}$ are determined. If $m$ is even, the subsystems are $U \mathbf{s}=\mathbf{f}$ and $V \mathbf{d}=\mathbf{0}$. The second subsystem has solution $\mathbf{d}=\mathbf{0}$, which implies $C_{i}-C_{-i}=0$ for all $i>0$. The first subsystem has solution $\mathbf{s}=U^{-1} \mathbf{f}$. The outcome is that all the $C_{i}$ are determined for $i>0$. The equation $\sum_{i=-\ell}^{\ell} C_{i}=0$ determines $C_{0}=-2 \sum_{i=1}^{\ell} C_{i}$.

Another observation is that when $m$ is even and $p$ is odd, the order of the centered-difference approximation is actually $p+1$. To see this, it was proved in the previous paragraph that $C_{i}=C_{-i}$ for all $i$. The last row of $W$ is generated by the power $m+p-1$. The implication of these two facts is that $\sum_{i=-\ell}^{\ell} i^{m+p} C_{i}=0$. The $O\left(h^{p}\right)$ terms in the Taylor series used to construct the approximation also cancel, so the actual error is $O\left(h^{p+1}\right)$.

## 3 Derivative Approximations for Bivariate Functions

Given small numbers $h_{1}>0$ and $h_{2}>0$ and derivative orders $m_{1} \geq 0$ and $m_{2} \geq 0$ for a bivariate function, a derivative approximation is provided by the following equation,

$$
\begin{equation*}
F^{\left(m_{1}, m_{2}\right)}\left(x_{1}, x_{2}\right) \doteq\left(\frac{m_{1}!}{h_{1}^{m_{1}}} \frac{m_{2}!}{h_{2}^{m_{2}}}\right) \sum_{i_{1}=i_{1, \min }}^{i_{1, \max }} \sum_{i_{2}=i_{2, \min }}^{i_{2, \max }}\left(C_{1, i_{1}} C_{2, i_{2}}\right) F\left(x_{1}+i_{1} h_{1}, x_{2}+i_{2} h_{2}\right)+\max _{1 \leq j \leq 2}\left\{O\left(h_{j}^{p_{j}}\right)\right\} \tag{8}
\end{equation*}
$$

The coefficients are an outer product of $\mathbf{C}_{1}=\left(C_{1, i_{1, \min }}, \ldots, C_{1, i_{1, \max }}\right)$ and $\mathbf{C}_{2}=\left(C_{2, i_{2, \min }}, \ldots, C_{2, i_{2, \max }}\right)$. Each vector $\mathbf{C}_{j}$ consists of coefficients computed using the algorithm for estimation of derivatives of univariate functions; the $j$ index corresponds to $x_{j}$.

## 4 Derivative Approximations for Multivariate Functions

Given small numbers $h_{j}>0$ and derivative orders $m_{j} \geq 0$ for $1 \leq j \leq n$ for a multivariate function, a derivative approximation is provided by the following equation written using multiindex notation,

$$
\begin{equation*}
F^{(\mathbf{m})}(\mathbf{x}) \doteq \frac{\mathbf{m}!}{\mathbf{h}^{m}} \sum_{\mathbf{i}=\mathbf{i}_{\min }}^{\mathbf{i}_{\max }} \mathbf{K}_{\mathbf{i}} F(\mathbf{x}+\mathbf{i} \mathbf{h})+\max _{1 \leq j \leq n}\left\{O\left(h_{j}^{p_{j}}\right)\right\} \tag{9}
\end{equation*}
$$

The multiindices are $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$, $\mathbf{i}_{\min }=\left(i_{1, \min }, \ldots, i_{n, \min }\right), \mathbf{i}_{\max }=\left(i_{1, \max }, \ldots, i_{n, \max }\right)$ and $\mathbf{i}=$ $\left(i_{1}, \ldots, i_{n}\right)$. Real-valued vectors are $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right)$. The expression $\mathbf{m}$ ! is the product of the factorials of the components of $\mathbf{m}$, namely, $m_{1}!\cdots m_{n}$ !. The expression $\mathbf{h}^{\mathbf{m}}$ is the product $h_{1}^{m_{1}} \cdots h_{n}^{m_{n}}$. The product $\mathbf{i h}$ is performed componentwise; that is, $\mathbf{i h}=\left(i_{1} h_{1}, \ldots, i_{n} h_{n}\right)$ which is then considered to be a real-valued vector that can be added to $\mathbf{x}$. The tensor $\mathbf{K}=\mathbf{C}_{1} \otimes \cdots \otimes \mathbf{C}_{n}=\bigotimes_{j=1}^{n} \mathbf{C}_{j}$ is an outer product of the vectors $\mathbf{C}_{j}$, each vector corresponding to the first-order derivative approximation for $x_{j}$. The multiindexed component is $\mathbf{K}_{\mathbf{i}}=C_{1, i_{1}} \cdots C_{n, i_{n}}$. Observe the similarity between equation (5) and equation (9).

## 5 Table of Approximations for First-Order Derivatives

Table 1 contains the approximations constructed for first-order derivatives $(m=1)$. The format of the approximations is

$$
\begin{equation*}
F^{(1)}(x)=\sum_{i=i_{\min }}^{i_{\max }} \frac{N_{i} F(x+i h)}{D h}+O\left(h^{p}\right) \tag{10}
\end{equation*}
$$

where $N_{i}$ and $D$ are integers. The $s$-column is the size of the linear system that was solved to compute the $C_{i}$. The $p$-column refers to the error term $O\left(h^{p}\right)$. The $t$-column refers to the type of the approximation: $f$ for a forward difference $\left(i_{\min } \geq 0\right), b$ for a backward difference $\left(i_{\max } \leq 0\right), c$ for a centered difference $\left(i_{\max }=-i_{\min }\right)$ or $m$ for a mixed difference $\left(i_{\min }<0<i_{\max }, i_{\max } \neq-i_{\min }\right)$. The $D$-column and the $N_{i}$-columns are the denominator and the numerators for the rational coefficients.

Table 1. The approximations for first-order derivatives.

| $s$ | $p$ | $i_{\min }$ | $i_{\max }$ | $t$ | $D$ | $N_{-4}$ | $N_{-3}$ | $N_{-2}$ | $N_{-1}$ | $N_{0}$ | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 1 | 0 | 1 | $f$ | 1 |  |  |  |  | -1 | 1 |  |  |  |
| 2 | 1 | -1 | 0 | $b$ | 1 |  |  |  | -1 | 1 |  |  |  |  |
| 3 | 2 | 0 | 2 | $f$ | 2 |  |  |  |  | -3 | 4 | -1 |  |  |
| 3 | 2 | -1 | 1 | $c$ | 2 |  |  |  | -1 | 0 | 1 |  |  |  |
| 3 | 2 | -2 | 0 | $b$ | 2 |  |  | 1 | -4 | 3 |  |  |  |  |
| 4 | 3 | 0 | 3 | $f$ | 6 |  |  |  |  | -11 | 18 | -9 | 2 |  |
| 4 | 3 | -1 | 2 | $m$ | 6 |  |  |  | -2 | -3 | 6 | -1 |  |  |
| 4 | 3 | -2 | 1 | $m$ | 6 |  |  | 1 | -6 | 3 | 2 |  |  |  |
| 4 | 3 | -3 | 0 | $b$ | 6 |  | -2 | 9 | -18 | 11 |  |  |  |  |
| 5 | 4 | 0 | 4 | $f$ | 12 |  |  |  |  | -25 | 48 | -36 | 16 | -3 |
| 5 | 4 | -1 | 3 | $m$ | 12 |  |  |  | -3 | -10 | 18 | -6 | 1 |  |
| 5 | 4 | -2 | 2 | $c$ | 12 |  |  | 1 | -8 | 0 | 8 | -1 |  |  |
| 5 | 4 | -3 | 1 | $m$ | 12 |  | -1 | 6 | -18 | 10 | 3 |  |  |  |
| 5 | 4 | -4 | 0 | $b$ | 12 | 3 | -16 | 36 | -48 | 25 |  |  |  |  |

## 6 Table of Approximations for Second-Order Derivatives

Table 2 contains the approximations constructed for second-order derivatives $(m=2)$. The format of the approximations is

$$
\begin{equation*}
F^{(2)}(x)=\sum_{i=i_{\min }}^{i_{\max }} \frac{N_{i} F(x+i h)}{D h^{2}}+O\left(h^{p}\right) \tag{11}
\end{equation*}
$$

where $N_{i}$ and $D$ are integers. The $s$-column is the size of the linear system that was solved to compute the $C_{i}$. The $p$-column refers to the error term $O\left(h^{p}\right)$. The $t$-column refers to the type of the approximation: $f$ for a forward difference $\left(i_{\min } \geq 0\right), b$ for a backward difference $\left(i_{\max } \leq 0\right)$, $c$ for a centered difference $\left(i_{\max }=-i_{\min }\right)$ or $m$ for a mixed difference $\left(i_{\min }<0<i_{\max }, i_{\max } \neq-i_{\min }\right)$. The $D$-column and the $N_{i}$-columns are the denominator and the numerators for the rational coefficients.

Table 2. The approximations for second-order derivatives.

| $s$ | $p$ | $i_{\text {min }}$ | $i_{\text {max }}$ | $t$ | D | $N_{-5}$ | $N_{-4}$ | $N_{-3}$ | $N_{-2}$ | $N_{-1}$ | $N_{0}$ | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ | $N_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 0 | 2 | $f$ | 1 |  |  |  |  |  | 1 | -2 | 1 |  |  |  |
| 3 | 2 | -1 | 1 | c | 1 |  |  |  |  | 1 | -2 | 1 |  |  |  |  |
| 3 | 1 | -2 | 0 | $b$ | 1 |  |  |  | 1 | -2 | 1 |  |  |  |  |  |
| 4 | 2 | 0 | 3 | $f$ | 1 |  |  |  |  |  | 2 | -5 | 4 | -1 |  |  |
| 4 | 2 | -1 | 2 | $m$ | 1 |  |  |  |  | 1 | -2 | 1 | 0 |  |  |  |
| 4 | 2 | -2 | 1 | $m$ | 1 |  |  |  | 0 | 1 | -2 | 1 |  |  |  |  |
| 4 | 2 | -3 | 0 | $b$ | 1 |  |  | -1 | 4 | -5 | 2 |  |  |  |  |  |
| 5 | 3 | 0 | 4 | $f$ | 12 |  |  |  |  |  | 35 | -104 | 114 | -56 | 11 |  |
| 5 | 3 | -1 | 3 | $m$ | 12 |  |  |  |  | 11 | $-20$ | 6 | 4 | -1 |  |  |
| 5 | 4 | -2 | 2 | $c$ | 12 |  |  |  | -1 | 16 | $-30$ | 16 | -1 |  |  |  |
| 5 | 3 | -3 | 1 | $m$ | 12 |  |  | -1 | 4 | 6 | -20 | 11 |  |  |  |  |
| 5 | 3 | -4 | 0 | $b$ | 12 |  | 11 | -56 | 114 | -104 | 35 |  |  |  |  |  |
| 6 | 4 | 0 | 5 | $f$ | 12 |  |  |  |  |  | 45 | $-154$ | 214 | $-156$ | 61 | $-10$ |
| 6 | 4 | -1 | 4 | $m$ | 12 |  |  |  |  | 10 | -15 | -4 | 14 | -6 | 1 |  |
| 6 | 4 | -2 | 3 | $m$ | 12 |  |  |  | -1 | 16 | $-30$ | 16 | 1 | 0 |  |  |
| 6 | 4 | -3 | 2 | $m$ | 12 |  |  | 0 | -1 | 16 | $-30$ | 16 | 1 |  |  |  |
| 6 | 4 | -4 | 1 | $m$ | 12 |  | 1 | -6 | 14 | -4 | -15 | 10 |  |  |  |  |
| 6 | 4 | -5 | 0 | $b$ | 12 | -10 | 61 | $-156$ | 214 | -154 | 45 |  |  |  |  |  |

## 7 Table of Approximations for Third-Order Derivatives

Table 3 contains the approximations constructed for third-order derivatives $(m=3)$. The format of the approximations is

$$
\begin{equation*}
F^{(3)}(x)=\sum_{i=i_{\min }}^{i_{\max }} \frac{N_{i} F(x+i h)}{D h^{3}}+O\left(h^{p}\right) \tag{12}
\end{equation*}
$$

where $N_{i}$ and $D$ are integers. The $s$-column is the size of the linear system that was solved to compute the $C_{i}$. The $p$-column refers to the error term $O\left(h^{p}\right)$. The $t$-column refers to the type of the approximation: $f$ for a forward difference $\left(i_{\min } \geq 0\right), b$ for a backward difference $\left(i_{\max } \leq 0\right), c$ for a centered difference $\left(i_{\max }=-i_{\min }\right)$ or $m$ for a mixed difference $\left(i_{\min }<0<i_{\max }, i_{\max } \neq-i_{\min }\right)$. The $D$-column and the $N_{i}$-columns are the denominator and the numerators for the rational coefficients.

Table 3. The approximations for third-order derivatives.

| $s$ | $p$ | $i_{\min }$ | $i_{\max }$ | $t$ | $D$ | $N_{-6}$ | $N_{-5}$ | $N_{-4}$ | $N_{-3}$ | $N_{-2}$ | $N_{-1}$ | $N_{0}$ | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ | $N_{5}$ | $N_{6}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 1 | 0 | 3 | $f$ | 1 |  |  |  |  |  |  | -1 | 3 | -3 | 1 |  |  |  |  |
| 4 | 1 | -1 | 2 | $m$ | 1 |  |  |  |  |  | -1 | 3 | -3 | 1 |  |  |  |  |  |
| 4 | 1 | -2 | 1 | $m$ | 1 |  |  |  |  | -1 | 3 | -3 | 1 |  |  |  |  |  |  |
| 4 | 1 | -3 | 0 | $b$ | 1 |  |  |  | -1 | 3 | -3 | 1 |  |  |  |  |  |  |  |
| 5 | 2 | 0 | 4 | $f$ | 2 |  |  |  |  |  |  | -5 | 18 | -24 | 14 | -3 |  |  |  |
| 5 | 2 | -1 | 3 | $m$ | 2 |  |  |  |  |  | -3 | 10 | -12 | 6 | -1 |  |  |  |  |
| 5 | 2 | -2 | 2 | $c$ | 2 |  |  |  |  | -1 | 2 | 0 | -2 | 1 |  |  |  |  |  |
| 5 | 2 | -3 | 1 | $m$ | 2 |  |  |  | 1 | -6 | 12 | -10 | 3 |  |  |  |  |  |  |
| 5 | 2 | -4 | 0 | $b$ | 2 |  |  |  | 3 | -14 | 24 | -18 | 5 |  |  |  |  |  |  |
| 6 | 3 | 0 | 5 | $f$ | 4 |  |  |  |  |  |  | -17 | 71 | -118 | 98 | -41 | 7 |  |  |
| 6 | 3 | -1 | 4 | $m$ | 4 |  |  |  |  |  | -7 | 25 | -34 | 22 | -7 | 1 |  |  |  |
| 6 | 3 | -2 | 3 | $m$ | 4 |  |  |  |  | -1 | -1 | 10 | -14 | 7 | -1 |  |  |  |  |
| 6 | 3 | -3 | 2 | $m$ | 4 |  |  |  | 1 | -7 | 14 | -10 | 1 | 1 |  |  |  |  |  |
| 6 | 3 | -4 | 1 | $m$ | 4 |  |  | -1 | 7 | -22 | 34 | -25 | 7 |  |  |  |  |  |  |
| 6 | 3 | -5 | 0 | $b$ | 4 |  | -7 | 41 | -98 | 118 | -71 | 17 |  |  |  |  |  |  |  |
| 7 | 4 | 0 | 6 | $f$ | 8 |  |  |  |  |  |  | -49 | 232 | -461 | 496 | -307 | 104 | -15 |  |
| 7 | 4 | -1 | 5 | $m$ | 8 |  |  |  |  |  | -15 | 56 | -83 | 64 | -29 |  | 8 | -1 |  |
| 7 | 4 | -2 | 4 | $m$ | 8 |  |  |  |  | -1 | -8 | 35 | -48 | 29 | -8 | 1 |  |  |  |
| 7 | 4 | -3 | 3 | $c$ | 8 |  |  |  | 1 | -8 | 13 | 0 | -13 | 8 | -1 |  |  |  |  |
| 7 | 4 | -4 | 2 | $m$ | 8 |  |  | -1 | 8 | -29 | 48 | -35 | 8 | 1 |  |  |  |  |  |
| 7 | 4 | -5 | 1 | $m$ | 8 |  | 1 | -8 | 29 | -64 | 83 | -56 | 15 |  |  |  |  |  |  |
| 7 | 4 | -6 | 0 | $b$ | 8 | 15 | -104 | 307 | -496 | 461 | -232 | 49 |  |  |  |  |  |  |  |

## 8 Table of Approximations for Fourth-Order Derivatives

Table 4 contains the approximations constructed for fourth-order derivatives $(m=4)$. The format of the approximations is

$$
\begin{equation*}
F^{(4)}(x)=\sum_{i=i_{\min }}^{i_{\max }} \frac{N_{i} F(x+i h)}{D h^{4}}+O\left(h^{p}\right) \tag{13}
\end{equation*}
$$

where $N_{i}$ and $D$ are integers. The $s$-column is the size of the linear system that was solved to compute the $C_{i}$. The $p$-column refers to the error term $O\left(h^{p}\right)$. The $t$-column refers to the type of the approximation: $f$ for a forward difference $\left(i_{\min } \geq 0\right), b$ for a backward difference $\left(i_{\max } \leq 0\right), c$ for a centered difference $\left(i_{\max }=-i_{\min }\right)$ or $m$ for a mixed difference $\left(i_{\min }<0<i_{\max }, i_{\max } \neq-i_{\min }\right)$. The $D$-column and the $N_{i}$-columns are the denominator and the numerators for the rational coefficients.

Table 4. The approximations for fourth-order derivatives.

| $s$ | $p$ | $i_{\text {min }}$ | $i_{\text {max }}$ | $t$ | $D$ | $N_{-7}$ | $N_{-6}$ | $N_{-5}$ | $N_{-4}$ | $N_{-3}$ | $N_{-2}$ | $N_{-1}$ | $N_{0}$ | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ | $N_{5}$ | $N_{6}$ | $N_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 1 | 0 | 4 | $f$ | 1 |  |  |  |  |  |  |  | 1 | -4 | 6 | -4 | 1 |  |  |  |
| 5 | 1 | -1 | 3 | $m$ | 1 |  |  |  |  |  |  | 1 | -4 | 6 | -4 | 1 |  |  |  |  |
| 5 | 2 | -2 | 2 | $c$ | 1 |  |  |  |  |  | 1 | -4 | 6 | -4 | 1 |  |  |  |  |  |
| 5 | 1 | -3 | 1 | $m$ | 1 |  |  |  |  | 1 | -4 | 6 | -4 | 1 |  |  |  |  |  |  |
| 5 | 1 | -4 | 0 | $b$ | 1 |  |  |  | 1 | -4 | 6 | -4 | 1 |  |  |  |  |  |  |  |
| 6 | 2 | 0 | 5 | $f$ | 1 |  |  |  |  |  |  |  | 3 | -14 | 26 | -24 | 11 | -2 |  |  |
| 6 | 2 | -1 | 4 | $m$ | 1 |  |  |  |  |  |  | 2 | -9 | 16 | -14 | 6 | -1 |  |  |  |
| 6 | 2 | -2 | 3 | $m$ | 1 |  |  |  |  |  | 1 | -4 | 6 | -4 | 1 | 0 |  |  |  |  |
| 6 | 2 | -3 | 2 | $m$ | 1 |  |  |  |  | 0 | 1 | -4 | 6 | -4 | 1 |  |  |  |  |  |
| 6 | 2 | -4 | 1 | $m$ | 1 |  |  |  | -1 | 6 | -14 | 16 | -9 | 2 |  |  |  |  |  |  |
| 6 | 2 | -5 | 0 | $b$ | 1 |  |  | -2 | 11 | -24 | 26 | -14 | 3 |  |  |  |  |  |  |  |
| 7 | 3 | 0 | 6 | $f$ | 6 |  |  |  |  |  |  |  | 35 | -186 | 411 | -484 | 321 | -114 | 17 |  |
| 7 | 3 | -1 | 5 | $m$ | 6 |  |  |  |  |  |  | 17 | -84 | 171 | $-184$ | 111 | -36 | 5 |  |  |
| 7 | 3 | -2 | 4 | $m$ | 6 |  |  |  |  |  | 5 | -18 | 21 | -4 | -9 | 6 | -1 |  |  |  |
| 7 | 4 | -3 | 3 | c | 6 |  |  |  |  | -1 | 12 | -39 | 56 | -39 | 12 | -1 |  |  |  |  |
| 7 | 3 | -4 | 2 | $m$ | 6 |  |  |  | -1 | 6 | -9 | -4 | 21 | -18 | 5 |  |  |  |  |  |
| 7 | 3 | -5 | 1 | $m$ | 6 |  |  | 5 | -36 | 111 | -184 | 171 | -84 | 17 |  |  |  |  |  |  |
| 7 | 3 | -6 | 0 | $b$ | 6 |  | 17 | -114 | 321 | -484 | 411 | -186 | 35 |  |  |  |  |  |  |  |
| 8 | 4 | 0 | 7 | $f$ | 6 |  |  |  |  |  |  |  | 56 | $-333$ | 852 | -1219 | 1056 | -555 | 164 | -21 |
| 8 | 4 | -1 | 6 | $m$ | 6 |  |  |  |  |  |  | 21 | $-112$ | 255 | -324 | 251 | $-120$ | 33 | -4 |  |
| 8 | 4 | -2 | 5 | $m$ | 6 |  |  |  |  |  | 4 | -11 | 0 | 31 | -44 | 27 | -8 | 1 |  |  |
| 8 | 4 | -3 | 4 | $m$ | 6 |  |  |  |  | -1 | 12 | -39 | 56 | -39 | 12 | -1 | 0 |  |  |  |
| 8 | 4 | -4 | 3 | $m$ | 6 |  |  |  | 0 | -1 | 12 | -39 | 56 | -39 | 12 | -1 |  |  |  |  |
| 8 | 4 | -5 | 2 | $m$ | 6 |  |  | 1 | -8 | 27 | -44 | 31 | 0 | -11 | 4 |  |  |  |  |  |
| 8 | 4 | -6 | 1 | $m$ | 6 |  | -4 | 33 | -120 | 251 | -324 | 255 | $-112$ | 21 |  |  |  |  |  |  |
| 8 | 4 | -7 | 0 | $b$ | 6 | -21 | 164 | -555 | 1056 | -1219 | 852 | -333 | 56 |  |  |  |  |  |  |  |

