Derivative Approximation by Finite Differences

David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: May 30, 2001

Last Modified: February 1, 2020

Contents

1	Introduction	2
2	Derivative Approximations for Univariate Functions	2
3	Derivative Approximations for Bivariate Functions	4
4	Derivative Approximations for Multivariate Functions	4
5	Table of Approximations for First-Order Derivatives	4
6	Table of Approximations for Second-Order Derivatives	5
7	Table of Approximations for Third-Order Derivatives	6
8	Table of Approximations for Fourth-Order Derivatives	7

1 Introduction

This document shows how to approximate derivatives of functions $F: \mathbb{R}^n \to \mathbb{R}$ using finite differences. The independent variables are $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and the dependent variable is $y = F(\mathbf{x})$. The function is said to be *univariate* when n = 1, bivariate when n = 2, or generally multivariate for n > 1.

The derivative of order $m \ge 0$ for univariate y = F(x) is represented by $F^{(m)}(x)$. The function itself occurs when m = 0.

A bivariate function $y = F(x_1, x_2)$ can be differentiated $m_1 \ge 0$ times with respect to x_1 and $m_2 \ge 0$ time with respect to x_2 . The order of the derivative is $m_1 + m_2$ and the derivative is represented by $F^{(m_1, m_2)}(x_1, x_2)$. The function itself occurs when $(m_1, m_2) = (0, 0)$.

Generally, a multivariate function $y = F(x_1, \ldots, x_n)$ can be differentiated $m_i \ge 0$ times with respect to x_i for each i. The order of the derivative is $\sum_{i=1}^n m_i$ and the derivative is represented by $F^{(m_1, \ldots, m_n)}(x_1, \ldots, x_n)$. The function itself occurs when $m_i = 0$ for all i. Multiindex notation can be used to obtain more concise notation. Define $\mathbf{m} = (m_1, \ldots, m_n)$ be a multiindex with nonnegative components. The zero multiindex is $\mathbf{0}$ which has all zero components. Define $\|\mathbf{m}\| = \sum_{i=1}^n m_i$. The derivative is represented by $F^{(\mathbf{m})}(\mathbf{x})$ and has order $\|\mathbf{m}\|$. The function itself occurs when $\mathbf{m} = \mathbf{0}$.

2 Derivative Approximations for Univariate Functions

Given a small number h > 0, the derivative of order m for a univariate function satisfies the following equation,

$$\frac{h^m}{m!}F^{(m)}(x) = \sum_{i=i_{\min}}^{i_{\max}} C_i F(x+ih) + O(h^{m+p})$$
(1)

where p > 0 and where the extreme indices i_{\min} and i_{\max} are chosen subject to the constraints $i_{\min} < i_{\max}$ and $i_{\max} - i_{\min} + 1 = m + p$. A formal Taylor series for F(x + ih) is

$$F(x+ih) = \sum_{k=0}^{\infty} i^k \frac{h^k}{k!} F^{(k)}(x) = \sum_{k=0}^{m+p-1} i^k \frac{h^k}{k!} F^{(k)}(x) + O(h^{m+p})$$
 (2)

The second equality is valid for any m > 0 and p > 0. Replacing this in equation (1),

$$\frac{h^{m}}{m!}F^{(m)}(x) = \sum_{i=i_{\min}}^{i_{\max}} C_{i} \sum_{k=0}^{\infty} i^{k} \frac{h^{k}}{k!}F^{(k)}(x) + O(h^{m+p})
= \sum_{k=0}^{\infty} \left(\sum_{i=i_{\min}}^{i_{\max}} i^{k} C_{i} \right) \frac{h^{k}}{k!}F^{(k)}(x) + O(h^{m+p})
= \sum_{k=0}^{m+p-1} \left(\sum_{i=i_{\min}}^{i_{\max}} i^{k} C_{i} \right) \frac{h^{k}}{k!}F^{(k)}(x) + O(h^{m+p})$$
(3)

In equation (3), the only term in the sum on the right-hand side that contains $(h^m/m!)F^{(m)}(x)$ occurs when k=m, so the coefficient of that term must be 1. The other terms must vanish, so the coefficients of those terms must be 0. Therefore, it is necessary that

$$\sum_{i=i_{\min}}^{i_{\max}} i^k C_i = \begin{cases} 0, & 0 \le k \le m+p-1 \text{ and } k \ne m \\ 1, & k=m \end{cases}$$
 (4)

where 0^0 is defined to be 1 (when i=0 and k=0). This is a set of m+p linear equations in $i_{\max}-i_{\min}+1$ unknowns. If the number of unknowns is m+p, obtained by constraining $i_{\max}-i_{\min}+1=m+p$, the linear system has a unique solution. Define $\mathbf{C}=(C_{i_{\min}},\ldots C_{i_{\max}})$, which is formatted as an $(m+p)\times 1$ vector in linear algebraic operations. Define W to be the $(m+p)\times (m+p)$ matrix of coefficients of the linear system. Define \mathbf{e} to be the zero-indexed $(m+p)\times 1$ vector whose mth component is 1 and all other components are 0. The linear system is $W\mathbf{C}=\mathbf{e}$ and can be solved for $\mathbf{C}=W^{-1}\mathbf{e}$.

The derivative approximation is obtained by solving for $F^{(m)}(x)$ in equation (1),

$$F^{(m)}(x) = \frac{m!}{h^m} \sum_{i=i_{\min}}^{i_{\max}} C_i F(x+ih) + O(h^p) = \sum_{i=i_{\min}}^{i_{\max}} \frac{R_i F(x+ih)}{h^m} + O(h^p)$$
 (5)

where the R_i are rational numbers. Each rational number can be written in canonical form, $R_i = \hat{N}_i/\hat{D}_i$, where the greatest common divisior of \hat{N}_i and \hat{D}_i is 1. Compute the least common multiple D of the denominators. The rational numbers are then $R_i = N_i/D$, where D and $N_i = \hat{N}_i D/\hat{D}_i$ are integers. The final form of the derivative approximation is

$$F^{(m)}(x) \doteq \sum_{i=i_{\min}}^{i_{\max}} \frac{N_i F(x+ih)}{Dh^m} + O(h^p)$$
 (6)

A forward-difference approximation occurs when $i_{\min} \geq 0$. A backward-difference approximation occurs when $i_{\max} \leq 0$. A mixed-difference approximation occurs when $i_{\min} < 0 < i_{\max}$.

A special case of a mixed-difference approximation is a centered-difference approximation, where $i_{\text{max}} = -i_{\text{min}}$. The number of unknowns m+p must be odd so that $\ell = (m+p-1)/2$ is an integer. The extreme indices are $i_{\text{min}} = -\ell$ and $i_{\text{max}} = \ell$. The linear system $W\mathbf{C} = \mathbf{e}$ can be reduced to linear subsystems whose solutions are combined to determine \mathbf{C} .

When m is odd, $C_i = -C_{-i}$ for all i, which forces $C_0 = 0$. When m is even, $C_i = C_{-i}$ for all i. To see this, define $s_i = C_i + C_{-i}$ and $d_i = C_i - C_{-i}$ for $1 \le i \le \ell$. Define \mathbf{s} to be the $\ell \times 1$ vector whose components are the s_i and define \mathbf{d} to be the $\ell \times 1$ vector whose components are the d_i . The linear system has an equation $\sum_{i=-\ell}^{\ell} C_i = 0$. It also has 2ℓ equations for powers k > 0, where each equation has coefficient 0 for the variable C_0 . Half of the equations involve even powers k = 2r and half of the equations involve odd powers k = 2r - 1 for $1 \le r \le \ell$. The left-hand side terms in the equations are combined to form

$$\sum_{i=-\ell}^{\ell} i^{2r} C_i = \sum_{i=1}^{\ell} i^{2r} S_i, \quad \sum_{i=-\ell}^{\ell} i^{2r-1} C_i = \sum_{i=1}^{\ell} i^{2r} D_i$$
 (7)

The linear system $W\mathbf{C} = \mathbf{e}$ reduces to the equation $\sum_{i=-\ell}^{\ell} C_i = 0$ and two linear subsystems, each with ℓ equations in ℓ unknowns. Define U to be the $\ell \times \ell$ matrix of coefficients for the even-power equations, define V be the $\ell \times \ell$ matrix of coefficients for the odd-power equations and define \mathbf{f} to have 1 in the component corresponding to m and all other components 0. If m is odd, the subsystems are $U\mathbf{s} = \mathbf{0}$ and $V\mathbf{d} = \mathbf{f}$. The first subsystem has solution $\mathbf{s} = \mathbf{0}$, which implies $C_i + C_{-i} = 0$ for all i. In particular, $C_0 = 0$. The second subsystem has solution $\mathbf{d} = V^{-1}\mathbf{f}$. The outcome is that all the C_i are determined. If m is even, the subsystems are $U\mathbf{s} = \mathbf{f}$ and $V\mathbf{d} = \mathbf{0}$. The second subsystem has solution $\mathbf{d} = \mathbf{0}$, which implies $C_i - C_{-i} = 0$ for all i > 0. The first subsystem has solution $\mathbf{s} = U^{-1}\mathbf{f}$. The outcome is that all the C_i are determined for i > 0. The equation $\sum_{i=-\ell}^{\ell} C_i = 0$ determines $C_0 = -2\sum_{i=1}^{\ell} C_i$.

Another observation is that when m is even and p is odd, the order of the centered-difference approximation is actually p+1. To see this, it was proved in the previous paragraph that $C_i = C_{-i}$ for all i. The last row of W is generated by the power m+p-1. The implication of these two facts is that $\sum_{i=-\ell}^{\ell} i^{m+p} C_i = 0$. The $O(h^p)$ terms in the Taylor series used to construct the approximation also cancel, so the actual error is $O(h^{p+1})$.

3 Derivative Approximations for Bivariate Functions

Given small numbers $h_1 > 0$ and $h_2 > 0$ and derivative orders $m_1 \ge 0$ and $m_2 \ge 0$ for a bivariate function, a derivative approximation is provided by the following equation,

$$F^{(m_1,m_2)}(x_1,x_2) \doteq \left(\frac{m_1!}{h_1^{m_1}} \frac{m_2!}{h_2^{m_2}}\right) \sum_{i_1=i_{1,\min}}^{i_{1,\max}} \sum_{i_2=i_{2,\min}}^{i_{2,\max}} \left(C_{1,i_1}C_{2,i_2}\right) F(x_1+i_1h_1,x_2+i_2h_2) + \max_{1 \leq j \leq 2} \left\{O\left(h_j^{p_j}\right)\right\}$$
(8)

The coefficients are an outer product of $\mathbf{C}_1 = (C_{1,i_{1,\min}}, \dots, C_{1,i_{1,\max}})$ and $\mathbf{C}_2 = (C_{2,i_{2,\min}}, \dots, C_{2,i_{2,\max}})$. Each vector \mathbf{C}_j consists of coefficients computed using the algorithm for estimation of derivatives of univariate functions; the j index corresponds to x_j .

4 Derivative Approximations for Multivariate Functions

Given small numbers $h_j > 0$ and derivative orders $m_j \ge 0$ for $1 \le j \le n$ for a multivariate function, a derivative approximation is provided by the following equation written using multiindex notation,

$$F^{(\mathbf{m})}(\mathbf{x}) \doteq \frac{\mathbf{m}!}{\mathbf{h}^m} \sum_{\mathbf{i}=\mathbf{i}_{\min}}^{\mathbf{i}_{\max}} \mathbf{K}_{\mathbf{i}} F(\mathbf{x} + \mathbf{i}\mathbf{h}) + \max_{1 \le j \le n} \left\{ O\left(h_j^{p_j}\right) \right\}$$
(9)

The multiindices are $\mathbf{m} = (m_1, \dots, m_n)$, $\mathbf{i}_{\min} = (i_{1,\min}, \dots, i_{n,\min})$, $\mathbf{i}_{\max} = (i_{1,\max}, \dots, i_{n,\max})$ and $\mathbf{i} = (i_1, \dots, i_n)$. Real-valued vectors are $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{h} = (h_1, \dots, h_n)$. The expression $\mathbf{m}!$ is the product of the factorials of the components of \mathbf{m} , namely, $m_1! \cdots m_n!$. The expression $\mathbf{h}^{\mathbf{m}}$ is the product $h_1^{m_1} \cdots h_n^{m_n}$. The product $\mathbf{i} \mathbf{h}$ is performed componentwise; that is, $\mathbf{i} \mathbf{h} = (i_1 h_1, \dots, i_n h_n)$ which is then considered to be a real-valued vector that can be added to \mathbf{x} . The tensor $\mathbf{K} = \mathbf{C}_1 \otimes \cdots \otimes \mathbf{C}_n = \bigotimes_{j=1}^n \mathbf{C}_j$ is an outer product of the vectors \mathbf{C}_j , each vector corresponding to the first-order derivative approximation for x_j . The multiindexed component is $\mathbf{K}_{\mathbf{i}} = C_{1,i_1} \cdots C_{n,i_n}$. Observe the similarity between equation (5) and equation (9).

5 Table of Approximations for First-Order Derivatives

Table 1 contains the approximations constructed for first-order derivatives (m = 1). The format of the approximations is

$$F^{(1)}(x) = \sum_{i=i_{\min}}^{i_{\max}} \frac{N_i F(x+ih)}{Dh} + O(h^p)$$
 (10)

where N_i and D are integers. The s-column is the size of the linear system that was solved to compute the C_i . The p-column refers to the error term $O(h^p)$. The t-column refers to the type of the approximation: f for a forward difference $(i_{\min} \geq 0)$, b for a backward difference $(i_{\max} \leq 0)$, c for a centered difference $(i_{\max} = -i_{\min})$ or m for a mixed difference $(i_{\min} < 0 < i_{\max}, i_{\max} \neq -i_{\min})$. The D-column and the N_i -columns are the denominator and the numerators for the rational coefficients.

Table 1. The approximations for first-order derivatives.

s	p	i_{\min}	$i_{ m max}$	t	D	N_{-4}	N_{-3}	N_{-2}	N_{-1}	N_0	N_1	N_2	N_3	N_4
2	1	0	1	f	1					-1	1			
2	1	-1	0	b	1				-1	1				
3	2	0	2	f	2					-3	4	-1		
3	2	-1	1	c	2				-1	0	1			
3	2	-2	0	b	2			1	-4	3				
4	3	0	3	f	6					-11	18	-9	2	
4	3	-1	2	m	6				-2	-3	6	-1		
4	3	-2	1	m	6			1	-6	3	2			
4	3	-3	0	b	6		-2	9	-18	11				
5	4	0	4	f	12					-25	48	-36	16	-3
5	4	-1	3	m	12				-3	-10	18	-6	1	
5	4	-2	2	c	12			1	-8	0	8	-1		
5	4	-3	1	m	12		-1	6	-18	10	3			
5	4	-4	0	b	12	3	-16	36	-48	25				

6 Table of Approximations for Second-Order Derivatives

Table 2 contains the approximations constructed for second-order derivatives (m = 2). The format of the approximations is

$$F^{(2)}(x) = \sum_{i=i_{\min}}^{i_{\max}} \frac{N_i F(x+ih)}{Dh^2} + O(h^p)$$
(11)

where N_i and D are integers. The s-column is the size of the linear system that was solved to compute the C_i . The p-column refers to the error term $O(h^p)$. The t-column refers to the type of the approximation: f for a forward difference $(i_{\min} \geq 0)$, b for a backward difference $(i_{\max} \leq 0)$, c for a centered difference $(i_{\max} = -i_{\min})$ or m for a mixed difference $(i_{\min} < 0 < i_{\max}, i_{\max} \neq -i_{\min})$. The D-column and the N_i -columns are the denominator and the numerators for the rational coefficients.

Table 2. The approximations for second-order derivatives.

s	p	i_{\min}	$i_{ m max}$	t	D	N_{-5}	N_{-4}	N_{-3}	N_{-2}	N_{-1}	N_0	N_1	N_2	N_3	N_4	N_5
3	1	0	2	f	1						1	-2	1			
3	2	-1	1	c	1					1	-2	1				
3	1	-2	0	b	1				1	-2	1					
4	2	0	3	f	1						2	-5	4	-1		
4	2	-1	2	m	1					1	-2	1	0			
4	2	-2	1	m	1				0	1	-2	1				
4	2	-3	0	b	1			-1	4	-5	2					
5	3	0	4	f	12						35	-104	114	-56	11	
5	3	-1	3	m	12					11	-20	6	4	-1		
5	4	-2	2	c	12				-1	16	-30	16	-1			
5	3	-3	1	m	12			-1	4	6	-20	11				
5	3	-4	0	b	12		11	-56	114	-104	35					
6	4	0	5	f	12						45	-154	214	-156	61	-10
6	4	-1	4	m	12					10	-15	-4	14	-6	1	
6	4	-2	3	m	12				-1	16	-30	16	1	0		
6	4	-3	2	m	12			0	-1	16	-30	16	1			
6	4	-4	1	m	12		1	-6	14	-4	-15	10				
6	4	-5	0	b	12	-10	61	-156	214	-154	45					

7 Table of Approximations for Third-Order Derivatives

Table 3 contains the approximations constructed for third-order derivatives (m = 3). The format of the approximations is

$$F^{(3)}(x) = \sum_{i=i_{\min}}^{i_{\max}} \frac{N_i F(x+ih)}{Dh^3} + O(h^p)$$
(12)

where N_i and D are integers. The s-column is the size of the linear system that was solved to compute the C_i . The p-column refers to the error term $O(h^p)$. The t-column refers to the type of the approximation: f for a forward difference $(i_{\min} \geq 0)$, b for a backward difference $(i_{\max} \leq 0)$, c for a centered difference $(i_{\max} = -i_{\min})$ or m for a mixed difference $(i_{\min} < 0 < i_{\max}, i_{\max} \neq -i_{\min})$. The D-column and the N_i -columns are the denominator and the numerators for the rational coefficients.

Table 3. The approximations for third-order derivatives.

s	p	i_{\min}	$i_{ m max}$	t	D	N_{-6}	N_{-5}	N_{-4}	N_{-3}	N_{-2}	N_{-1}	N_0	N_1	N_2	N_3	N_4	N_5	N_6
4	1	0	3	f	1							-1	3	-3	1			
4	1	-1	2	m	1						-1	3	-3	1				
4	1	-2	1	m	1					-1	3	-3	1					
4	1	-3	0	b	1				-1	3	-3	1						
5	2	0	4	f	2							-5	18	-24	14	-3		
5	2	-1	3	m	2						-3	10	-12	6	-1			
5	2	-2	2	c	2					-1	2	0	-2	1				
5	2	-3	1	m	2				1	-6	12	-10	3					
5	2	-4	0	b	2			3	-14	24	-18	5						
6	3	0	5	f	4							-17	71	-118	98	-41	7	
6	3	-1	4	m	4						-7	25	-34	22	-7	1		
6	3	-2	3	m	4					-1	-1	10	-14	7	-1			
6	3	-3	2	m	4				1	-7	14	-10	1	1				
6	3	-4	1	m	4			-1	7	-22	34	-25	7					
6	3	-5	0	b	4		-7	41	-98	118	-71	17						
7	4	0	6	f	8							-49	232	-461	496	-307	104	-15
7	4	-1	5	m	8						-15	56	-83	64	-29	8	-1	
7	4	-2	4	m	8					-1	-8	35	-48	29	-8	1		
7	4	-3	3	c	8				1	-8	13	0	-13	8	-1			
7	4	-4	2	m	8			-1	8	-29	48	-35	8	1				
7	4	-5	1	m	8		1	-8	29	-64	83	-56	15					
7	4	-6	0	b	8	15	-104	307	-496	461	-232	49						

8 Table of Approximations for Fourth-Order Derivatives

Table 4 contains the approximations constructed for fourth-order derivatives (m = 4). The format of the approximations is

$$F^{(4)}(x) = \sum_{i=i_{\min}}^{i_{\max}} \frac{N_i F(x+ih)}{Dh^4} + O(h^p)$$
(13)

where N_i and D are integers. The s-column is the size of the linear system that was solved to compute the C_i . The p-column refers to the error term $O(h^p)$. The t-column refers to the type of the approximation: f for a forward difference $(i_{\min} \geq 0)$, b for a backward difference $(i_{\max} \leq 0)$, c for a centered difference $(i_{\max} = -i_{\min})$ or m for a mixed difference $(i_{\min} < 0 < i_{\max}, i_{\max} \neq -i_{\min})$. The D-column and the N_i -columns are the denominator and the numerators for the rational coefficients.

Table 4. The approximations for fourth-order derivatives.

s	p	i_{\min}	$i_{ m max}$	t	D	N_{-7}	N_{-6}	N_{-5}	N_{-4}	N_{-3}	N_{-2}	N_{-1}	N_0	N_1	N_2	N_3	N_4	N_5	N_6	N_7
5	1	0	4	f	1								1	-4	6	-4	1			
5	1	-1	3	m	1							1	-4	6	-4	1				
5	2	-2	2	c	1						1	-4	6	-4	1					
5	1	-3	1	m	1					1	-4	6	-4	1						
5	1	-4	0	b	1				1	-4	6	-4	1							
6	2	0	5	f	1								3	-14	26	-24	11	-2		
6	2	-1	4	m	1							2	-9	16	-14	6	-1			
6	2	-2	3	m	1						1	-4	6	-4	1	0				
6	2	-3	2	m	1					0	1	-4	6	-4	1					
6	2	-4	1	m	1				-1	6	-14	16	-9	2						
6	2	-5	0	b	1			-2	11	-24	26	-14	3							
7	3	0	6	f	6								35	-186	411	-484	321	-114	17	
7	3	-1	5	m	6							17	-84	171	-184	111	-36	5		
7	3	-2	4	m	6						5	-18	21	-4	-9	6	-1			
7	4	-3	3	c	6					-1	12	-39	56	-39	12	-1				
7	3	-4	2	m	6				-1	6	-9	-4	21	-18	5					
7	3	-5	1	m	6			5	-36	111	-184	171	-84	17						
7	3	-6	0	b	6		17	-114	321	-484	411	-186	35							
8	4	0	7	f	6								56	-333	852	-1219	1056	-555	164	-21
8	4	-1	6	m	6							21	-112	255	-324	251	-120	33	-4	
8	4	-2	5	m	6						4	-11	0	31	-44	27	-8	1		
8	4	-3	4	m	6					-1	12	-39	56	-39	12	-1	0			
8	4	-4	3	m	6				0	-1	12	-39	56	-39	12	-1				
8	4	-5	2	m	6			1	-8	27	-44	31	0	-11	4					
8	4	-6	1	m	6		-4	33	-120	251	-324	255	-112	21						
8	4	-7	0	b	6	-21	164	-555	1056	-1219	852	-333	56							