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1 Introduction

This document describes B-spline interpolation of data organized as uniformly spaced samples on a lattice
in multiple dimensions. The interpolation is useful for generating continuous representations of multidimen-
sional images. The terminology is that used in [1]. An implementation is provided by IntpBSplineUniform.h.
It allows for dimensions known at compile time and for dimensions known only at run time. The code also
has specializations for dimensions 1, 2 and 3. A sample application is in the GTE/Samples/Imagics/BSplineln-
terpolation folder.

2 B-Spline Basis Functions

A knot vector is a set of n + 1 real numbers t = {t;}7, where t; < ;41 for all 4. It is possible that some of
the elements are equal. The set of unique elements is called a breakpoint sequence, say, u = {u;}3_,, a set of
s+ 1 real numbers with w; < u;41 for all i. The multiplicity vector associated with u is m = {m;}{_,, a set
of positive integers. Define pg = 0 and p; = Zf;& m; for 1 < j < s+ 1, in which case ps41 = n+ 1. The
knots satisfy the conditions t;, = u; for p; <k < pj;1 and for 0 < j < s.

The control points for a curve are {F;}5_,, a set of ¢ + 1 points in R* where o > 1. We can construct a
piecewise polynomial curve X(¢) of degree d > 1 from the control points and a knot vector, say

X(t) = Y F.Boalh) m

where B, 4(t) is a B-spline basis function defined by a recursive algorithm involving the knots. The algorithm
requires that the number of control points, the number of knots and the degree of the polynomial pieces are
related by n+ 1= (c+ 1) + d + 1. The curve is referred to as a B-spline curve.

The B-spline basis functions are defined as follows. Define

1, te [ti7ti+1)
Bio(t) = _ (2)
0, otherwise

for 0 <7 <n — 1. Recursively define

t—t; o tivi4j—t L ot .
Bi,j (t) — (tH»j_ti) Ble_l(t) + (ti+1+j—ti+1) BZ+113_1(t)7 te [tl’tl+1+]) (3)

0, otherwise

for1<j<dand 0<i<n-—1-j Observe that if we have repeated knots, the denominator ¢;,; — ¢; is
zero for those j involving the repetitions. The division by zero is not allowed, but it turns out that when
the denominator is zero, B; ;_1(t) is also identically zero. The same situation can occur for the other term
when t;414; —t;11 is zero, in which case Biﬂ,j,l(t) is identically zero. The convention is that when a basis
function on the right-hand side is zero, its coefficient is not evaluated and the division by zero does not
occur.

The domain of the B-spline curve is R, but of greater interest is the support of the curve. Generally, the
support of a function f(t) is the smallest interval I for which f(¢) = 0 for all ¢ ¢ I. The support of the
B-spline curve is [tg, t,].
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The B-spline curve of equation (1) is said to be an open curve when tg = ug has multiplicity mg > d+1 and
t, = us has multiplicity ms > d + 1. For example, consider a curve of degree d = 2 with ¢+ 1 = 7 control
points. The number of required knots is n + 1 = 10. The knots t = {0,0,0,1,2,4,8,9,9,9} have s +1 =6
unique values and generate an open curve because tg = t; = to (the multiplicity is mg = 3 > d + 1) and
t7 = tg = tg (the multiplicity is ms = 3 > d 4+ 1). Such a curve interpolates Fy and F,; that is, the curve
passes through these points. The curve has a tangent in the direction F; — F( at t; and a tangent in the
direction F, — F._; at t,,_4. Additionally, the curve is said to be open and uniform when t;,1 —t; = A, a
constant, ford <i<n—d— 1.

If a B-spline curve is not open, it is said to be floating'. Such curves generally do not interpolate the end
control points—the curve “floats” near them. The fullset of knots for a floating curve can be equally spaced,
in which case the curve is said to be floating and uniform. The knot differences are ;11 —¢; = A, a constant,
for0<t<n-1.

Example 1 shows several B-spline basis functions for a set of open uniform knots. The generation of the
functions and the graphical display were created by [2].

Example 1. B-spline basis functions for a set of open uniform knots. Let the knot vector be t =
{0,0,0,1,2,3,4,4,4}, so n +1 = 9. Let the degree be d = 2. A B-spline curve using these knots and
having the specified degree must have ¢+ 1= (n+1) — (d 4+ 1) = 6 control points.

The basis functions By o(t), B1,0(t), Bs,o(t) and Bro(t) are all identically zero. The other basis functions
forj=0and 2 <7 <5 are

Boo(t) = {1,te€]0,1); 0, otherwise}
Bso(t) = {1, te€[1,2); 0, otherwise}
Bio(t) = {1, te€]2,3); 0, otherwise}
Bso(t) = {1, te[3,4); 0, otherwise}

The graphs of B, ¢(t) for 2 <14 <5 are shown next.

1For now I am ignoring the distinction between periodic and aperiodic (open, floating) curves.
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The basis functions By 1 (t) and Bg 1(t) are identically zero. The other basis functions for j =1 and 1 <i <5

are

s

1,1(¢
t

S

2,1

)

(
(
31 (t
(
(

o W

2.1(T

)
)
)
)
)

oy

5,1 (T

{1—t,t€]0,1); 0, otherwise}

{t, t €[0,1); 2—¢, ¢t €[1,2); 0, otherwise}
{-1+¢ te[1,2); 3—1t,te€[2,3); 0, otherwise}
{-2+4+t,t€[2,3); 4—t, t €[3,4); 0, otherwise}
{=3+1t,t€3,4); 0, otherwise}

The graphs of B; ;(t) for 1 <4 <5 are shown next.
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The basis functions for j =2 and 0 < ¢ <5 are

Bya(t) = {(1—-1t)% t€[0,1); 0, otherwise}

Bia(t) = {2t—3t%/2,t€[0,1); (2—1t)?/2, t € [1,2); 0, otherwise}

Boa(t) = {t?/2,t€[0,1); (=346t —2t%)/2, t € [1,2); (3—1)?/2, t € [2,3); 0, otherwise}

Bso(t) = {(1-1t)2/2,t€[1,2); (—11+10t —2t%)/2, t € [2,3); (4 —)?/2, t € [3,4); 0, otherwise}
Bia(t) = {(2—1)%/2, t € [2,3); (—20+13t —2t%)/2, t € [3,4); 0, otherwise}

Bsa(t) = {(3—1)% t€[3,4); 0, otherwise}

The graphs of B; o(t) for 0 < i <5 are shown next.
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The support of the B-spline curve is [ta,ts] = [0,4]. Choose control points Fy = 1, Fy = 2, Fy = 3/2,
F3; =1/4, Fy = 5/4 and F5 = 5/4. Assume these occur at equally spaced t-values on [0,4], specifically,
{0,4/5,8/5,12/5,16/5,4}. The graph of the B-spline curve E?:o F;B; 2(t) is shown next.

The control points are drawn in black and connected by a polyline drawn in black. The B-spline curve is
drawn in blue. In the example, the support is [te,tg] = [0,4]. The graph shows zero-valued curves in the
intervals [—2,0] and [4, 6], drawn in red, and is used for comparison to the floating uniform curve discussed
in the next example.

Example 2 shows several B-spline basis functions for a set of floating uniform knots. The generation of the
functions and the graphical display were created by [2].




Example 2. B-spline basis functions for a set of floating uniform knots. Let the knot vector be t =
{-2,-1,0,1,2,3,4,5,6}, so n + 1 = 9. Let the degree be d = 2. A B-spline curve using these knots and
having the specified degree must have ¢ +1 = (n+1) — (d 4+ 1) = 6 control points.

The basis functions B; o(t) are all unit step functions,

1, teli—-2i—1)

Bio(t) =
0, otherwise

for 0 < i < 7. The basis functions B; 1(¢) are translations of the same function,

t+2—i, tefi—2,i—1)
Bii(t) =1 i—t, teli—1,4)

0, otherwise

for 0 < ¢ < 6. The basis functions B; »(t) are translations of the same function,

(t+2—1i)2/2, teli—2,i—1)
Bia(t) = (t+2=0)( )+ @+ 1= —i+1))/2, teli-11)
| (t—i-1)%/2, teliitl)
0, otherwise

for 0 < i < 5. The graphs of the functions whose translations form the basis functions are shown next.
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The support of the B-spline curve is [tg, ts] = [—2, 6], but for comparison to the open B-spline curve, we care

only about the subinterval [0,4]. Choose control points Fy = 1, Fy = 2, F, =3/2, F5 =1/4, F, =5/4 and
F5 = 5/4. Assume these occur at equally spaced ¢-values on [0, 4], {0,4/5,8/5,12/5,16/5,4}. The graph of
the B-spline curve Z?:o F;B; 2(t) is shown next,



The control points are drawn in black and connected by a polyline drawn in black. The B-spline curve is
drawn in blue for the domain [0,4] that is common with the open B-spline curve. The graph shows the
remaining portions of the curve for the t-intervals [—2,0] and [4, 6], drawn in red. As expected, the height
values at tg = —2 and tg = 6 are zero the support is [—2,6]. Compare this graph to the one shown for the
open uniform curve discussed in the previous example.

3 Floating Uniform Knots

The B-spline basis functions with floating uniform knots are used for B-spline interpolation of image data.
Let us analyze these functions in more depth. As shown in equations (2) and (3), the basis function B; ;(¢)
has support [t;,t;4145]. I will refer to the half-closed interval [¢;,t;114;) as the t-domain of the function;
later we will have a change of variables introducting an s-variable and need to distinguish between s and ¢
and between support and domain. As example 2 illustrates, B; ;(t) is a piecewise polynomial function on
its support. B, o(t) is piecewise constant, B; 1(t) is piecewise linear, B; o(t) is piecewise quadratic, and so
on. Generally, B; ;(t) is piecewise polynomial with j + 1 polynomials each having degree j. The goal is to
construct formulas for the polynomials.

3.1 Reduction to Integer-Valued Knots

It is sufficient to analyze the basis functions using a change of variables that converts the constant spacing
between knots to unit length. Let A > 0 be the constant spacing; that is, t;41 —t; = A for all i. Given a
starting knot tg, the knots are t; = to + ¢A for 0 < i < n. Consider the change of variables t = tg + sA.
Define the s-knots by s; = (¢; — to)/A, in which case s;41 — s; = 1 for all i. This leads to s; = ¢ for all
i because sy = 0. The recursive formulas for the B-spline basis functions may be written in terms of the

s-variable,
1, s€i,i+1)
Bio(s) = (4)

0, otherwise



for 0 <i<n-—1and

s Bi_’jfl(s) -+ itltj—s Bi+17j,1(8), S € [’L,Z +1 +j)
5| (7) (=5) 5
0, otherwise

for 1 <j<dand 0 <i<mn-—1-7j. As observed previously, the basis functions for a specified j are
translations of a single function, so Bi; ;(s) = B; j(s —¥¢). The single functions are indexed solely by j, say,
Bj(s) = By,;(s). The implication is that B; ;(s) = Bj(s — 1).

3.2 B-Spline Curve for Integer Knots

Using the construction in the previous section, the B-spline curve of degree d generated by the basis functions
is

X(s) = Z F;Bia(s) = Z F;By(s — i) (6)

Equation (6) is a convolution of the control points with the basis function By(s). The basis function has
support [0,d + 1] and has s-domain [d,n — d) = [d,c + 1). On this domain we are guaranteed that for any
selected s, X(s) involves a sum of d+ 1 terms with the remaining terms zero because s is outside the domains
of the corresponding basis functions. To illustrate, the t-domain of the B-spline curve in example 2 is [0, 4].
The change of variables from ¢ to s is ¢ = s — 2, so the s-domain of the curve is [2,6]. The B-spline curve
evaluation is shown in Table 1, including the boundary evaluations for s outside the domain,

Table 1. Evaluation of the B-spline curve shows the local control provided by the B-spline basis functions.

s-interval X-curve evaluation
(—00,0) 0
[0,1) Xo(s) | FoBa(s)

L2 | Xuls) | FBa() + PiBa(s =Y .

[2,3) Xo(s) | FoBa(s) + FiBa(s—1) + FaBa(s —2)
(3,4) X3(s) FiBay(s —1) + FoBao(s —2) + F3Ba(s —3)
4, 5) X4 (s) FyBa(s —2) 4+ F3Bao(s —3) + FyBa(s —4)

B Xl | ________ F3Ba(s = 3) + FaBa(s = 4) + FsBa(s - 5)
[6,7) Xe(s) FyBs(s —4) + F5Ba(s —5)
[7,8) X7 (s) F5Ba(s — 5)
[8, +00) 0

The evaluations on the s-domain [2, 6] are shown between the dashed lines of the table. The curve pieces
Xa(s) through X5(s) are the only ones relevant for the evaluation. Observe that the naming X;(s) is
suggestive that the s-domain is [i,7 + 1).

10



3.3 Construction of the Basis Function Polynomial Pieces

The recursive formulas reduce to the following, essentially setting ¢ = 0 in equations (4) and (5) and using
the translation equivalence,

Bo(sy = €N .
0, otherwise
and A | A
By(s) = (5) Bj_1(s) + (”f‘) Bya(s—1), s€f0,j+1) .

0, otherwise

The polynomials are B;(s) = Pj(s) for s € [k, k + 1) where 0 < k < 7, a set of j + 1 polynomials each with
degree j. Equation (7) implies

Poo(s) =1, se[0,1) (9)
a constant polynomial. When j = 1, we have
Bi(s) = sBo(s) + (2—s)Bo(s — 1), s€[0,2) (10)

By(s) is defined for s € [0,1). Bo(s — 1) is defined for s — 1 € [0,1), that is, for s € [1,2). Therefore,
Bi(s) =sfor s € [0,1) and By(s) =2 — s for s € [1,2). The polynomials of degree 1 in the recursion are

Pio(s) = s, e [o,1
1o(s) = s s€[0,1) (1)
Piai(s)=—s+2=1—-(s—1), s€][1,2)
which is consistent with the graph of Bs 1(t) in example 2. When j = 2, we have
Bs(s) = (5/2)Bi(s) + (3 = 5)/2) Bi(s — 1), s €0,3) (12)
Bi(s) is defined for s € [0,2). Bi(s — 1) is defined for s € [1,3). Therefore, By(s) = (s/2)s for s € [0,1),
Ba(s) = (8/2)(2—35) +((3—=15)/2)(s — 1) for s € [1,2) and Ba(s) = ((3—15)/2)(2 — (s — 1)) for s € [1,3).
The polynomials of degree 2 in the recursions are
Po(s) = s%/2, s€[0,1)
Pyi(s)=(—2s+65—3)/2=(1+2(s—1)—2(s —1)?)/2, s€l,2) (13)
Pra(s)=(s>—6s+9)/2=(1-2(s—2)+ (s —2)?)/2, s€(2,3)
which is consistent with the graph of Bs 2(¢) in example 2.
Generally,
Pik(s) = (s/§)Pi—1k(s) + (G +1 = 8)/§)Pim1e-1(s = 1), s €[k k+1) (14)

for 0 < k < j where P;_; x(s) is defined for s € [0,5) and Pj_1 x(s — 1) is defined for s € [1,j + 1). There
are boundary conditions, so to speak. The polynomials P; ;(s) that we want are those for which 0 < j < k.
If k <0or k> j, define P;x(s) = 0; that is, these polynomials are identically zero for all s.

11



For example, consider the case j = 3. For k =0 and s € [0, 1),

Pso(s) = (8/3)P20(s) + ((4—35)/3)P2,—1(s — 1)
= (s/3)[s*/2] + (4 — 5)/3)[0] (15)
= s3/6

For k=1 and s € [1,2),

Ps1(s) = (s/3)Pe1(s) +((4—35)/3)P20(s —1)

(
(s/3)[(s(2 = 5) + (3= s)(s = 1))/2] + (4 = 5)/3)[(s — 1)*/2] (16)
(—3s% + 1252 — 125+ 4) /6

(1+3(s—1)+3(s—1)2—-3(s—1)?)/6

For k=2 and s € [2,3),
Pya(s) = (8/3)P22(s) + ((4—5)/3)P21(s — 1)

s/3)[B=5)?/21+((4=9)/3)[((s D2 = (s =1)+ B = (s = )((s = 1) = 1))/2]

(
(
(17)
= (33 —24s% +60s — 44)/6
(4—6(s—2)*+3(s —2)%)/6
For k=3 and s € [3,4),

Ps33(s)

(s/3)Pr3(s) + ((4 = 8)/3) Paa(s — 1)

(s/3)[0] + (2 =5)/3)(s =2 = (s = 1)) + B = (s = D)((s = 1) = 1))/2]
(—s3 + 1252 — 485 + 64)3 /6

= (1-3(s—3)+3(s—3)2—(s—3)3)/6

Figure 1 shows the graph of the 4 polynomial pieces.

Figure 1. The graph of the function Bs(s), composed of the graphs of P3(s) drawn in red, Ps(s) drawn
in green, Ps2(s) drawn in blue and P; 3(s) drawn in orange.
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3.4 Construction of the B-Spline Curve Pieces

A further reduction in the structure of the B-spline curves now follows from the construction of the polyno-
mials Pj;(s). In table 1 corresponding to example 2, the curves pieces are shown next. Only those curves
corresponding to the s-support [2, 6] are listed.

Xo(s) = FoPoa(s —0)+ F1Po1(s — 1) + FoPyo(s —2), s€[2,3)
X3(5) = FiPya(s — 1) + FyPyy(s — 2) + FsPyo(s — 3), s € [3,4) 1)
X4(s) = FoPoo(s —2)+ F3Py1(s— 3) + FaPoo(s —4), s€[4,5)
X5(8) = F3Ps9(s —3) 4+ FyPs1(s —4) + F5sPao(s — 5), s € [5,6)

Generally, for a B-spline curve X(s) = Y ;_  F; By(s — i) with ¢ + 1 control points, degree d and s-domain

[d,c + 1), the curve pieces are

=0

d

Xavi(s ZFH—JPdd j(s—i—17) (20)
7=0

for0<i<c—d.

Define the polynomials Qg x(s) = Py x(s+k) for 0 < k < d; then Py 4_;(s—i—j) = Pya—;(s+(d—j)—d—i) =
Qd,a—;(s —d —1) and Equation 20 becomes

Xati(s Z FitjQda—j(s —d—1) (21)
7=0

for0<i<c—dand s € |[d+i,d+i+1). The translation in the Q-polynomials is independent of j. In this

form, we can factor out a blending matriz Ag = [a%)] that has size (d+ 1) x (d+ 1) and combines powers of
(s —d — i) into the @-polynomial terms. Equation (21) becomes

Xati(s ZFHJZCLM s—d—1) k (22)

13



for0<i<c—dandsé€l[d+i,d+i+1). The blending matrices for small values of d are shown next,

1 -3 3 -1

1 -2 1
1 -1 ) |4 0 -6 3

A].: 7A2:§ 1 2 =2 ;A3_6

0 1 1 3 3 -3

0 0 1
0 0 0 1

r . 1 -5 10 —10 5 -1 (23)

26 =50 20 20 —20 )
66 0 —-60 0 30 -10
26 50 20 —-20 -20 10

11 -12 -6 12 —4
Ay=5 111 12 =6 —12 6 |, As= 135

1 5 10 10 5 =5
- - 0 0 0 0 0 1

An implementation of B-splines can compute the matrices using code that implements univariate polynomial
arithmetic. Equation (14) is used to generate the polynomials Py x(s) for 0 < k < d. The Q-polynomials
are then generated by Qgr(s) = Pir(s+ k) for 0 < k < d. The elements of A4 can be computed from the
coeflicients of the Q-polynomials. Listing 1 shows pseudocode for the computations.

Listing 1. Computation of the blending matrix Ay from the coefficients of the @-polynomials.

// Input: degree d > 0
// Output: (d+1)x(d+1) blending matrix A
void ComputeBlendingMatrix(int d, Real A[d + 1][d + 1])
{
// Coefficients of polynomial P[i] are P[i][0..d].
Polynomial P[d + 1]; // default degrees are 0

// P{0,0}(s) =1
P[o][0] = 1:

// L0 = s/j, the constant term is set to 0. The linear term 1/j will be set later.
Polynomial> LO(1); // input is the degree 1
Lo[0] = O;

[/ LI(s) = (i +)1 —s)/i

Polynomial L1(1);

// s—1 is used in computing translated P{j—1k—1}(s—1)
Polynomial sm1 = { —1, 1 }; // { smi[0], sml[1] }

// Compute P{j, k}(s) = LO(s)*P{j—1,k}(s) + L1(s)xP{j—1k—1}(s—1) for
// 0 <=k <= j where 1 <= j <= degree. When k = 0, P{j—1,—1}(s) = 0,
// so P{j,0}(s) = LO(s)*P_{j—1,0}(s). When k = j, P{j—1,j}(s) = 0,

// so P{j,j}(s) = L1(s)*P_{j—1,j—1}(s). The polynomials at level j—I
// are currently stored in P[0] through P[j—1]. The polynomials at
// level j are computed and stored in P[0] through P[j]; that is, they
// are computed in place to reduce memory usage and copying. This

// requires computing P[k] (level j) from P[k] (level j—1) and P[k—1]
// (level j—1), which means we have to process k = j down to k = 0.
for (int j = 1; j <=d; ++j)

Real inv) = 1.0 / j;
LO[1] = invJ;
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L1[0] = 1.0 + invJ;
L1[1] = —invJ;

for (int k = j; k>= 0; —k)
Polynomial result = { 0 }; // constant polynomial 0
if (k> 0)

// For polynomial Q(t), Q. GetTranslation(t0) is Q(t—t0).
result += L1 % P[k — 1].GetTranslation (1);

}

if (k< j)

{ result += L0 % P[k];
}

P[k] = result;

}

// Compute Q{d,k}(s) = P{d, k}(s + k). For polynomial P(s),
// P.GetTranslation(—k) is P(s+k).

Polynomial Q[d + 1];

for (int k = 0; k <= d; ++k)

Q[k] = P[k]. GetTranslation(—k);

// Extract the matrix A from the Q-polynomials. Row r of A contains the
// coefficients of Q{d,d—r}(s).
for (int k =0, r =d; k<=d; ++k, —r)
{
for (uint32_.t ¢ = 0; ¢ <=d; ++c)

Alrlle] = Q[k][c]:

3.5 Choosing Parameters Commensurate with Control-Point Indices

The B-spline curve has ¢+ 1 control points F; for 0 < i < ¢. The s-support of the B-spline curve is [d, ¢ + 1]
and the s-knots are consecutive integers. The number of integers in [d,c + 1] is ¢ + 2 — d, which is not the
number of control points when d > 1. Therefore, it is not possible to choose integer values in [d,c + 1] to
correspond to the control point indices.

Although it is possible to choose a B-spline curve parameter ¢ € [0, c| and then map it to s € [d,c+ 1], I
prefer instead to think of the sample values chosen at the center of an interval. This is similar to the concept
of texture samples assigned to pixel centers, where the pixel is considered to be a solid square rather than a
single point location. My choice for the B-spline curve parameter is ¢ € [—1/2,¢ 4 1/2]. The mapping from
ttosiss=d+((c+1—d)/(c+1))(t+1/2). The B-spline curve is X(¢). Compute the B-spline curve point
X (%) to approximate the control point F; in the sense that given a sequence of input control points F;, you
can produce a sequence of (smoothed) output control points G; = X(7).
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4 Polynomial Evaluation using Horner’s Method

Let p(u) = ZZ:O pru’ be a polynomial of degree d with pg # 0. The naive evaluation algorithm treats the
polynomial as a dot product of coefficients and powers of u,

p(u) = (po,p1s-- -, pa) - (L, ... ul) (24)

This is not a good choice when using floating-point arithmetic; for example, if « is a small number and d is
somewhat large, the powers might eventually become zero (before reaching power d) due to floating-point
rounding errors. A more robust approach for evaluation of p(u) is Horner’s method,

p(u) = po+u(pr +ulp2...)...) (25)

For example, a degree-2 polynomial factors as p(u) = pg + u(p1 + up2) and a degree-3 polynomial factors
as p(u) = po + u(p1 + u(p2 + ups)). In the context of B-spline derivative evaluation, the polynomials are of
the form p(u) = (agbo, a1by, - - .,aqbq) - (1,u,...,u?), in which case the premultiplications a;b; increase the
computational cost slightly. Generally, Horner’s method is shown in Listing 2. The listing also includes the
variation mentioned previously.

Listing 2. Pseudocode for Horner’s method to evaluate a polynomial robustly.
int const degree = some_positive_degree;

double p[degree + 1]; // the polynomial coefficients

double u; // input to the polynomial

// one evaluation scheme, avoids some initialization code

double value = 0.0;
for (int i = degree; i >= 0; —i)
value = p[i] + u * value;

// another evaluation scheme with additional initialization code

int i = degree;

double value = p[degree];

for (—i; i >= 0;, —i)
value = p[i] + u * value;

// The variation when the polynomial has coefficients a[i]J*b[i].

int const degree = some_positive_degree;
double a[degree + 1], b[degree + 1];
double u;
double value = 0.0;
for (int i = degree, i >= 0, —i)

value = a[i] * b[i] + u * value;
}

The hope is that each intermediate value is of appropriate size so that even when w is small, p[i] + u * value does
not have significant rounding errors. The operation count for a single evaluation of a degree-d polynomial is
2d because there are d multiplications and d additions. In the variation where the coefficients are products
of numbers, the operation count for a single evaluation is 3d + 1 because there are d 4+ 1 premultiplications
followed by the 2d operations for the pairs of multiplications and additions in the for-loop.
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5 B-Splines for 1-Dimensional Data

Let the 1-dimensional samples be {F;}{_, and choose the degree d > 0 for the B-spline interpolator. The
B-spline interpolator is that of equation (22),

d d
Xa+i(s) = Z Fij Z aﬁ-??(s —d—i)* (26)
=0 k=0

for 0 <i < c¢—d and where s € [d+14,d+i+1). Keep in mind that the implementation will require you to
choose ¢t € [-1/2, ¢+ 1/2] and then compute internally s —d = ((c+1—d)/(c+1))(t + 1/2). The index i is
determined from s in order to select Xy4,(s) for evaluation.

Given a value ¢, the computation of ¢, s and u = s — d — ¢ from ¢ is a constant-time operation. Listing 3
shows pseudocode for the operation.

Listing 3. Given t € [—1/2,¢+ 1/2), determine the corresponding interval [i,i 4+ 1) that contains s — d
and then compute u = s —d — 4. The actual input ¢ is clamped to the support interval [—1/2, ¢+ 1/2], which
includes the right endpoint ¢ + 1/2.

// Inputs:

// tmin = —1/2, tmax = ¢ + 1/2, dsdt = (¢ + 1 — d)/(c + 1), numControls = ¢ + 1, degree = d

// Outputs:

// i: the interval [i,i+1) contains s —d, u=s—d— i in [0,1)

void GetKey(Real t, Real tmin, Real tmax, Real dsdt, int numControls, int degree, int& i, Real& u)

// Compute s —d = ((¢c +1—d)/(c + 1))(t + 1/2) and the index i for which
/) d+ i<=s<=d+ i + 1. Let u =s —d— i so that 0 <= u<= 1.
if (t > tmin)

if (t < tmax)

Real s_minus_.d = dsdt % (t — tmin); // s — d

i = floor(s-minus_d); // largest integer smaller or equal to s — d
u = s-minus.d —i; // s—d— i in [0,1)

else // clamp to t = tmax
// When t = tmax, s —d =c + 1 — d. Choosing i = floor(s —d) =c + 1 —d as in
// the case t < tmax leads to an interval [c + 1 — d, ¢ + 2 — d) that is outside the
// domain of s — d. Choose instead i = ¢ — d and u = 1, which corresponds to the

// right endpoint of the support of the t—domain.
i numControls — 1 — degree; // ¢ — d

u 1;

}
}
else // clamp to t = tmin
{

i = 0;

u = 0;
}

The computational costs for the B-spline evaluation depend on the distribution of the s-values. Several
evaluation methodologies are described next.
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5.1 Evaluation without Caching

The straightforward evaluation algorithm is to compute the polynomial terms first and then compute the
weighted sum of control points. Equation (26) is parenthesized as follows for this algorithm,

d
Xari(s Z Fiij (Z %k ) = Z Fijoj(u) (27)
=0

where w = s —d —i € [0,1) and where ¢;(u) is the dot product of row j of A with the polynomial vector
(1,4, ..,u?). The polynomials should be evaluated using Horner’s method as defined in equation (25).

The operation count for a single evaluation of a degree-d polynomial is 2d because there are d multiplications
and d additions. There are d+ 1 polynomials ¢;(u) to evaluate, so the collective operation count is 2d(d+1).
Although the motivation for this document is that the control points F; are scalars, the interpolation applies
for higher-dimensional data; let « be the dimension of the control points. The weighted average of the control
points requires d 4+ 1 multiplications of scalars times control points and d additions of those products. The
total operation count for an evaluation with a single u is 2d(d + 1) + a(2d + 1).

The B-spline derivative of order m is

d
K10~ 35 (5 ) = Spi -
=0

where

Wi = (k+1) - k+m=Hk+£ 1<m<d 0<k<d-m (29)

and where ¢;m) (u) is the derivative of order m of ¢;(u). Define wor, = 1 for 0 < k < d so that ¢;(u) = qﬁgo)(u),
effectively extending equation (29) for 0 < m < d.

The wy,, can be precomputed and stored in a 1-dimensional array. For example, when d = 3, we can
precompute

Woo Wo1 Wo2 Wo3 |Wi0 W11 w12‘w20 w21‘w30} = [1 11 1‘1 2 3‘2 6‘6} (30)

As it turns out, we only need to know the location of the last coefficient corresponding to order m. It is
L, = (m+1)d—m(m—1)/2 for 0 < m < d. Starting with this location, Horner’s method allows us to
decrement the location index to discover each required coefficient. In the example when d = 3 these indices
are Lo =3, Ly = 6, Ly = 8 and L3 = 9. Listing 4 contains pseudocode for precomputing the w,,; and the
location indices.

Listing 4. Pseudocode for precomputing the cofficients that store products of powers for the derivative
evaluations.

void ComputeDCoefficients(int d, Real dCoefficients[(d+1)(d+2)/2], int Imax[d+1])

// Compute w{0,k} corresponding to order m = 0. This includes initialization of all w—terms
// to 1 because for m> 0, we will incrementally multiply the w—terms to obtain the derivative
// coefficients.

for (int i = 0; i < (d+1)(d+2)/2; 4++i)
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dCoefficients[i] = 1;

}

// Compute w{m, k} corresponding to order m> 0.
for (int m=1, i0 =0, il =d+ 1; m<=d; +m)

{
++i0;
for (int j = m, factor = 1; j <=d; ++j, ++factor, ++i0, ++il)
dCoefficients[il] = dCoefficients[i0O] * factor;
}
}
// Compute the locations of the last coefficients in each order’'s block.
Imax [0] = d;
for (int i0 =0, il =1; il <=d; i0 = il4+4)

Imax[il] = Imax[i0] + d — i0;

A similar cost analysis applies to derivatives of order m of the B-spline function with 1 < m < d. To compute
the B-spline derivative of equation (28), Horner’s method is used for evaluating the d+1 polynomials ¢§m) (u).
A single polynomial evaluation requires 3(d—m)+1 operations and the weighted sum of control points requires
a(2d + 1) operations, leading to a total operation count of (3(d —m) + 1)(d + 1) + «(2d + 1). Pseudocode
for evaluating equation (28) is shown in Listing 5.

Listing 5. Pseudocode for evaluating the 1-dimensional B-spline or of its derivatives as shown in equation
(27). The Controls:: Type is the type of the control points F; and ctZero is the natural zero value for that type.
The pseudocode for the function GetKey is found in Listing 3. The evaluation is in terms of the ¢-variable, but
equation (28) is in terms of the s-variable where s = d+((c+1—d)/(c¢+1))(t+1/2). Using the chain rule when
differentiating, we need to multiply the specified-order derivative by a power of ds/dt = (¢+1—d)/(c+ 1).

// degree: degree of the B—spline (d)

// numControls: number of control points (c+1)

// controls: array of control points

// tmin: —1/2

// tmax: ¢ + 1/2

// powerDSDT: array of powers of ds/dt = (¢ + 1 —d) / (c + 1)

// dcoefficient: array of derivative polynomial coefficients , size (d+1)*(d+2)/2

// Imax: location of the last coefficient for the block of specified order
// A: blending matrix, accessed as A(row, col)
// phi: array of polynomial evaluations that multiply the control points

Controls:: Type EvaluateNoCaching(int order, Real t)

{

Controls:: Type result = ctZero;
if (0 <= order && order <= degree)

int i;
Real u;
GetKey(t, tmin, tmax, powerDSDT[1], numControls, degree, i, u);

for (int j = 0; j <= degree; ++j)

= degree, ell = Imax[order]; k >= order; —k, —ell)

o
o

=
Il

phi[j] = u + A(j, k) * dcoefficient[ell];
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for (int j = 0; j <= degree; ++j)

{

result = result + controls(i + j) * phi[j];
}
result = result * powerDSDT [order];

}

return result;

5.2 Evaluation with Precaching

In some applications there will be many evaluations involving s-values that lead to the same index i. The
total cost of the evaluations can be reduced from that of the previous section by precomputing a matrix of
blended control points. Equation 26 is rewritten as follows for this algorithm,

d d d d d
d d
XdJrl‘(S) = E FiJrj E a§-k)uk = E E Fi+ja§'k) uk = E @ikuk (31)
7=0 k=0 k=0

k=0 \j=0

where the last equality defines the (¢ + 1 — d) x (d 4+ 1) vector-valued matrix ® with elements ®;; for
0<i<c—dand0<k<d. Observe that the order of the j- and k-summations is reversed.

For a selected i and corresponding u, ZZ:O ®,,u” can be computed using Horner’s method. This requires
2d operations, d multiplications of scalars and blended control points and d additions of those products, for
a total of 2ad scalar operations where « is the dimension of the control points. The operation count using
the no-cached algorithm is 2d(d + 1) + «(2d + 1), so the precached algorithm is less expensive to compute at
runtime.

Precomputing of @ is assumed to be offline, so its cost is not included in the operation count. Each matrix
element involves d+ 1 products of scalars times control points followed by d additions of those products for a
cost of a(2d+ 1) operations. The total cost of the precomputing is a(2d+1)(d+1)(c+1—d). The dominant
cost occurs because of the potentially large number of control points. The precaching algorithm has an
expensive—but fixed—offline cost that is justified when the number of runtime evaluations is sufficiently
large. Precaching also has a space-time tradeoff. The number of blended control points is (d+1)(c¢+1 —d),
which is larger than the number of control points ¢ + 1. The algorithm uses additional memory in order to
obtain better runtime performance. Listing 6 contains pseudocode for precomputing the elements of ®.

Listing 6. Pseudocode for precomputing ®;, = Z?:o Fi+ja§-i) for all 4 and k with 0 < i < ¢—d and
0<k<d.

// degree: degree of the B—spline (d)

// numControls: number of control points (c+1)

// controls: array of control points

// A: blending matrix, accessed as A(row, col)

// tensor: blended controls, accessed as tensor(row, col)

void ComputeTensor(int r, int c)
Controls:: Type element = ctZero;
for (int j = 0; j <= degree; ++j)
{

element = element + controls(r + j) = A(j, c);
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}

tensor(r, c) = element;
}
void InitializeTensors ()
{
int numRows = numControls — degree;
int numCols = degree + 1;
for (int r = 0; r < numRows; ++r)
{
for (int ¢ = 0; ¢ < numCols; ++c)
{
ComputeTensor(r, c);
}
}

The B-spline derivative of order m when using the precaching algorithm is

d—m
XEJZZ(S) = Z ((I)i,kerwmk) uk (32)
k=0

where wp,;, is defined in equation (29). The evaluation uses Horner’s method where the coefficients are
products of tensor elements with scalars. Listing 7 contains pseudocode for the evaluation of equation (32)
using the summation involving ®; j4m.

Listing 7. Pseudocode for the evaluation of equation (32).

// degree: degree of the B—spline (d)

// numControls: number of control points (c+1)

// controls: array of control points

// tmin: —1/2

// tmax: ¢ + 1/2

// powerDSDT: array of powers of ds/dt = (¢ + 1 —d) / (c + 1)

// dcoefficient: array of derivative polynomial coefficients , size (d+1)x(d+2)/2
// Imax: location of the last coefficient for the block of specified order

// tensor: blended controls, accessed as tensor(row, col)

Controls:: Type EvaluatePrecaching(int order, Real t)

{

Controls:: Type result = ctZero;
if (0 <= order && order <= degree)
int i;
Real u;
GetKey(t, tmin, tmax, powerDSDT[1], numControls, degree, i, u);

for (int k = degree, ell = Imax[order]; k >= order; —k, —ell)

{
}

result = result % powerDSDT[order];

result = result % u + tensor(i, k) x dcoefficient[ell];

}

return result;

5.3 Evaluation with On-Demand Caching

In this methodology, the elements of the matrix ® are not precomputed; rather, they are computed only
when needed during an evaluation. Once they are computed, they are stored in the tensor(r,c) cache. A
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matrix of Boolean flags, cached(r,c), is maintained indicating whether or not a matrix element needs to be
computed. The flags are all set to false initially. The cost of precomputing all the matrix elements is not
incurred. Instead, the cost is based only on computing those elements that are needed during the application
execution. This is useful when the application focuses only on a region of interest involving a subset of the
control points. Listing 8 contains pseudocode for the evaluation.

Listing 8. Pseudocode for the evaluation of equation (32). The ® elements are computed the first time
they are needed and the results are stored in a cache.

// degree: degree of the B—spline (d)

// numControls: number of control points (c+1)

// controls: array of control points

// tmin: —1/2

// tmax: ¢ + 1/2

// powerDSDT: array of powers of ds/dt = (¢ + 1 —d) / (c + 1)

// dcoefficient: array of derivative polynomial coefficients , size (d+1)x(d+2)/2
// Imax: location of the last coefficient for the block of specified order

// tensor: blended controls, accessed as tensor(row, col)

// cached: flags for blending, accessed as cached(row, col)

Controls :: Type EvaluateOnDemandCaching(int order, Real t)
{
Controls:: Type result = ctZero;
if (0 <= order && order <= degree)
int i;
Real u;
GetKey(t, tmin, tmax, powerDSDT[1], numControls, degree, i, u);
for (int k = degree, ell = Imax[order]; k >= order; —k, —ell)
if (cached(i, k) = false)

ComputeTensor(i, k);
cached (i, k) = true;

result = result * u + tensor(i, k) x dcoefficient[ell];

}

result = result % powerDSDT[order];

return result;

6 B-Splines for 2-Dimensional Data

Let the 2-dimensional samples be {F;, ;, }:°% ; _, and choose the degrees dy > 0 and dy > 0 for the B-spline

’Lo—O,Zl
interpolator. It is not necessary that dy = dy, although in some applications it is common to have the same

degree. The B-spline interpolator is defined as a tensor product spline,

do dy
(do (d1 . k . k
Xd0+lo,d1+11 80’81 E E Figtjo,ir+i: E E : Ajoko%j1ky 50 —do — ’LO) 0(51 —dy — ll) ! (33)
Jo=0j1=0 ko=0k1=0

for 0 < i, < ¢, —d, and s, € [dy + in,dp + i, + 1). The implementation will require you to choose
tn € [—1/2,¢, +1/2] and then compute internally s, —d,, = ((¢p, + 1 —dy)/(cn + 1)) (tn +1/2). The indices
i, are determined from s,, in order to select Xg,+i0.d,+i, (S0, $1) for evaluation. The evaluation methodologies
parallel those for the 1-dimensional B-spline functions.

22



6.1 Evaluation without Caching

The straightforward evaluation algorithm is to compute the polynomial terms first and then compute the
weighted sum of control points. Equation (33) is parenthesized as follows for this algorithm,

d, di) k
Xdotio,dy+ir (50,51) = E:]O 0§:]1_0 i0+7o,i1+71 (E:ko 0 goil ) (E:kl =0 5121 1)
= Zgo =0 2]1—0 Figtjo,ir+5 ¢07J0 (u0)¢1731 (ul)

(34)

where u,, = s, —d, — i, € [0,1) and @, ;, (uy) is the dot product of row j, of Aldn) with the polynomial

vector (1,up, ..., udn).

The B-spline derivatives of order (mg, my) are

O 1
XG0 (s0,50) = DY Fiotgointin 00 (uo)s{" (un) (35)
Jo=0j1=0
where }
n—Mn
dn dn "
S ) = > AT wi (36)
kn,=0

are the derivatives of ¢y, ;, (u,) with w( ”) provided by equation (29). The superscript on the w-term
emphasizes that the subscripts of that term have constraints that depend on the degree d,,.

The evaluation of equation (35) is a simple extension of that shown in equation (28). Pseudocode is provided
in Listing 9.

Listing 9. Evaluation of the 2-dimensional B-spline or of its derivatives as shown in equation (35).

// degree[2]: degrees of the B—spline

// numControls [2]: numbers of control point

// controls: array of control points

// tmin[2]: —1/2

// tmax[2]: (numControls[] + 1/2 )

// powerDSDT[2]: array of powers of ds/dt = (numControls[] — d) / numControls[]

// dcoefficient [2]: array of derivative polynomial coefficients , size (d[]+1)x(d[]+2)/2
// Imax[2]: location of the last coefficient for the block of specified order

// A[2]: blending matrices, accessed as A[](row, col)

// phi[2]: array of polynomial evaluations that multiply the control points

Controls :: Type EvaluateNoCaching(int order[2], Real t[2])
{

Controls:: Type result = ctZero;

if (0 <= order[0] && order[0] <= degree[0] &&
0 <= order[1] && order[1] <= degree[1])

{

int i[2];
Real u[2];
for (int dim = 0; dim < 2; ++dim)
GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);
}

for (int dim = 0; dim < 2; ++dim)

for (int j = 0; j <= degree[dim]; ++j)

23



phildim][j] =
for (int k = degree[dlm] ell = Imax[dim][order[dim]]; k >= order[dim]; —k, —ell)

phi[dim][j] = phi[dim][j] % u[dim] + A[dim](j, k) * dcoefficient[dim][ell];

}
for (int j1 = 0; jl <= degree[1]; ++j1)

Real phil = phi[1][j1];
for (int jO = 0; jO <= degree[0]; ++j0O)

Real phi0 = phi[0][j0];
Real phi0l = phi0 % phil;
result = result 4+ controls(i[0] + jO, i[1] + j1) = phiOl;

}

Real adjust = 1;
for (int dim = 0; dim < 2; ++dim)
{
adjust *= powerDSDT[dim][order[dim]];

result = result % adjust;

}

return result;

6.2 Evaluation with Precaching

Equation (33) is rewritten as follows for this algorithm,

_ ( 0) (d1) ko kl
Xd0+i07d1+i1 (80751) = Zko 0 Zkl_ (Z]O 0231_ i0+j0,31+71 Vo ko g1k, | Yo Ut (37)
_ ko k1
= Zkl_ (Zko 0 Pigiskok: Uo )ul
and its derivatives of order (mg, m1) are
(mo,m1) di—my do—mo (dn) ko (d) Ky
Xd0+io,d1+i1 (807 51) Zkl_ Zkozo <pioailJ€0+mml€1+m1wmo,kouo wml,kl Uy (38)

Listing 10 contains pseudocode for precomputing the tensor ®;,, ko, -

Listing 10. Pseudocode for precomputing ®,,,,¢,,- The index names r and c are suggestive of the
ordering for the tensor in the 1-dimensional B-spline precache algorithm.

// degree[2]: degrees of the B—spline

// numControls[2]: numbers of control point

// controls: array of control points

// A[2]: blending matrices, accessed as A[](row, col)

// tensor: blended controls, accessed as tensor(r0,rl,c0,cl)

void ComputeTensor(int r0O, int rl, int cO, int cl)

Controls:: Type element = ctZero;
for (int j1 = 0; jl <= degree[1]; ++j1)

Real blendl = A[1](j1, cl);
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for (int jO = 0; jO <= degree[0]; ++j0)

Real blend0 = A[0](jO, c0);
Real blend01 = blend0 * blendl;
element = element + controls(r0 + jO, rl + jl1) % blend01;

}
}
tensor(r0, rl, c0, cl) = element;
}
void InitializeTensors ()
{
int numRows[2], numCols[2];
for (int dim = 0; dim < 2; ++dim)
{
numRows [dim] = numControls[dim] — degree[dim];
numCols[dim] = degree[dim] + 1;
}
for (int r1 = 0; rl < numRows[1]; ++rl)
{
for (int r0 = 0; r0 <numRows[0]; ++r0)
for (int cl1 = 0; cl < numCols[1]; ++cl)
{
for (int c0 = 0; c0 < numCols[0]; ++c0)
{
ComputeTensor(r0, rl, c0, cl);
}
}
}
}

Listing 11 contains pseudocode for the evaluation of equation (37).

Listing 11. Pseudocode for evaluation the 2-dimensional B-spline function using precaching.

// degree[2]: degrees of the B—spline

// numControls [2]: numbers of control point

// controls: array of control points

// tmin[2]: —1/2

// tmax[2]: (numControls[] + 1/2 )

// powerDSDT[2]: array of powers of ds/dt = (numControls[] — d) / numControls[]

// dcoefficient [2]: array of derivative polynomial coefficients , size (d[]+1)*(d[]+2)/2
// Imax[2]: location of the last coefficient for the block of specified order

// tensor: blended controls, accessed as tensor(r0,rl,c0,cl)

Controls:: Type EvaluatePrecaching(int order[2], Real t[2])

Controls:: Type result = ctZero;

if (0 <= order[0] && order[0] <= degree[0] &&
0 <= order[1] && order[1] <= degree[1l])

{

int i[2];
Real u[2];
for (int dim = 0; dim < 2; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);

}

for (int k1l = degree[l], elll = Imax[1][order[1]]; k1l >= order[1]; —k1, —elll)
Controls:: Type term = ctZero;
for (int kO = degree[0], ell0 = Imax[0][order [0]]; kO >= order[0]; —kO0, —ell0)
{

term = term x u[0] + tensor(i0, il, kO, kl) % dcoefficient[0][ell0];
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result = result % u[l] + term % dcoefficient[1][elll];

}

Real adjust(1);
for (int dim = 0; dim < 2; ++dim)
{
adjust *= powerDSDT[dim][order[dim]];

result = result % adjust;

}

return result;

6.3 Evaluation with On-Demand Caching

As in the 1-dimensional case, the tensor elements ®,,,, ¢, are computed for the first time they are needed
and then cached for later access if necessary. A tensor of Boolean flags, cached(r0,r1,c0,cl), is maintained
indicating whether or not a tensor element needs to be computed. The flags are all set to false initially. The
cost of precomputing all the matrix elements is not incurred. Instead, the cost is based only on computing
those elements that are needed during the application execution. This is useful when the application focuses
only on a region of interest involving a subset of the control points. Listing 12 contains pseudocode for the

evaluation.

Listing 12. Pseudocode for the evaluation of equation (38). The ® elements are computed the first time

they are needed and the results are stored in a cache.

// degree[2]: degrees of the B—spline

// numControls [2]: numbers of control point

// controls: array of control points

// tmin[2]: —1/2

// tmax[2]: (numControls[] + 1/2 )

// powerDSDT[2]: array of powers of ds/dt = (numControls[] — d) / numControls[]

// dcoefficient [2]: array of derivative polynomial coefficients , size (d[]+1)*(d[]+2)/2
// Imax[2]: location of the last coefficient for the block of specified order

// tensor: blended controls, accessed as tensor(r0,rl,c0,cl)

// cached: flags for blending, accessed as cached(r0,rl,c0,cl)

Controls :: Type EvaluateOnDemandCaching(int order[2], Real t[2])
{
Controls:: Type result = ctZero;
if (0 <= order[0] && order[0] <= degree[0] &&
0 <= order[1] && order[1] <= degree[1])
{

int i[2];
Real u[2];
for (int dim = 0; dim < 2; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],

i[dim], u[dim]);

}
for (int k1l = degree[1], elll = Imax[1][order[1]]; k1 >= order[1]; —k1, —elll)
{ Controls:: Type term = ctZero;
for (int kO = degree[0], ell0 = Imax[0][order [0]]; kO >= order [0]; —kO, —ell0)
Ef (cached(i0, i1, k0, k1) = false)

ComputeTensor(i0, il, kO, il);
cached(i0, i1, kO, kl) = true;
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}
term = term x u[0] + tensor(i0, il, kO, k1) % dcoefficient[0][ellO];

result = result % u[l] + term % dcoefficient[1][elll];

}

Real adjust(1);
for (int dim = 0; dim < 2; ++dim)
{
adjust *= powerDSDT [dim][order[dim]];

result = result % adjust;

}

return result;

7 B-Splines for 3-Dimensional Data

Let the 3-dimensional samples be {Fio,ihiz}gg’:%ff:o,iz and choose the degrees dg > 0, d; > 0 and dy > 0
for the B-spline interpolator. It is not necessary that the degrees all be the same value, although in some
applications it is common to have the same degree. The B-spline interpolator is defined as a tensor product

spline,
Xdg+iodi+i1,da+iz (50, 51, 82) = Zjo 0 231 0 Z;;l:o Figtjo.i1+i1.i2+d2
do) (d1) (d . . .

Yo X o X g ajen afy k) afyh) (so = do — i0)*0 (51 — dy — 1) (s2 — dz — i2)*>
for 0 < i, < ¢, —d, and s, € [dy + in,dy, + iy, + 1). The implementation will require you to choose
tn € [—1/2,¢, +1/2] and then compute internally s,, — d,, = ((co +1 — do)/(co + 1))(to + 1/2). The indices
in are determined from s, in order to select Xg,tiy.dy+i1.dotis (S0, S1,52) for evaluation. The evaluation
methodologies parallel those for the 1-dimensional B-spline functions.

(39)

7.1 Evaluation without Caching

The straightforward evaluation algorithm is to compute the polynomial terms first and then compute the
weighted sum of control points. Equation (39) is parenthesized as follows for this algorithm,

Xd0+i07d1+i1 ,do+iz (807 51, 82)

ACLY (d1), k (d
Zgo ozgl 0232 0 Fiotdo.irtir izt (Zko =0 JOZOUO ) (Zkl_o 3111€1U11> (Zkz_o 1222“2) (40)
ZJO OE]I 02]2 =0 10+J0711+J17t2+]2¢0730(u0)¢1Jl(ul)d)Qan(uQ)

where u, = s, —d, — i, € [0,1) and ¢, j, (uy) is the dot product of row j, of Aldn) with the polynomial
vector (1,up, ..., ul").

The B-spline derivatives of order (mg, m1,ms) are

Xgl?-&‘j-;:?;lfziz,dz+zz(so’31732) Z]o 02;1 OZJQ 0 Zo+Jo,11+]1,lz+j2¢on;§)( )¢1m1)( )(b mQ)( ) (41)

where
dp—mp

My dn, dn n
S (wn) = D @S L i) (42)
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dn)

are the polynomial derivatives of ¢, j, (u,) with wfnn %, brovided by equation (29). The superscript on the
w-term emphasizes that the subscripts of that term have constraints that depend on the degree d,,.

The evaluation of equation (41) is a simple extension of that shown in equation (28). Pseudocode is provided
in Listing 13.

Listing 13. Evaluation of the 3-dimensional B-spline or of its derivatives as shown in equation (41).

degree [3]: degrees of the B—spline

numControls [3]: numbers of control point

controls: array of control points

A[3]: blending matrix of size (d[]+1)—by—(d[]+1), stored as A[](row, col)
dcoefficient [3]: array of derivative polynomial coefficients , size (d[]+1)*(d[]+2)/2

Imax [3]: location of the last coefficient for the block of specified order
phi[3]: array of polynomial evaluations that multiply the control points
tmin[3]: —1/2

tmax[3]: (numControlPoints[] + 1/2 )
powerDSDT [3]: array of powers of ds/dt = (numControls[] — d) / numControls[]

Controls:: Type EvaluateNoCaching(int order[3], Real t[3])

{

Controls:: Type result = ctZero;

if (0 <= order[0] && order[0] <= degree[0] &&
0 <= order[1] && order[1] <= degree[1] &&
0 <= order[2] && order[2] <= degree[2])

int i[3];
Real u[3];
for (int dim = 0; dim < 3; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);

}
for (int dim = 0; dim < 3; ++dim)
{
for (int j = 0; j <= degree[dim]; ++j)
phi[dim][j] = 0;
for (int k = degree[dim], ell = Imax[dim][order[dim]]; k >= order[dim]; —k, —ell)
phi[dim][j] = phi[dim][j] * u[dim] + A[dim](j, k) % dcoefficient[dim][ell];
}
}
for (int j2 = 0; j2 <= degree[2]; ++j2)
{
Real phi2 = phi[2][j2];
for (int jl1 = 0; j1 <= degree[1]; ++jl1)
{
Real phil = phi[1l][jl];
Real phil2 = phil # phi2;
for (int jO = 0; jO <= degree[0]; ++j0)
Real phi0 = phi[0][jO0];
Real phi0l2 = phi0 % phil2;
result = result 4+ controls(i[0] 4+ jO, i[1] + j1, i[2] + j2) * phi0l2;
}
}
}

Real adjust = 1;
for (int dim = 0; dim < 3; ++dim)
{
adjust *= powerDSDT[dim][order[dim]];

result = result % adjust;
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}

return result;

7.2 Evaluation with Precaching
Equation (39) is rewritten as follows for this algorithm,

Xdo+i0,d1+i17d2+i2 (So, 51, 82)
Zko 0 Zkl_o Ekz_ (Z]o 0 Zgl_o 232_0 i0+Jo,%1+J1, z2+32@§g22)a§?11c)1a§jil) Ug ulflu§2 (43)
ZI@ 0 (Zkl_ (Zko 0 20i1i2kok1k2u§0) ulfl) qu
and its derivatives of order (mg,m1, ms) are

(mo,m1,mz2)
do+io,d1+1i1,d2+i2 (50’81’82) (44)

_ dgfmg dlfml dofmo (dO) kO (dl) (d2) k?2
*Zh:o (Z]ﬁ:o <Zk0=0 (I)imh,i27ko+m07k1+m17k2+m2 mo,ko Wiy, klu Wy g kp W2

Listing 14 contains pseudocode for precomputing the tensor ®;,,i,k0k: ks -

Listing 14. Pseudocode for precomputing ®,,r,r cocico- LThe index names r and c¢ are suggestive of the
ordering for the tensor in the 1-dimensional B-spline precache algorithm.

// degree[3]: degrees of the B—spline

// numControls [3]: numbers of control point

// controls: array of control points

// A[3]: blending matrices, accessed as A[](row, col)
// tensor: blended controls, accessed as tensor(rO,rl,r2,c0,cl,c2)

void ComputeTensor(int r0, int rl, int r2, int c0, int cl, int c2)

{
Controls:: Type element = ctZero;
for (int j2 = 0; j2 <= degree[2]; ++j2)
Real blend2 = A[2](j2, c2);
for (int jl1 = 0; j1 <= degree[1]; ++jl1)
{
Real blendl = A[1](jl1, cl);
Real blend12 = blendl x blend2;
for (int jO = 0; jO <= degree[0]; ++j0)
Real blend0 = A[0](jO, c0);
Real blend012 = blend0 % blend12;
element = element + controls(r0 + jO, rl + jl, r2 + j2) % blend012;
}
}
}
tensor(r0, rl, r2, c0, cl, c2) = element;
}
void InitializeTensors ()
{

int numRows[3], numCols[3];
for (int dim = 0; dim < 3; ++dim)

numRows [dim] = numControls[dim] — degree[dim];
numCols[dim] = degree[dim] + 1;
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}

for (int r2 = 0; r2 < numRows[2]; ++r2)
{

for (int rl 0; rl < numRows[1]; ++rl)

{
for (int r0 = 0; r0 <numRows[0]; ++r0)
for (int c2 = 0; c2 < numCols[2]; ++c2)
for (int c1 = 0; cl < numCols[1]; ++cl)
for (int c0 = 0; c0 < numCols[0]; ++c0)
ComputeTensor(r0, rl, r2, c0, cl, c2);
}
}
}
}

Listing 15 contains pseudocode for the evaluation of equation (43).

Listing 15. Pseudocode for evaluation the 3-dimensional B-spline function using precaching.
Controls:: Type EvaluatePrecaching(int order[3], Real t[3])

{
Controls:: Type result = ctZero;
if (0 <= order[0] && order[0] <= degree[0] &&
0 <= order[1] && order[1] <= degree[1l] &&
0 <= order [2] && order[2] <= degree[2])

{
int i[3];
Real u[3];
for (int dim = 0; dim < 3; ++dim)
GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);
}
for (int k2 = degree[2], ell2 = Imax[2][order[2]]; k2 >= order[2]; —k2, —ell2)
{
Controls :: Type terml = ctZero;
for (int k1l = degree[1l], elll = Imax[1][order[1]]; k1 >= order[1]; —k1, —elll)
{
Controls:: Type term0 = ctZero;
for (int kO degree[0], ell0 = Imax[0][order[0]]; kO >= order[0]; —kO, —ell0)
term0 = termO * u[0] + tensor(i0, il, i2, kO, kl, k2) x dcoefficient [0][ell0];
}
terml = terml % u[l] + termO % dcoefficient[1][elll];
result = result * u[2] + terml x dcoefficient[2][ell2];
}
Real adjust = 1;
for (int dim = 0; dim < 3; ++dim)
{
adjust %= powerDSDT [dim][order[dim]];
result = result % adjust;
}

return result;
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7.3 Evaluation with On-Demand Caching

As in the 1-dimensional case, the tensor elements ®, . r,cocic, are computed for the first time they are
needed and then cached for later access if necessary. A tensor of Boolean flags, cached(r0,r1,r2,c0,c1,c2), is
maintained indicating whether or not a tensor element needs to be computed. The flags are all set to false
initially. The cost of precomputing all the matrix elements is not incurred. Instead, the cost is based only
on computing those elements that are needed during the application execution. This is useful when the
application focuses only on a region of interest involving a subset of the control points. Listing 16 contains
pseudocode for the evaluation.

Listing 16. Pseudocode for the evaluation of equation (38). The ® elements are computed the first time
they are needed and the results are stored in a cache.

// degree[3]: degrees of the B—spline

// numControls [3]: numbers of control point

// controls: array of control points

// tmin[3]: —1/2

// tmax[3]: (numControls[] + 1/2 )

// powerDSDT[3]: array of powers of ds/dt = (numControls[] — d) / numControls[]

// dcoefficient [3]: array of derivative polynomial coefficients , size (d[]+1)*(d[]+2)/2
// Imax[3]: location of the last coefficient for the block of specified order

// tensor: blended controls, accessed as tensor(rO,rl,r2,c0,cl,c2)

// cached: flags for blending, accessed as cached(r0,rl,r2,c0,cl,c2)

Controls :: Type EvaluateOnDemandCaching(int order[3], Real t[3])
{
Controls:: Type result = ctZero;
if (0 <= order[0] && order[0] <= degree[0] &&
0 <= order[1] && order[1] <= degree[1l] &&
0 <= order[2] && order[2] <= degree[2])

int i[3];
Real u[3];
for (int dim = 0; dim < 3; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);

}
for (int k2 = degree[2], ell2 = Imax[2][order[2]]; k2 >= order[2]; —k2, —ell2)
{
Controls:: Type terml = ctZero;
for (int k1 = degree[l], elll = Imax[1][order[1]]; k1l >= order[1]; —kl1, —elll)
{
Controls:: Type term0 = ctZero;
for (int kO = degree[0], ell0 = Imax[0][order [0]]; kO >= order [0]; —kO, —ell0)
if (cached(i0, i1, i2, kO, k1, k2) = false)
ComputeTensor(i0, i1, i2, k0O, k1, k2);
cached(i0O, i1, i2, kO, kl, k2) = true;
}
term0 = termO x u[0] + tensor(i0, il, i2, kO, k1, k2) % dcoefficient [0][ell0];
}
terml = terml % u[l] + termO % dcoefficient[1][elll];
result = result % u[2] + terml x dcoefficient[2][ell2];
}

Real adjust(1);
for (int dim = 0; dim < 3; ++dim)

adjust #= powerDSDT[dim][order[dim]];
}

result = result % adjust;
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}

return result;

8 B-Splines for Data in General Dimensions

The description here uses multiindex notation for dimension n. The multiindices are i = (ig,...,in—1),
i=Uoy- -y Jn-1),c=(coy...,en-1),d = (do,...,dn-1) and k = (ko, ..., kn—1). The multiindex for a tuple
of all zeros is 0, the multiindex for a tuple of all ones is 1 and the multiindex for a tuple of all 1/2 values is
1/2. Comparison between multiindices is performed componentwise; for example, i > j means that ix > ji
for all k. The control points and B-spline outputs have subscripts that are multiindices. The continuous
variables are written as vectors, s = (Sg,...,8,—1) and t = (tg,...,tn—1)-

Let the multidimensional image samples be {Fi}{_, and choose the degrees d > 0. The B-spline interpolation
is defined as a tensor produce spline,

d d
d .
Xari(s) =Y Fey ) _ap (s —d - D) (45)
j=o0 k=0

for0<i<candse[d+1id+i+1). The term ajgf(l) denotes the product of the n blending matrices agfi)e
and the notation (s —d — i)* denotes the product of the n terms (s; — dy — i¢)**. The implementation will
require you to choose t € [-1/2,c+1/2] and then compute internally s —d = ((c+1—d)/(c+1))(t+1/2).

The indices i are determined from s in order to select Xqg4i(s) for evaluation.

In the implementations, the summations of the B-spline evaluations typically involve nested loops, the
depth of nesting depending on the dimension n. Although in a language such as C4++ where you can
generate code recursively using template metaprogramming, doing so with large n might exceed the compiler’s
capabilities. Instead, it is possible to implement the n-dimensional splines by careful memory organization
and bookkeeping.

8.1 Multidimensionsal Array Layout

Consider an n-dimensional array of elements, each element located by an n-tuple (xg,x1,...,%,—1) Where
0 < z; < b; for user-defined upper bounds b;. The n-tuples can be mapped uniquely to 1-dimensional
indices,

i =x9+ box1 + bob1axo + -+ + (b() <o bnfg){);‘n,l, 0<i< (b() ce bnfl) (46)

The coeflicient of  is 1 and the coefficient of x; for j > 0 is Hi;é bi. Given the 1-dimensional index i, the
n-tuple can be extracted by a sequence of mod and div operations,

x = (i mod by, (¢ div by) mod by, ((i div bg) div by) mod ba, . . .) (47)

Listing 17 contains pseudocode for the conversions of equations (46) and (47).

Listing 17. Conversions from tuples to indices and from indices to tuples for an n-dimensional lattice.
The upper bounds are b[] and the tuple to convert is x]].
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// Convert from a tuple to an index. The conversion equation has a nested
// factoring similar to that for Horner’'s method for polynomial evaluation.
int Getlndex(int b[n], int x[n])
{

int i = x[n—1];

for (int k = n—2; k >= 0; —k)

i =b[k] * i + x[k];

}
return i;
}
// Convert from an index to a tuple. The code is structured to use the
// minimum number of MOD and DIV operations.
void GetTuple(int b[n], int i, int x[n])
for (int k = 0; k < n—1; ++k)
{
x[k] = i MOD b[k];
i =i DIV b[k];
}
x[n—1] = i;

The conversion from an index to a tuple is relatively expensive because of the MOD and DIV operations.
For a large number of B-spline evaluations, these operations will be a noticeable bottleneck reported by a
profiler. The conversion is designed for random access. For code that iterates over the tuples in a structured
manner, we can avoid the MOD and DIV operations as shown in the next section.

8.2 Eliminating Nested Loops

The ideas for replacing nested loops by a single loop are illustrated for dimensions 2 and 3.

Consider the double loop
for (int x1 = 0; x1 < bl; ++x1)

{
for (int x0 = 0; x0 < b0; ++x0)
{
// work involving (x0,x1) goes here
}
}

The implied ordering of the tuples is (0,0), (1,0), ..., (bo —1,0), (0,1), (1,1), ..., (2bp — 1,0), ..., and so on.
The 2-tuple pairs effectively traverse a 2D matrix in row-major order. The equivalent 1-dimensional index

traversal is 0, 1, 2, ..., bpby — 1. The conversion to a single loop using MOD and DIV operations is
for (int i = 0; i < b0 % bl; ++i)
{
int x0 = i MOD bO;
int x1 = i DIV bl;

// work involving (x0,x1) goes here

For the first by values of i, ¢ is incremented from 0 to by — 1 but z; is always 0. For the second by values of
i, xo again is incremented from 0 to by — 1 but x; is always 1. A faster alternative is to increment x( from
0 to bg — 1 and, when it reaches by, wrap it around to 0 and increment x; as shown next
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int x0 = 0, x1 = 0;
for (int i = 0; i < b0 % bl; ++i)
{

// work involving (x0,x1) goes here

// code that supports the elimination of nested loops
if (++x0 < b0)

// x0 has been incremented to a value smaller than b0, so xI
// remains its current value.
continue;

}

// x0 has been incremented to b0, so wrap it to zero and
// increment x1 to its next value.

x0 = 0;

++x1;

Consider the triple loop
for (int x2 = 0; x2 < b2; +4x2)

{
for (int x1 = 0; x1 < bl; ++x1)
{
for (int x0 = 0; x0 < b0; ++x0)
{
// work involving (x0,x1,x2) goes here
}
}
}

The implied ordering of the tuples is the usual lexicographical ordering that generalizes row-major order.
The value x( varies the fastest, x; varies slower and zo varies the slowest. The conversion to a single loop
using MOD and DIV operations is

for (int i = 0; i < b0 % bl % b2; ++i)
{

int x0 = i MOD b0;

int temp = i / DIV bl;

int x1 = i MOD bil;

int x2 = i DIV b2;

// work involving (x0,x1,x2) goes here

For the first byb; iterations, xo is 0. Of those iterations, xg and x; vary in the same manner as illustrated
previously for the double loop. The use of MOD and DIV adds computational overhead that is not necessary.
A faster alternative is

int x0 =0, x1 =0, x2 = 0;
for (int i = 0; i < b0 % bl x b2; 4++i)

// work involving (x0,x1,x2) goes here

// code that supports the elimination of nested loops
if (++x0 < b0)
{

// x0 has been incremented to a value smaller than b0, so xI
// and x2 remain their current values.
continue;

}

// x0 has been incremented to b0, so wrap it to zero and
// increment x1 to its next value.

x0 = 0;

if (++x1 < bl)
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// x1 has been incremented to a value smaller than bl, so x2
// remains its current value.
continue;

}

// x1 has been incremented to bl, so wrap it to zero and
// increment x2 to its next value.
x1 = 0;

}

In the general case for n nested loops, the replacement by a single loop is shown in Listing 18.

Listing 18. Replacing n nested loops by a single loop. The upper bounds b[] are specified by the user.
The number of n-tuples is quantity which is the product of all the bounds b[].

// n nested loops
for (x[n—1] 0; x[n—1] < b[n—1]; +Hx[n—1])

for (x[n—=2] 0; x[n=2] < b[n—=2]; ++x[n—2])
for (x[0] = 0; x[0] < b[0]; 4+4x[0])
// work involving (x[0], x[1], ..., x[n—1]) goes here
}
// equivalent slow single loop
int x[n];
for (int i = 0; i < quantity; ++i)
{
int temp = i;
for (int d = 0; d < n—1; +4d)
x[d] = temp MOD b[d];
temp = temp DIV b[d];

x[n—=1] = temp;

, // work involving (x[0], x[1], ..., x[n—1]) goes here

// equivalent fast single loop, the x[] must be set to zero initially
for (int d = 0; d < n; ++d)

x[d] = 0;
for (int i = 0; i < quantity; ++i)
{
// work involving (x[0], x[1], ..., x[n—1]) goes here
// code that supports the elimination of nested loops
for (int d = 0; d < n; ++d)
if (++x[d] < b[d])
{
break;
}
x[d] = 0;
}

Although not needed for the B-spline application, it is possible to generalize the conversion from nested
loops to a single loop when there is also a lower bound; that is, when ¢; < x; < b; for all j. Other variations
of the pseudocode shown in Listing 18 are possible that manage nested oops with slightly more complicated
logic. One such case is shown in the caching code for general dimensions.
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8.3 Evaluation without Caching

The straightforward evaluation algorithm is to compute the polynomial terms first and then compute the
weighted sum of control points. Equation (48) shows the form of the B-spline for this approach.

d d
d .
Xayi(s) = Y Fiyy®;(u), B5(u) = afu, u=s—d-i (48)
j=0 k=0
The B-spline derivatives of order m = (mg, ..., m,_1) are
d
XGH(s) = D Fiy @™ (u) (49)
j=0

where (I)ng) (u) denotes the multiindexed sequence of derivatives of the polynomial components of ®;(u).
Listings 9 and 13 show that only the evaluation loops themselves are nested. The other loops are single loops
over the number of dimensions of the spline. Listing 19 shows the generic form of the evaluation code if one

were to use nested loops.

Listing 19. Pseudocode for evaluation of equation (49) with nested loops.

// degree[n]: degrees of the B—spline

// numControls[n]: numbers of control point

// controls: array of control points

// A[n]: blending matrix of size (d[]+1)—by—(d[]+1), stored as A[](row, col)

// dcoefficient[n]: array of derivative polynomial coefficients , size (d[]+1)*(d[]+2)/2
// Imax[n]: location of the last coefficient for the block of specified order

// phi[n]: array of polynomial evaluations that multiply the control points

// tmin[n]: —1/2

// tmax[n]: (numControlPoints[] + 1/2 )

// powerDSDT[n]: array of powers of ds/dt = (numControls[] — d) / numControls[]

Controls:: Type EvaluateNoCaching(int order[n], Real t[n])
{

Controls:: Type result = ctZero;

int degreeMinusOrder[n];

for (int dim = 0; dim < n; ++dim)

{
degreeMinusOrder [dim] = degree[dim] — order[dim];
if (degreeMinusOrder[dim] < 0 || degreeMinusOrder[dim] > degree[dim])
return result;
}
int i[n];

Real u[n];
for (int dim = 0; dim < n; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);

}
for (int dim = 0; dim < n; ++dim)
¢ for (int j = 0; j <= degree[dim]; ++j)
phi[dim][j] = 0;
Eor (int k = degree[dim], ell = Imax[dim][order[dim]]; k >= order[dim]; —k, —ell)
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phi[dim][j] = phi[dim][j] * u[dim] + A[dim](j, k) % dcoefficient[dim][ell];

}

// TODO: Replace the nested loops by a fast single loop.
Real p[n], product[n];

int j[n];

for (j[n—1] = 0; j[n—1] <= degree[n—1]; ++j[n—1])

p[n—1] = phi[n—1][j[n—1]];
product [n—1] = p[n—1];
for (j[n—2] = 0; j[n—2] <= degree[n—2]; ++j[n—2])

pln—2] = phi[n—2][j [n—2]];
product[n—2] = p[n—2] % product[n—1];

EO' (i[0] = 0; j[0] <= degree[0]; ++j[0])

p[0] = phi[O][j[O]];
product [0] = p[0] % product[1];
result = result 4+ controls(i[0] + j[O], ..., i[n—=1] + j[n—1]) * product[0];

}

Real adjust = 1;
for (int dim = 0; dim < n; ++dim)

adjust %= powerDSDT [dim][order[dim]];
}
result = result % adjust;
return result;

All the assignments of p[] and the multiplications for product[] can be moved inside the inner-most loop so
that the loop marked TODO is of the form in Listing 18 for the fast single loop, after which we may replace
the nested loops. However, a small modification of the fast loops avoids moving that code. The assigments
of p[] occur only when the j-loop counters change.

It is also important to note that the controls provided by the application must have an accessor that allows
you to pass an n-tuple in order to get the corresponding control point. Although the B-spline implementation
can force controls to take a 1-dimensional index, this would impose a policy that the multidimensional control
points be managed according to the mapping between n-tuples and 1-dimensional indices. The design of
the GTE B-spline interpolation is such that a user provides a wrapper for the control points that hides the
user’s organization of control points. That wrapper must implement an accessor that takes an n-tuple and
returns a control point; what the wrapper does with the tuple is not the interpolator’s concern.

Listing 20 shows the new pseudocode without the nested loops and with the preparation of an n-tuple to
pass to the controls object.

Listing 20. Pseudocode for evaluation of equation (49) without nested loops and with preparation of the
n-tuple input to controls.

// degree[n]: degrees of the B—spline

// numControls[n]: numbers of control point

// controls: array of control points

// A[n]: blending matrix of size (d[[+1)—by—(d[]+1), stored as A[](row, col)

// dcoefficient[n]: array of derivative polynomial coefficients , size (d[]+1)x(d[]+2)/2
// Imax[n]: location of the last coefficient for the block of specified order
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// phi[n]: array of polynomial evaluations that multiply the control points

// tmin[n]: —1/2

// tmax[n]: (numControlPoints[] + 1/2 )

// powerDSDT[n]: array of powers of ds/dt = (numControls[] — d) / numControls[]
// kmax: precomputed product of (degree[]+1) terms

Controls:: Type EvaluateNoCaching(int order[n], Real t[n])

{
Controls:: Type result = ctZero;
for (int dim = 0; dim < n; ++dim)
if (order[dim] < 0 || order[dim] > degree[dim])

return result;

}

int i[n];
Real u[n];
for (int dim = 0; dim < n; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim], degree[dim],
i[dim], u[dim]);

}
for (int dim = 0; dim < n; ++dim)
¢ for (int j = 0; j <= degree[dim]; ++j)
phi[dim][j] = 0;
for (int k = degree[dim], ell = Imax[dim][order[dim]]; k >= order[dim]; —k, —ell)
phi[dim][j] = phi[dim][j] % u[dim] + A[dim](j, k) % dcoefficient[dim][ell];
}
}
int j[n], sumlJ[n];
Real p[n];
for (int dim = 0; dim < n; 4++dim)
¢ j[dim] = 0;
sumlJ[dim] = i[dim];
) p[dim] = phi[dim][0];
for (int k = 0; k < kmax; ++k)
{ Real product = 1;
for (int dim = 0; dim < n; 4++dim)
{ product #= p[dim];
}
result = result + controls(sumlJ) * product;
for (int dim = 0; dim < n; ++dim)
{if (++j [dim] <= degree[dim])
p[dim] = phituple[dim][j[dim]];
sumlJ[dim] = ituple[dim] + j[dim];
break ;
}
j[dim] = 0;
p[dim] = phituple[dim][0];
sumlJ[dim] = ituple [dim];
}
}

Real adjust = 1;
for (int dim = 0; dim < n; ++dim)
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adjust %= powerDSDT [dim][order[dim]];

result = result % adjust;
return result;

8.4 Evaluation with Caching
Equation (45) is rewritten for this algorithm,
d d
Xd+i(5) = Z ‘I‘ikuk, (I)ik = ZFiHaE;? (50)
k=0 j=0

The tensor ®; has 2n indices for dimension n, n for multindex i and n for multiindex k. Listing 21 contains
pseudocode for precomputing the tensor.

Listing 21. Pseudocode for precomputing ®;x. The numLocalControls is the product of degree[]+1 terms,
which is the size of the neighborhood of control points used for an evaluation. The algorithm for eliminating
nested loops is used in this code.

void ComputeTensor(int i[n], int k[n], int index)

{
Controls:: Type element = ctZero;
int j[n], sumlJ[n];
for (int dim = 0; dim < n; ++dim)
jldim] = 0;
for (int iterate = 0; iterate < numlocalControls; ++iterate)
Real blend = 1;
for (int dim = 0; dim < n; ++dim)
blend %= A[dim](j[dim], k[dim]);
sumlJ[dim] = i[dim] + j[dim];
}
element = element + controls(sumlJ) % blend;
for (int dim = 0; dim < n; 4++dim)
if (++j[dim] <= degree[dim] + 1)
{
break ;
}
j[dim] = 0;
tensor[index] = element;
}
void InitializeTensors ()
{
int tbound[2 % n]; // first n for i—tuple, second n for k—tuple
int current = 0;
int numCached = 1;
for (int dim = 0; dim < n; ++dim, ++current)
{
tbound[current] = degree[dim] + 1;
numCached %= tbound[current];
}
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for (int dim = 0; dim < n; ++dim, ++current)

tbound[current] = numControls[dim] — degree[dim];
numCached %= tbound[current];

Controls :: Type tensor(numCached);

int tuple[2 % n];
for (int dim = 0; dim < n; ++dim)

tuple[dim] = 0;
for (int index = 0; index < numCached; ++index)

ComputeTensor(&tuple
i

[n], &tuple[0], index);
for (int i = 0; < 2 % i

n; ++i)
if (++tuple[i] < tbound[i])
; break ;

tuple[i] = 0;

Listing 22 contains pseudocode for the evaluation of equation (50).

Listing 22.

Controls:: Type EvaluateCaching(int constx order, Real constx t)

{

// The numlterates is the number of tensor elements to combine
// in a neighborhood with dimensions (degree[]—order[]+1).

int numlterates = 1;

for (int dim = 0; dim < n; 4++dim)

if (order[dim] < 0 || order[dim] > degree[dim])
return ctZero;
}r;umlterates *= degree[dim] — order[dim] + 1;
}
int i[n];

Real u[n];
for (int dim = 0; dim < n; ++dim)

GetKey(t[dim], tmin[dim], tmax[dim], powerDSDT[dim][1], numControls[dim],
) i[dim], u[dim]);

// Get the portion of the I—dimensional index into the tensor corresponding
// to the [ multiindex.

int ilndex = i[n — 1];
int j1 =2 % n— 2;
for (int jO = n — 2; jO >= 0; —j0, —j1)

ilndex = tbound[jl] * ilndex + i[jO];
ilndex = tbound[jl] * ilndex;
int j[n], k[n], ell[n];
Controls :: Type term[n];
for (int dim = 0; dim < n; 4++dim)

jldim] = o;
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degree [dim],



k[dim] = degree[dim];
ell [dim] = LMax[dim][order[dim]];

term[dim] = ctZero;
}
for (int iterate = 0; iterate < numlterates; ++titerate)
{

// Get the portion of the lI—dimensional index into the tensor corresponding
// to the k multiindex and combine it with the one from the i multiindex
// to obtain the full index.

int index = ilndex + k[n — 1];

for (int jO = n — 2; jO >= 0; —j0)

index = tbound[jO] % index + k[jO];

if (cacheMode = ON_DEMAND_CACHING && !cached[index])
{

ComputeTensor(i, k, index);
cached[index] = true;
}
term [0] = term [0] % u[0] + tensor[index] % dcoefficient[0][ell [0]];
for (int dim = 0; dim < n; ++dim)
if (++j[dim] <= degree[dim] — order[dim])
{
—k[dim];
—ell [dim];
break ;

}
int dimpl = dim + 1;
if (dimpl < n)

{
term [dimpl] = term[dimpl] % u[dimpl] + term[dim] % mdcoefficient [dimpl][ell [dimpl]];
term[dim] = ctZero;
j[dim] = o;

k[dim] = degree[dim];
ell [dim] = LMax[dim][order[dim]];

}
Controls :: Type result = term[n — 1];

Real adjust = 1;
for (int dim = 0; dim < n; ++dim)

{
adjust %= powerDSDT [dim][order[dim]];
}
result = result % adjust;
return result;
}
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